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Outline of the talk

◮ Hybrid Metaheuristics (HMs)

⋆ Definition

⋆ Classification of HMs

◮ Interesting Examples

⋆ Metaheuristics with Metaheuristics (ILS)

⋆ Metaheuristics with Constraint Programming (ACO)

⋆ Metaheuristics with Tree Search (VNS)

⋆ Metaheuristics with Problem Relaxation (TS)

⋆ Metaheuristics with Dynamic Programming (EC)
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Hybrid metaheuristics

Hybrid Metaheuristics

A short introduction
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Hybrid metaheuristics (1)

Different metaheuristics: Timeline of introduction

◮ Simulated Annealing (SA) [Kirkpatrick, 1983]

◮ Tabu Search (TS) [Glover, 1986]

◮ Genetic and Evolutionary Computation (EC) [Goldberg, 1989]

◮ Ant Colony Optimization (ACO) [Dorigo, 1992]

◮ Greedy Randomized Adaptive Search Procedure (GRASP) [Resende, 1995]

◮ Particle Swarm Optimiation (PSO) [Eberhart, Kennedy, 1995]

◮ Guided Local Search (GLS) [Voudouris, 1997]

◮ Iterated Local Search (ILS) [Stützle, 1999]

◮ Variable Neighborhood Search (VNS) [Mladenović, 1999]
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Hybrid metaheuristics (2)

Definition: What is a hybrid metaheuristic?

◮ Problem: can not be very well defined

Possible characterization:

A technique that results from the combination of a metaheuristic with

other techniques for optimization

What is meant by: other techniques for optimiation ?

◮ Metaheuristics

◮ Branch & bound

◮ Dynamic programming

◮ ILP techniques
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Hybrid metaheuristics (3)

Note: Lack of a precise definition is often subject to criticism

History:

◮ For a long time the different communities co-existed quite isolated

◮ Hybrid approaches were developed already early, but only sporadically

◮ Only since about 10 years the published body of research grows

significantly:

1. 1999: CP-AI-OR Conferences/Workshops

2. 2004: Workshop series on Hybrid Metaheuristics (HM 200X)

3. 2006: Matheuristics Workshops

Consequence: The term hybrid metaheuristics identifies a new line of research
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Hybrid metaheuristics: classification (1)

References for the classification of hybrid metaheuristics

◮ C. Cotta. A study of hybridisation techniques and their application to the

design of evolutionary algorithms, AI Communications, 11(3-4):223–224, 1998

◮ E. Talbi. A taxonomy of hybrid metheuristics, Journal of Heuristics,

8(5):541–565, 2002

◮ C. Blum and A. Roli. Metaheuristics in combinatorial optimization:

overview and conceptual comparison, ACM Computing Surveys, 35(3):268–308,

2003

◮ I. Dumitrescu and T. Stützle. Combinations of local search and exact

algorithms, In: Proceedings of Applications of Evolutionary Computation, volume

2611, Springer LNCS, 2003

◮ G. Raidl. A unified view on hybrid metaheuristics, In: Proceedings of HM

2006, volume 4030, Springer LNCS, pages 1–112, 2006
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Hybrid metaheuristics: classification (2)

What is hybridized? Metaheuristics with ...

◮ ... metaheuristics . Examples:

1. Use of neighborhood-based MHs within population-based MHs

2. Hyper-heuristics

◮ ... problem-specific algorithms . Examples:

1. Continuous optimization: use of gradient-based methods

2. Simulations for approximating the objective function

◮ ... other AI/OR techniques . Examples:

1. Large-scale neighborhood search

2. Combinations of metaheuristics with constraint programming

◮ ... a human interactor
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Hybrid metaheuristics: classification (3)

What is the level of hybridization?

◮ High-level: weak coupling

1. Algorithms retain their own identities

2. No direct relationship of the internal workings of the algorithms

3. Interaction over a well-defined interface

◮ Low-level: strong coupling

1. Algorithms strongly depend on each other

2. Individual components or functions are exchanged
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Hybrid metaheuristics: classification (4)

What is the control strategy?

◮ Collaborative

1. Homogeneous approaches: several instances of the same algorithm

2. Heterogeneous approaches: for example, A-Teams

◮ Integrative

1. Solution merging

2. Decoder-based approaches

3. Large-scale neigbhorhood search

4. Using metaheuristics for finding good upper bounds in branch & bound
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Hybrid metaheuristics: classification (5)

What is the order of execution?

◮ Sequential: results of earlier executed algorithms are used in later algorithms

◮ Interleaved. For example:

1. Using metaheuristics for node selection in branch & bound

2. Exact algorithms as decoders in decoder-based approaches

◮ Parallel

1. Granularity: fine-grained versus coarse-grained

2. Hardware: homogeneous versus heterogeneous

3. etc.
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Swarm intelligence

Interesting Examples

◮ Metaheuristics with Metaheuristics

◮ Metaheuristics with Constraint Programming

◮ Metaheuristics with Tree Search

◮ Metaheuristics with Problem Relaxation

◮ Metaheuristics with Dynamic Programming
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Characteristics of Different Metaheuristics

Metaheuristics

Population-based Trajectory methods

ECACO GRASP ILS TS SA

Decreasing use of constructive elements Decreasing use of constructive elements

◮ Advantage of pop.-based methods: Diversification ability

◮ Advantage of trajectory metnods: Intensification ability
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What does that mean for Hybridization?

