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Outline of the talk

» Hybrid Metaheuristics (HMs)

* Definition

* Classification of HMs

» Interesting Examples

*x Metaheuristics with Metaheuristics (ILS)

*x Metaheuristics with Constraint Programming (ACO)
*x Metaheuristics with Tree Search (VNS)

x Metaheuristics with Problem Relaxation (TS)

*x Metaheuristics with Dynamic Programming (EC)
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Hybrid Metaheuristics

A short introduction
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Hybrid metaheuristics (1)

| Different metaheuristics: I Timeline of introduction

» Simulated Annealing (SA) [Kirkpatrick, 1983]
» Tabu Search (TS) [Glover, 1986]
» Genetic and Evolutionary Computation (EC) |Goldberg, 1989
» Ant Colony Optimization (ACO) [Dorigo, 1992]
» Greedy Randomized Adaptive Search Procedure (GRASP) [Resende, 1995
» Particle Swarm Optimiation (PSO) |[Eberhart, Kennedy, 1995
» Guided Local Search (GLS) [Voudouris, 1997
» Iterated Local Search (ILS) [Stiitzle, 1999
» Variable Neighborhood Search (VNS) [Mladenovié, 1999
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Hybrid metaheuristics (2)

| Definition: I What is a hybrid metaheuristic?

» Problem: can not be very well defined

| Possible characterization: I

A technique that results from the combination of a metaheuristic with

other techniques for optimization

‘What is meant by: I other techniques for optimiation 7

» Metaheuristics
» Branch & bound

» Dynamic programming

» ILP techniques
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Hybrid metaheuristics (3)

Lack of a precise definition is often subject to criticism

‘ History: I

» For a long time the different communities co-existed quite isolated

» Hybrid approaches were developed already early, but only sporadically

» Only since about 10 years the published body of research grows
significantly:
1. 1999: CP-AI-OR Conferences/Workshops
2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

‘ Consequence: I The term hybrid metaheuristics identifies a new line of research
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Hybrid metaheuristics: classification (1)

| References I for the classification of hybrid metaheuristics

» C. Cotta. A study of hybridisation techniques and their application to the
design of evolutionary algorithms, Al Communications, 11(3-4):223-224, 1998

» E. Talbi. A taxonomy of hybrid metheuristics, Journal of Heuristics,
8(5):541-565, 2002

» C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
overview and conceptual comparison, ACM Computing Surveys, 35(3):268-308,
2003

» 1. Dumitrescu and T. Stutzle. Combinations of local search and exact

algorithms, In: Proceedings of Applications of Evolutionary Computation, volume
2611, Springer LNCS, 2003

» G. Raidl. A unified view on hybrid metaheuristics, In: Proceedings of HM
20006, volume 4030, Springer LNCS, pages 1-112, 2006
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Hybrid metaheuristics: classification (2)

‘ What is hybridized? I Metaheuristics with ...

>

>

. metaheuristics . Examples:
. Use of neighborhood-based MHs within population-based MHs
. Hyper-heuristics

. problem-specific algorithms . Examples:
. Continuous optimization: use of gradient-based methods

. Simulations for approximating the objective function

. other AI/OR techniques . Examples:
. Large-scale neighborhood search

. Combinations of metaheuristics with constraint programming

. a human interactor

© C. Blum
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Hybrid metaheuristics: classification (3)

‘ What is the level of hybridization? I

» High-level: weak coupling

1. Algorithms retain their own identities
2. No direct relationship of the internal workings of the algorithms

3. Interaction over a well-defined interface

» Low-level: strong coupling
1. Algorithms strongly depend on each other

2. Individual components or functions are exchanged
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Hybrid metaheuristics: classification (4)

‘What is the control strategy? I

» Collaborative

1. Homogeneous approaches: several instances of the same algorithm

2. Heterogeneous approaches: for example, A-Teams

» Integrative
1. Solution merging
2. Decoder-based approaches
3. Large-scale neigbhorhood search

4. Using metaheuristics for finding good upper bounds in branch & bound
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Hybrid metaheuristics: classification (5)

| What is the order of execution? I

» Sequential: results of earlier executed algorithms are used in later algorithms

» Interleaved. For example:
1. Using metaheuristics for node selection in branch & bound

2. Exact algorithms as decoders in decoder-based approaches

» Parallel
1. Granularity: fine-grained versus coarse-grained
2. Hardware: homogeneous versus heterogeneous

3. etc.
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Interesting Examples

» Metaheuristics with Metaheuristics

» Metaheuristics with Constraint Programming
» Metaheuristics with Tree Search

» Metaheuristics with Problem Relaxation

» Metaheuristics with Dynamic Programming
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Characteristics of Different Metaheuristics

Metaheuristics

@pula‘cion—@ Qra jectory methods

Decreasing use of constructive elements Decreasing use of constructive elements

» Advantage of pop.-based methods: Diversification ability

» Advantage of trajectory metnods: Intensification ability
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What does that mean for Hybridization?

