Hybrid Metaheuristics

Christian Blum

Albcom Research Group Universitat Politècnica De Catalunya Barcelona, Spain

© www.hemmy.net

Outline of the talk

- Hybrid Metaheuristics (HMs)
 - **★** Definition
 - ★ Classification of HMs
- Interesting Examples
 - ★ Metaheuristics with Metaheuristics (ILS)
 - * Metaheuristics with Constraint Programming (ACO)
 - * Metaheuristics with Tree Search (VNS)
 - * Metaheuristics with Problem Relaxation (TS)
 - * Metaheuristics with Dynamic Programming (EC)

Hybrid Metaheuristics

A short introduction

Variable Neighborhood Search (VNS)

[Mladenović, 1999]

Hybrid metaheuristics (1)

Different metaheuristics:

Timeline of introduction

➤ Simulated Annealing (SA)	[Kirkpatrick, 1983]
► Tabu Search (TS)	[Glover, 1986]
➤ Genetic and Evolutionary Computation (EC)	[Goldberg, 1989]
► Ant Colony Optimization (ACO)	[Dorigo, 1992]
➤ Greedy Randomized Adaptive Search Procedure (GRA	ASP) [Resende, 1995]
➤ Particle Swarm Optimiation (PSO) [H	Eberhart, Kennedy, 1995]
➤ Guided Local Search (GLS)	[Voudouris, 1997]
▶ Iterated Local Search (ILS)	[Stützle, 1999]

Hybrid metaheuristics (2)

Definition: What is a hybrid metaheuristic?

Problem: can not be very well defined

Possible characterization:

A technique that results from the combination of a metaheuristic with other techniques for optimization

What is meant by: other techniques for optimisation?

- Metaheuristics
- ▶ Branch & bound
- Dynamic programming
- ► ILP techniques

Hybrid metaheuristics (3)

Note: Lack of a precise definition is often subject to criticism

History:

- For a long time the different communities co-existed quite isolated
- Hybrid approaches were developed already early, but only sporadically
- ➤ Only since about 10 years the published body of research grows significantly:
 - 1. 1999: CP-AI-OR Conferences/Workshops
 - 2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)
 - 3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research

Hybrid metaheuristics: classification (1)

References for the classification of hybrid metaheuristics

- C. Cotta. A study of hybridisation techniques and their application to the design of evolutionary algorithms, AI Communications, 11(3-4):223-224, 1998
- E. Talbi. A taxonomy of hybrid metheuristics, Journal of Heuristics, 8(5):541–565, 2002
- C. Blum and A. Roli. Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Computing Surveys, 35(3):268−308, 2003
- ▶ I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms, In: Proceedings of Applications of Evolutionary Computation, volume 2611, Springer LNCS, 2003
- ➤ G. Raidl. A unified view on hybrid metaheuristics, In: Proceedings of HM 2006, volume 4030, Springer LNCS, pages 1–112, 2006

Hybrid metaheuristics: classification (2)

What is hybridized? Metaheuristics with ...

- ... metaheuristics . Examples:
 - 1. Use of neighborhood-based MHs within population-based MHs
 - 2. Hyper-heuristics
- problem-specific algorithms. Examples:
 - 1. Continuous optimization: use of gradient-based methods
 - 2. Simulations for approximating the objective function
- ... other AI/OR techniques. Examples:
 - 1. Large-scale neighborhood search
 - 2. Combinations of metaheuristics with constraint programming
- ... a human interactor

Hybrid metaheuristics: classification (3)

What is the level of hybridization?

- ► High-level: weak coupling
 - 1. Algorithms retain their own identities
 - 2. No direct relationship of the internal workings of the algorithms
 - 3. Interaction over a well-defined interface
- **Low-level:** strong coupling
 - 1. Algorithms strongly depend on each other
 - 2. Individual components or functions are exchanged

Hybrid metaheuristics: classification (4)

What is the control strategy?