‘ Consequence: I Most MH/MH hybrids incorporate trajectory methods into

population-based techniques

‘ Examples: I

» Application of local search to solutions constructed by ACO

» Application of local search to individuals in evolutionary algorithms

( memetic algorithms )

‘ Other examples: I

» Population-based iterated local search

» Multi-level techniques
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lterated Local Search

| Pseudo-code: I

. s «— GeneratelnitialSolution()
. s « LocalSearch(s)

- while termination conditions not met do

s' — LocalSearch(s’)

1

2

3

4: s « Perturbation(s, history)

5

6: s« ApplyAcceptanceCriterion(s’, s, history)
7

- end while

‘ Key components: I

» Perturbation mechanism

» local search
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Population-Based Iterated Local Search

1: P « GeneratelnitialPopulation(n)
2: Apply LocalSearch() to all s € P
3: while termination conditions not met do
4 P — P

5. for all s € P do
6 s’ « Perturbation(s, history)
7 s' — LocalSearch(s’)

8 P’ — P'U{s'}

9: end for

10: P « Best n solution from P’
11: end while

| Main reference: I T. Stitzle. Iterated local search for the quadratic assignment
problem, Furopean Journal of Operational Research, 174(3):1529-1539, 2006
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The Multi-level Framework (1)

| (General references: I

» C. Walshaw. Multilevel refinement for combinatorial optimisation,
Annals of Operations Research, 131:325-372, 2004

» C. Walshaw. Multilevel refinement for combinatorial optimisation:
boosting metaheuristic performance, In: Hybrid Metaheuristics—An
Emerging Approach to Optimization, volume 114 of Studies in Computational
Intelligence, pages 261289, Springer Verlag, Berlin, Germany, 2008

| General idea: I

» First: Iterative coarsening of the original problem instance

» Then: Find a solution to the coarsest level

» Finally: Iteratively refine this solution at each level
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The Multi-level Framework (2)

The multi-level framework

contract expand

contract

contract
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The Multi-level Framework (3)

‘ Specific references: I

» P. Korosec, J. Silc, and B. Robic. Solving the mesh-partitioning problem with
an ant-colony algorithm, Parallel Computing, 30(5-6):785-801, 2004

» C. Walshaw. A multilevel approach to the travelling salesman problem,
Operations Research, 50(5):862-877, 2002

» T. G. Crainic, Y. Li, and M. Toulouse. A first multilevel cooperative algorithm
for capacitated multicommodity network design, Computers & Operations
Research, 33(9):2602—-2622, 2006
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Interesting Examples

» Metaheuristics with Metaheuristics

» Metaheuristics with Constraint Programming
» Metaheuristics with Tree Search

» Metaheuristics with Problem Relaxation

» Metaheuristics with Dynamic Programming
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Ant Colony Optimization (ACO)

, o ACO
solution :
\ .
components| ~ \ / \
: ™ w|probabilistic pheromone
@ probla ; solution value
: _} “|construction update
(" ) / 7 . J L J
pheromone [ . ~: "‘ \/
7 .
model : initialization
\ / of pheromone

\ values /
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Traveling salesman problem (TSP)

| Given: I A completely connected, undirected graph G = (V, F) with edge-weights.

Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.

| Solution construction: I Constructive mechanism of the nearest-neighbor heuristic

(starting from city 1)
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ACO as a tree search algorithm

‘ 1st construction step: I

71,2 11,2 71,4 * 11,4
71,3 " 11,3
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ACO as a tree search algorithm

‘ 2nd construction step: I

T4,2 " 14,2 T4,3 " 14,3
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ACO as a tree search algorithm

‘ 3rd construction step: I

DO O O O O &
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ACO hybridized with constraint programming (1)

| References: I

» B. Meyer and A. Ernst. Integrating ACO and Constraint Propagation,
In: Proceedings of ANTS 2004, volume 3172 of Springer LNCS, pages 166—177,
2004

» M. Khichane, P. Albert, and C. Solnon. CP with ACO, In: Proceedings of
CPAIOR 2008, volume 5015 of Springer LNCS, pages 328—-332, 2008

| General idea: I

» Successively reduce the variable domains by contraint propagation

» Let ACO search the reduced search tree
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ACO hybridized with constraint programming (2)

Constraint programming (CP): § Computational systems based on constraints

| How does it work? I

» Phase 1:
*x Express CO problem in terms of a discrete problem (variables+domains)
x Define (“post”) constraints among the variables

* The constraint solver reduces the variable domains

e ... before solution construction
e ... during solution construction

» Phase 2: Labelling

* Search through the remaining search tree

* Possibly “post” additional constraints
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ACO hybridized with constraint programming (3)

‘ Simple example: I minimize f(X,Y, 7)) — R

subject to

X e{1,...,8}
Y,Z e{l,...,10}
X 47 24+2
X —-Z=3Y

‘ Constraint propagation: I

» Step 1: Use X # 7 and Z # 2
1. X e{1,...,6,8}
2. Z€{1,3,...,10}
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ACO hybridized with constraint programming (4)

» Step 2: Use X — Z =3Y
1. Because of the domains of X and Z: X — Z <8
2. = 3Y <8
3. = Y <2
4. = Y €{1,2}

» Step 3: Use again X — Z =3Y
1. Because of the reduced domain of Y: 3Y > 3
2. = X—-22>3
3. = X €{4,5,6,8} and Z € {1,3,4,5}
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ACO hybridized with constraint programming (5)

‘ ACO-CP hybrid: I

-

ACO-CP

~

r “ r \
probabilistic pheromone
solution |CP value
construction update
\ T J \ J
initialization post /
of pheromone constraints
\ values /

© C. Blum
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ACO hybridized with constraint programming (6)

| Evaluation: I

» Advantage of ACO:

Good in finding high quality solutions for moderately constrained problems

» Advantage of CP:
Good in finding feasible solutions for highly constrained problems

Problem:

| ACO-CP: I Good with intermediate number of feasible solutions

» Constraint propagation takes a lot of time

» Moreover: contraint propagation is repeated many times
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Beam search

‘ 1st construction step: I

ke:ct = 2
kbw = 3

1,2 11,4
11,3
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Beam search

‘ 2nd construction step: I
ke:ct =2
s (1

72,3 72,4 14,2 74,3
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Beam search

‘ After 2nd construction step: I use lower bound
ke:ct =2
oy (1
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Beam search

‘ 3rd construction step: I

ke:ct = 2
kbw = 3
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Hybrid algorithm: Beam-ACO

» Instead of n, independent solution constructions per iteration,

» perform a probabilistic beam search with beam width £y, = n,

‘ Advantages: I

» Strong heuristic guidance by a lower bound

» Embedded in the adaptive framework of ACO
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Hybrid algorithm: Beam-ACO

‘ Applications I Beam-ACO was applied to the following problems:

» Open shop scheduling (OSS)
Blum, Computers & Operations Research (2005)

» Longest common subsequence (LCS) problem
Blum, Mastrolilli, HM 2007

» Supply chain management
Caldeira et al., FUZZ-IEEE 2007, ISFA 2007

» Simple assembly line balancing (SALB)
Blum, INFORMS Journal on Computing (2008)

» Travelling salesman problem with time windows (TSPTW)
Lopez-Ibanez et al., FvoCOP 2009
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Hybrid algorithm: Beam-ACO

‘ Question: I Why does it work so well?

| Observation: I Beam-ACO uses 2 types of complementary problem information

1. A greedy function

2. Lower (respectively, upper) information

These two types of information are especially well exploited
in Beam-ACOQO!
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Interesting Examples

» Metaheuristics with Metaheuristics

» Metaheuristics with Constraint Programming
» Metaheuristics with Tree Search

» Metaheuristics with Problem Relaxation

» Metaheuristics with Dynamic Programming
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Large-scale neighborhood search (1)

| (General references: I

» R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very
large-scale neighborhood search techniques, Discrete Applied
Mathematics, 123(1-3):75-102, 2002

» M. Chiarandini, I. Dumitrescu, and T. Stitzle. Very Large-Scale
Neighborhood Search: Overview and Case Studies on Coloring
Problems, In: Hybrid Metaheuristics—An Emerging Approach to
Optimaization, volume 114 of Studies in Computational Intelligence, pages
117-150, Springer Verlag, Berlin, Germany, 2008

Key issues in local search: I

» Defining an appropriate neighborhood structure

» Choosing a way of examining the neighborhood of a solution
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Large-scale neighborhood search (2)

| General tradeoft: I

» Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantag: The average quality of the local minima is low

» Large-scale neighborhoods:
1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be N P-hard
due to the size of the neigbhorhood

‘ Ways of examining large neighborhoods: I

» Heuristically

» In some cases an efficient exact technique may exist
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Example: Biological Background

» Given: A set of haplotype sequences from a population of individuals
» Goal: Study the evolutionary history of the chosen individuals
» Important for the discovery of the genetic basis of complex diseases

In case the population has evolved from a relatively small set of founders , the

evolutionary history can be studied by trying to reconstruct the haplotype

sequences from founder fragments

» Problem: Generally, neither the founder sequences nor their number are

known
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The Founder Sequence Reconstruction Problem (FSRP)

» Given: A set of m recombinants C = {C4,...,Cy}

* Here: Vi, C; is a binary string of length n

» Candidate solution: A set of k founders F = {Fy,..., F}}
~ Here: V7, F; is a binary string of length n

» A solution is valid if C can be reconstructed from JF.

» This is the case when each C; € C can be decomposed into a sequence of
pi < n fragments F'r;1 F'ria ... Fryy,,, such that each fragment F'r;; appears at

the same position in at least one of the founders

» Given F , a minimal decomposition, where the number of breakpoints

n . o B o o . .
> :_1Di —n is minimal, can be derived in polynomial time
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FSRP: Optimization Goal, and Example

© C. Blum

» Optimization goal: Given k, find a valid solution F* that minimizes f(-)

‘ Example: I

1101101
1010001
0111111
0110100
1100011

Recombinants C

0110100
1101111
1010001

Founders F

bbbbblcc
ccccceccec
aaabbbb

aaaaaaa
b b blcclbb

Reconstruction



Hybrid Metaheuristics, May 2010, BIOMA 2010, Ljubljana, Slovenia © C. Blum

Branch & Bound Algorithm: RECBLOCK

nE Co0 > o105 oot > (10> o) o>

Partial solution Search Tree

Wu, Y., Gusfield, D. Improved algorithms for inferring the minimum mosaic of a set of
recombinants. In: Proceedings of CPM 2007, Volume 4580 of LNCS, Springer Verlag, Berlin (2007),

pages 150-161
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Branch & Bound Algorithm: RECBLOCK

| Observation: I Given some fixed founders, RECBLOCK can be used to obtain the

optimal setting for the remaining founders

‘ Example: I 4 fixed founders {1,2,4,7}, and 3 missing founders {3,5,6}

J O O I~ W DN =
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Variable Neighborhood Descent (VND)

| Observation: I VND is a heuristic version of variable neighborhood search (VNS)

1: INPUT: a solution s, r,.,., neighborhood functions
2: r:=1
3: while r <r_.. do

4: s’ := PickBestNeighbor(s, N,.)

max

5. if f(s’) < f(s) then
6: s:=s

7 r.=1

8: else

9: r.=r+1

10: end if

11: end while
12: OUTPUT: a (possibly) improved solution s
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Hybrid VND for the FSRP

1: INPUT: a solution s, number k of founders

2: r:=1

3: while r < k do

4:  §:= DeleteFounders(s, r)

5 s’ :== RECBLOCK(S)

6: if f(s') < f(s) then

7: s:=¢g

8 r:=1

9 else

10: if maximal number of trials reached then r :=1r +1
11:  end if

12: end while
13: OUTPUT: a (possibly) improved solution s
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Interesting Examples

» Metaheuristics with Metaheuristics

» Metaheuristics with Constraint Programming
» Metaheuristics with Tree Search

» Metaheuristics with Problem Relaxation

» Metaheuristics with Dynamic Programming
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Problem Relaxation

| Observe: I Problem relaxations can be obtained (among others) by

» Simplifying constraints of an IP formulation

» Dropping constraints of an IP formulation

(e.g. integrality contraints)