- Collaborative
 - 1. Homogeneous approaches: several instances of the same algorithm
 - 2. Heterogeneous approaches: for example, A-Teams
- Integrative
 - 1. Solution merging
 - 2. Decoder-based approaches
 - 3. Large-scale neighborhood search
 - 4. Using metaheuristics for finding good upper bounds in branch & bound

Hybrid metaheuristics: classification (5)

What is the order of execution?

- **Sequential:** results of earlier executed algorithms are used in later algorithms
- ► Interleaved. For example:
 - 1. Using metaheuristics for node selection in branch & bound
 - 2. Exact algorithms as decoders in decoder-based approaches
- Parallel
 - 1. Granularity: fine-grained versus coarse-grained
 - 2. Hardware: homogeneous versus heterogeneous
 - 3. etc.

Interesting Examples

- ► Metaheuristics with Metaheuristics
- ▶ Metaheuristics with Constraint Programming
- ▶ Metaheuristics with Tree Search
- ▶ Metaheuristics with Problem Relaxation
- ▶ Metaheuristics with Dynamic Programming

Characteristics of Different Metaheuristics

Decreasing use of constructive elements

Decreasing use of constructive elements

- Advantage of pop.-based methods: Diversification ability
- Advantage of trajectory methods: Intensification ability

What does that mean for Hybridization?

Consequence: Most MH/MH hybrids incorporate trajectory methods into population-based techniques

Examples:

- ▶ Application of local search to solutions constructed by ACO
- Application of local search to individuals in evolutionary algorithms (memetic algorithms)

Other examples:

- Population-based iterated local search
- Multi-level techniques

Iterated Local Search

Pseudo-code:

- 1: $s \leftarrow GenerateInitialSolution()$
- 2: $s \leftarrow \mathsf{LocalSearch}(s)$
- 3: while termination conditions not met do
- 4: $s' \leftarrow \text{Perturbation}(s, history)$
- 5: $\hat{s'} \leftarrow \mathsf{LocalSearch}(s')$
- 6: $s \leftarrow \mathsf{ApplyAcceptanceCriterion}(\hat{s'}, s, history)$
- 7: end while

Key components:

- ▶ Perturbation mechanism
- Local search

Population-Based Iterated Local Search

```
1: P \leftarrow \mathsf{GenerateInitialPopulation}(n)
 2: Apply LocalSearch() to all s \in P
 3: while termination conditions not met do
       P' \leftarrow P
     for all s \in P do
    s' \leftarrow \mathsf{Perturbation}(s, history)
 7: \hat{s'} \leftarrow \text{LocalSearch}(s')
     P' \leftarrow P' \cup \{\hat{s'}\}
       end for
 9:
        P \leftarrow \text{Best } n \text{ solution from } P'
10:
11: end while
```

Main reference: T. Stützle. Iterated local search for the quadratic assignment problem, European Journal of Operational Research, 174(3):1529–1539, 2006

The Multi-level Framework (1)

General references:

- ➤ C. Walshaw. Multilevel refinement for combinatorial optimisation, Annals of Operations Research, 131:325–372, 2004
- ➤ C. Walshaw. Multilevel refinement for combinatorial optimisation:

 boosting metaheuristic performance, In: Hybrid Metaheuristics—An

 Emerging Approach to Optimization, volume 114 of Studies in Computational
 Intelligence, pages 261–289, Springer Verlag, Berlin, Germany, 2008

General idea:

- **First:** Iterative coarsening of the original problem instance
- **Then:** Find a solution to the coarsest level
- ▶ **Finally:** Iteratively refine this solution at each level

The Multi-level Framework (2)

The multi-level framework: expand contract expand contract MHs''P''expand contract MHs'''P'''

The Multi-level Framework (3)

Specific references:

- ▶ P. Korosec, J. Silc, and B. Robic. Solving the mesh-partitioning problem with an ant-colony algorithm, Parallel Computing, 30(5-6):785-801, 2004
- C. Walshaw. A multilevel approach to the travelling salesman problem, Operations Research, 50(5):862–877, 2002
- ► T. G. Crainic, Y. Li, and M. Toulouse. A first multilevel cooperative algorithm for capacitated multicommodity network design, Computers & Operations Research, 33(9):2602–2622, 2006

Interesting Examples

- ▶ Metaheuristics with Metaheuristics
- ► Metaheuristics with Constraint Programming
- ► Metaheuristics with Tree Search
- ▶ Metaheuristics with Problem Relaxation
- ▶ Metaheuristics with Dynamic Programming

© C. Blum

Traveling salesman problem (TSP)

A completely connected, undirected graph G = (V, E) with edge-weights.

Goal: Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.

Solution construction: Constructive mechanism of the nearest-neighbor heuristic

(starting from city 1)

ACO as a tree search algorithm

1st construction step:

ACO as a tree search algorithm

2nd construction step:

ACO as a tree search algorithm

3rd construction step:

ACO hybridized with constraint programming (1)

References:

- ▶ B. Meyer and A. Ernst. **Integrating ACO and Constraint Propagation**, In: *Proceedings of ANTS 2004*, volume 3172 of Springer LNCS, pages 166–177, 2004
- ▶ M. Khichane, P. Albert, and C. Solnon. **CP with ACO**, In: *Proceedings of CPAIOR 2008*, volume 5015 of Springer LNCS, pages 328–332, 2008

General idea:

- ▶ Successively reduce the variable domains by contraint propagation
- Let ACO search the reduced search tree

ACO hybridized with constraint programming (2)

Constraint programming (CP): Computational systems based on constraints

How does it work?

- Phase 1:
 - * Express CO problem in terms of a discrete problem (variables+domains)
 - ★ Define ("post") constraints among the variables
 - * The constraint solver reduces the variable domains
 - ... before solution construction
 - ... during solution construction
- Phase 2: Labelling
 - ★ Search through the remaining search tree
 - ★ Possibly "post" additional constraints

ACO hybridized with constraint programming (3)

Simple example: \blacksquare minimize $f(X, Y, Z) \mapsto \mathbf{R}$

subject to

$$X \in \{1, \dots, 8\}$$

$$Y, Z \in \{1, \dots, 10\}$$

$$X \neq 7, Z \neq 2$$

$$X - Z = 3Y$$

Constraint propagation:

- Step 1: Use $X \neq 7$ and $Z \neq 2$
 - 1. $X \in \{1, \dots, 6, 8\}$
 - 2. $Z \in \{1, 3, \dots, 10\}$

ACO hybridized with constraint programming (4)

- Step 2: Use X Z = 3Y
 - 1. Because of the domains of X and Z: X Z < 8
 - $2. \Rightarrow 3Y < 8$
 - $3. \Rightarrow Y \leq 2$
 - $4. \Rightarrow Y \in \{1, 2\}$
- Step 3: Use again X Z = 3Y
 - 1. Because of the reduced domain of Y: $3Y \geq 3$
 - $2. \Rightarrow X Z \ge 3$
 - 3. $\Rightarrow X \in \{4, 5, 6, 8\} \text{ and } Z \in \{1, 3, 4, 5\}$

ACO hybridized with constraint programming (5)

ACO-CP hybrid:

ACO hybridized with constraint programming (6)

Evaluation:

- Advantage of ACO:
 Good in finding high quality solutions for moderately constrained problems
- Advantage of CP:
 Good in finding feasible solutions for highly constrained problems

ACO-CP: Good with intermediate number of feasible solutions

Problem:

- Constraint propagation takes a lot of time
- ► Moreover: contraint propagation is repeated many times

1st construction step:

2nd construction step:

3rd construction step:

Hybrid algorithm: Beam-ACO

Idea:

- ▶ Instead of n_a independent solution constructions per iteration,
- ▶ perform a probabilistic beam search with beam width $k_{bw} = n_a$

Advantages:

- ▶ Strong heuristic guidance by a lower bound
- ▶ Embedded in the adaptive framework of ACO

Hybrid algorithm: Beam-ACO

Applications Beam-ACO was applied to the following problems:

- ▶ Open shop scheduling (OSS) Blum, Computers & Operations Research (2005)
- ► Longest common subsequence (LCS) problem Blum, Mastrolilli, HM 2007
- Supply chain management Caldeira et al., FUZZ-IEEE 2007, ISFA 2007
- ▶ Simple assembly line balancing (SALB) Blum, INFORMS Journal on Computing (2008)
- Travelling salesman problem with time windows (TSPTW) López-Ibañez et al., EvoCOP 2009

Hybrid algorithm: Beam-ACO

Question: Why does it work so well?

Observation: Beam-ACO uses 2 types of complementary problem information

- 1. A greedy function
- 2. Lower (respectively, upper) information

These two types of information are especially well exploited in Beam-ACO!

Interesting Examples

- ➤ Metaheuristics with Metaheuristics
- ▶ Metaheuristics with Constraint Programming
- ► Metaheuristics with Tree Search
- ▶ Metaheuristics with Problem Relaxation
- ▶ Metaheuristics with Dynamic Programming

Large-scale neighborhood search (1)

General references:

- R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale neighborhood search techniques, *Discrete Applied Mathematics*, 123(1-3):75–102, 2002
- M. Chiarandini, I. Dumitrescu, and T. Stützle. Very Large-Scale
 Neighborhood Search: Overview and Case Studies on Coloring
 Problems, In: Hybrid Metaheuristics−An Emerging Approach to
 Optimization, volume 114 of Studies in Computational Intelligence, pages
 117–150, Springer Verlag, Berlin, Germany, 2008

Key issues in local search:

- ▶ Defining an appropriate neighborhood structure
- ▶ Choosing a way of examining the neighborhood of a solution

Large-scale neighborhood search (2)

General tradeoff:

- Small neighborhoods:
 - 1. Advantage: It is fast to find an improving neighbor (if any)
 - 2. **Disadvantag:** The average quality of the local minima is low
- Large-scale neighborhoods:
 - 1. Advantage: The average quality of the local minima is high
 - 2. Disadvantage: Finding an improving neighbor might itself be NP-hard due to the size of the neighborhood

Ways of examining large neighborhoods:

- Heuristically
- ► In some cases an efficient exact technique may exist

Example: Biological Background

- **Given:** A set of haplotype sequences from a population of individuals
- **Goal:** Study the evolutionary history of the chosen individuals
- **Important for** the discovery of the genetic basis of complex diseases

In case the population has evolved from a relatively small set of founders, the evolutionary history can be studied by trying to reconstruct the haplotype sequences from founder fragments

▶ Problem: Generally, neither the founder sequences nor their number are known

The Founder Sequence Reconstruction Problem (FSRP)

- ► Given: A set of m recombinants $C = \{C_1, \ldots, C_m\}$
 - * Here: $\forall i, C_i$ is a binary string of length n
- Candidate solution: A set of k founders $\mathcal{F} = \{F_1, \dots, F_k\}$
 - * Here: $\forall j, F_j$ is a binary string of length n
- \triangleright A solution is valid if \mathcal{C} can be reconstructed from \mathcal{F} .
- This is the case when each $C_i \in \mathcal{C}$ can be decomposed into a sequence of $p_i \leq n$ fragments $Fr_{i1}Fr_{i2} \dots Fr_{ip_i}$, such that each fragment Fr_{ij} appears at the same position in at least one of the founders
- Given \mathcal{F} , a minimal decomposition, where the number of breakpoints $\sum_{i=1}^{n} p_i n$ is minimal, can be derived in polynomial time