» Moving constraints in terms of penalties to the objective function

(e.g. Lagrangian relaxation)

| Use of relaxations: I

» As bounds for branch & bound algorithms

» As approximation for integer solutions

» As heuristic information for solution construction
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Tabu Search

| Main feature: I Use of tabu lists for storing solution features

Tabu lists are used to avoid going back to already visited solutions

Search space An example move
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Hybrid Tabu Search

‘ Specific Reference: I

» M. Vasquez and Y. Vimont. Improved results on the 0-1

multidimensional knapsack problem. FEuropean Journal of Operational
Research, 165(1):70-81, 2005

| Characteristics: I

» Collaborative hybridization approach

» 1st algorithm phase: problem relaxation is used to produce a bunch of

promising solutions

» 2nd algorithm phase: tabu search is used to search around these solutions
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The 0-1 Multidimensional Knapsack Problem (MKP)

| Given: I

» n objects, each object ¢ with a profit ¢;

» m resources, each resource j with a capacity b;

» Fach object ¢ has a requirement a;; of each resource j

| IP formulation: I

n
max E C; Iy
1=1

subject to

<
1

\JP—‘
3

a;j - T; < b;

xZE{O,l} 1=1,...,n
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First Algorithm Phase

| Main ideas: I

» Dropping the integrality contraints

» For all £ such that 0 < k., <k < k_.. <n solve

n
max E Ci* X;
i=1

subject to

aij-:cigbj j:1,...,m

0<z <1 1=1,...,n

n

S

1=1
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Second Algorithm Phase

| Main ideas: I

» From the 1st phase solutions: Produce integer solutions by rounding
» Use tabu search to search in the vicinity of these integer solutions

» Definition of vicinity: maximum Hamming distance
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Interesting Examples

» Metaheuristics with Metaheuristics

» Metaheuristics with Constraint Programming
» Metaheuristics with Tree Search

» Metaheuristics with Problem Relaxation

» Metaheuristics with Dynamic Programming
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Dynamic Programming

| How does it work? I

1. Divide the given problem into sub-problems

2. Combine solutions of already solved sub-problems to solutions to bigger

sub-problems until a solution for the original problem is obtained

‘ Required properties of the problem I

1. Optimal substructure: Optimal solution to the problem must contain optimal

solutions to sub-problems

2. Space of sub-problems: Should be of moderate size (polynomial)
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Evolutionary Algorithms (EAs)

Selection

Recombination

Population

Mutation

Offspring

Replacement
(survival of the fittest)

© C. Blum
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The k-Cardinality Tree (KCT) Problem (1)

‘ Specific reference: I

» C. Blum. A new hybrid evolutionary algorithm for the k-cardinality
tree problem, In: Proceedings of GECCO 2006, ACM Press, pages 515-522,
2006

| Definition: IThe k-cardinality tree problem

Given:

» An undirected graph G = (V, F),
» Edge-weights w., V e € E, and node-weights w,,, Vv € V.

» A cardinality k < |V
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The k-Cardinality Tree (KCT) Problem (2)

Let 75 be the set of all trees in G with exactly k£ edges

‘ Optimization goal: I Find a k-cardinality tree T}, € 7;, which minimizes

‘ Example: I A 3-cardinality tree
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Dynamic Programming for the KCT Problem

| Observation: I KCT can be solved optimaly if GG is a tree
‘ Graphical explanation: I |

a1 =0 as =1 az >0 ag >0

‘ Complexity: I O(k?*|V])
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Utilizing DP for Crossover

Given: | Two k-trees T and T, ( parents )

| Case 1: I T7 and 75 have a least one node in common
1. Merge T4 and T, <« A graph G,
2. Generage a minimum spanning tree 7' of G,

3. Use DP for obtaining the best k-tree in T°

| Case 2: I T} and T5 do not have any node in common

1. Use tree construction to increase 77 until it touches 15 «» T

2. Use DP for obtaining the best k-tree in T°
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Summary and Conclusions

‘ Presented topics: I

» Hybrid metaheuristics: a short intro

» Despite criticism: term hybrid metaheuristics is useful

» Five representative hybridization examples

| Bottom line: I More and more state-of-the-art methods are hybrids

Still a lot of space for new, conceptually different hybrids!!
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