Reconstruction

FSRP: Optimization Goal, and Example

▶ Optimization goal: Given k, find a valid solution \mathcal{F}^* that minimizes $f(\cdot)$

Example:

Recombinants \mathcal{C}

$1\ 1\ 0\ 1\ 1\ 0\ 1$		b b b b b c c
$1\ 0\ 1\ 0\ 0\ 0\ 1$	$0\ 1\ 1\ 0\ 1\ 0\ 0$	\mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}
$0\ 1\ 1\ 1\ 1\ 1\ 1$	$1\; 1\; 0\; 1\; 1\; 1\; 1\\$	a a a b b b b
$0\ 1\ 1\ 0\ 1\ 0\ 0$	$1\ 0\ 1\ 0\ 0\ 0\ 1$	a a a a a a
$1\ 1\ 0\ 0\ 0\ 1\ 1$		b b b c c b b

Founders \mathcal{F}

Branch & Bound Algorithm: RECBLOCK

Wu, Y., Gusfield, D. Improved algorithms for inferring the minimum mosaic of a set of recombinants. In: *Proceedings of CPM 2007*, Volume 4580 of LNCS, Springer Verlag, Berlin (2007), pages 150–161

Branch & Bound Algorithm: RECBLOCK

Observation: Given some fixed founders, RECBLOCK can be used to obtain the optimal setting for the remaining founders

Example: 4 fixed founders $\{1, 2, 4, 7\}$, and 3 missing founders $\{3, 5, 6\}$

Variable Neighborhood Descent (VND)

Observation: VND is a heuristic version of variable neighborhood search (VNS)

```
1: INPUT: a solution s, r_{\text{max}} neighborhood functions
2: r := 1
3: while r \leq r_{\text{max}} do
4: s' := \mathsf{PickBestNeighbor}(s, \mathcal{N}_r)
5: if f(s') < f(s) then
s := s'
7: r := 1
   else
8:
   r := r + 1
9:
      end if
10:
11: end while
12: OUTPUT: a (possibly) improved solution s
```

Hybrid VND for the FSRP

```
1: INPUT: a solution s, number k of founders
2: r := 1
3: while r \leq k do
    \hat{s} := \mathsf{DeleteFounders}(s, r)
5: s' := \mathsf{RECBLOCK}(\hat{s})
   if f(s') < f(s) then
7: s := s'
    r := 1
8:
    else
9:
        if maximal number of trials reached then r := r + 1
10:
      end if
11:
12: end while
13: OUTPUT: a (possibly) improved solution s
```

Interesting Examples

- ➤ Metaheuristics with Metaheuristics
- ▶ Metaheuristics with Constraint Programming
- ➤ Metaheuristics with Tree Search
- ▶ Metaheuristics with Problem Relaxation
- ▶ Metaheuristics with Dynamic Programming

Problem Relaxation

Observe: Problem relaxations can be obtained (among others) by

- Simplifying constraints of an IP formulation
- Dropping constraints of an IP formulation (e.g. integrality contraints)
- Moving constraints in terms of penalties to the objective function (e.g. Lagrangian relaxation)

Use of relaxations:

- ► As bounds for branch & bound algorithms
- ► As approximation for integer solutions
- ► As heuristic information for solution construction

Tabu Search

Main feature: Use of tabu lists for storing solution features

Note: Tabu lists are used to avoid going back to already visited solutions

Hybrid Tabu Search

Specific Reference:

▶ M. Vasquez and Y. Vimont. **Improved results on the 0–1 multidimensional knapsack problem.** European Journal of Operational Research, 165(1):70–81, 2005

Characteristics:

- **Collaborative** hybridization approach
- ▶ 1st algorithm phase: problem relaxation is used to produce a bunch of promising solutions
- **2nd algorithm phase:** tabu search is used to search around these solutions

The 0-1 Multidimensional Knapsack Problem (MKP)

Given:

- \triangleright n objects, each object i with a profit c_i
- \blacktriangleright m resources, each resource j with a capacity b_j
- \blacktriangleright Each object *i* has a requirement a_{ij} of each resource *j*

IP formulation:

$$\max \sum_{i=1}^{n} c_i \cdot x_i$$

subject to

$$a_{ij} \cdot x_i \le b_j$$
 $j = 1, \dots, m$
 $x_i \in \{0, 1\}$ $i = 1, \dots, n$

First Algorithm Phase

Main ideas:

- **Dropping** the integrality contraints
- For all k such that $0 \le k_{\min} \le k \le k_{\max} \le n$ solve

$$\max \sum_{i=1}^{n} c_i \cdot x_i$$

subject to

$$a_{ij} \cdot x_i \le b_j$$
 $j = 1, \dots, m$

$$0 \le x_i \le 1$$
 $i = 1, \dots, n$

$$\sum_{i=1}^{n} x_i = k$$

Second Algorithm Phase

Main ideas:

- From the 1st phase solutions: Produce integer solutions by rounding
- ▶ Use tabu search to search in the vicinity of these integer solutions
- Definition of vicinity: maximum Hamming distance

Interesting Examples

- ➤ Metaheuristics with Metaheuristics
- ▶ Metaheuristics with Constraint Programming
- ➤ Metaheuristics with Tree Search
- ▶ Metaheuristics with Problem Relaxation
- ► Metaheuristics with Dynamic Programming

Dynamic Programming

How does it work?

- 1. Divide the given problem into sub-problems
- 2. Combine solutions of already solved sub-problems to solutions to bigger sub-problems until a solution for the original problem is obtained

Required properties of the problem

- 1. Optimal substructure: Optimal solution to the problem must contain optimal solutions to sub-problems
- 2. Space of sub-problems: Should be of moderate size (polynomial)

Evolutionary Algorithms (EAs)

The k-Cardinality Tree (KCT) Problem (1)

Specific reference:

➤ C. Blum. A new hybrid evolutionary algorithm for the k-cardinality tree problem, In: Proceedings of GECCO 2006, ACM Press, pages 515–522, 2006

Definition: The k-cardinality tree problem

Given:

- ightharpoonup An undirected graph G = (V, E),
- ▶ Edge-weights w_e , $\forall e \in E$, and node-weights w_v , $\forall v \in V$.
- ightharpoonup A cardinality k < |V|

The k-Cardinality Tree (KCT) Problem (2)

Let \mathcal{T}_k be the set of all trees in G with exactly k edges

Optimization goal: Find a k-cardinality tree $T_k \in \mathcal{T}_k$ which minimizes

$$f(T_k) = \left(\sum_{e \in E(T_k)} w_e\right) + \left(\sum_{v \in V(T_k)} w_v\right)$$

Example: A 3-cardinality tree

Dynamic Programming for the KCT Problem

Observation: \blacksquare KCT can be solved optimaly if G is a tree

Graphical explanation:

Complexity: $\mathcal{O}(k^2|V|)$

Utilizing DP for Crossover

Given: Two k-trees T_1 and T_2 (parents)

Case 1: T_1 and T_2 have a least one node in common

- 1. Merge T_1 and $T_2 \leftrightarrow A$ graph G_c
- 2. Generage a minimum spanning tree T of G_c
- 3. Use DP for obtaining the best k-tree in T

Case 2: T_1 and T_2 do not have any node in common

- 1. Use tree construction to increase T_1 until it touches $T_2 \leftrightarrow T$
- 2. Use DP for obtaining the best k-tree in T

Summary and Conclusions

Presented topics:

- ▶ Hybrid metaheuristics: a short intro
- ▶ Despite criticism: term *hybrid metaheuristics* is useful
- ▶ Five representative hybridization examples

Bottom line: More and more state-of-the-art methods are hybrids

But: Still a lot of space for new, conceptually different hybrids!!

(Potentially) Useful Books