Consequence: Most MH/MH hybrids incorporate trajectory methods into

population-based techniques

Examples:

◮ Application of local search to solutions constructed by ACO

◮ Application of local search to individuals in evolutionary algorithms

( memetic algorithms )

Other examples:

◮ Population-based iterated local search

◮ Multi-level techniques
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Iterated Local Search

Pseudo-code:

1: s← GenerateInitialSolution()

2: s← LocalSearch(s)

3: while termination conditions not met do

4: s′ ← Perturbation(s, history)

5: ŝ′ ← LocalSearch(s′)

6: s← ApplyAcceptanceCriterion(ŝ′, s, history)

7: end while

Key components:

◮ Perturbation mechanism

◮ Local search
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Population-Based Iterated Local Search

1: P ← GenerateInitialPopulation(n)

2: Apply LocalSearch() to all s ∈ P

3: while termination conditions not met do

4: P ′ ← P

5: for all s ∈ P do

6: s′ ← Perturbation(s, history)

7: ŝ′ ← LocalSearch(s′)

8: P ′ ← P ′ ∪ {ŝ′}

9: end for

10: P ← Best n solution from P ′

11: end while

Main reference: T. Stützle. Iterated local search for the quadratic assignment

problem, European Journal of Operational Research, 174(3):1529–1539, 2006
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The Multi-level Framework (1)

General references:

◮ C. Walshaw. Multilevel refinement for combinatorial optimisation,

Annals of Operations Research, 131:325–372, 2004

◮ C. Walshaw. Multilevel refinement for combinatorial optimisation:

boosting metaheuristic performance, In: Hybrid Metaheuristics–An

Emerging Approach to Optimization, volume 114 of Studies in Computational

Intelligence, pages 261–289, Springer Verlag, Berlin, Germany, 2008

General idea:

◮ First: Iterative coarsening of the original problem instance

◮ Then: Find a solution to the coarsest level

◮ Finally: Iteratively refine this solution at each level
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The Multi-level Framework (2)

The multi-level framework:
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The Multi-level Framework (3)

Specific references:

◮ P. Korosec, J. Silc, and B. Robic. Solving the mesh-partitioning problem with

an ant-colony algorithm, Parallel Computing, 30(5-6):785-801, 2004

◮ C. Walshaw. A multilevel approach to the travelling salesman problem,

Operations Research, 50(5):862–877, 2002

◮ T. G. Crainic, Y. Li, and M. Toulouse. A first multilevel cooperative algorithm

for capacitated multicommodity network design, Computers & Operations

Research, 33(9):2602–2622, 2006
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Swarm intelligence

Interesting Examples

◮ Metaheuristics with Metaheuristics

◮ Metaheuristics with Constraint Programming

◮ Metaheuristics with Tree Search

◮ Metaheuristics with Problem Relaxation

◮ Metaheuristics with Dynamic Programming
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Ant Colony Optimization (ACO)

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

initialization

of pheromone
values
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Traveling salesman problem (TSP)

Given: A completely connected, undirected graph G = (V, E) with edge-weights.

3 4

1 2
2

2

2 2
1 5

Goal: Find a tour (a Hamiltonian cycle) in G with minimal sum of edge weights.

Solution construction: Constructive mechanism of the nearest-neighbor heuristic

(starting from city 1)
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ACO as a tree search algorithm

1st construction step:

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

τ1,2 · η1,2 τ1,3 · η1,3
τ1,4 · η1,4
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ACO as a tree search algorithm

2nd construction step:

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

τ4,2 · η4,2 τ4,3 · η4,3
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ACO as a tree search algorithm

3rd construction step:

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2
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ACO hybridized with constraint programming (1)

References:

◮ B. Meyer and A. Ernst. Integrating ACO and Constraint Propagation,

In: Proceedings of ANTS 2004, volume 3172 of Springer LNCS, pages 166–177,

2004

◮ M. Khichane, P. Albert, and C. Solnon. CP with ACO, In: Proceedings of

CPAIOR 2008, volume 5015 of Springer LNCS, pages 328–332, 2008

General idea:

◮ Successively reduce the variable domains by contraint propagation

◮ Let ACO search the reduced search tree
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ACO hybridized with constraint programming (2)

Constraint programming (CP): Computational systems based on constraints

How does it work?

◮ Phase 1:

⋆ Express CO problem in terms of a discrete problem (variables+domains)

⋆ Define (“post”) constraints among the variables

⋆ The constraint solver reduces the variable domains

• ... before solution construction

• ... during solution construction

◮ Phase 2: Labelling

⋆ Search through the remaining search tree

⋆ Possibly “post” additional constraints
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ACO hybridized with constraint programming (3)

Simple example: minimize f(X, Y, Z) 7→ R

subject to

X ∈ {1, . . . , 8}

Y, Z ∈ {1, . . . , 10}

X 6= 7, Z 6= 2

X − Z = 3Y

Constraint propagation:

◮ Step 1: Use X 6= 7 and Z 6= 2

1. X ∈ {1, . . . , 6, 8}

2. Z ∈ {1, 3, . . . , 10}



Hybrid Metaheuristics, May 2010, BIOMA 2010, Ljubljana, Slovenia c© C. Blum

ACO hybridized with constraint programming (4)

◮ Step 2: Use X − Z = 3Y

1. Because of the domains of X and Z: X − Z < 8

2. ⇒ 3Y < 8

3. ⇒ Y ≤ 2

4. ⇒ Y ∈ {1, 2}

◮ Step 3: Use again X − Z = 3Y

1. Because of the reduced domain of Y : 3Y ≥ 3

2. ⇒ X − Z ≥ 3

3. ⇒ X ∈ {4, 5, 6, 8} and Z ∈ {1, 3, 4, 5}
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ACO hybridized with constraint programming (5)

ACO-CP hybrid:

CP

ACO-CP

CP

probabilistic

solution

construction

pheromone

value

update

post
constraints

initialization

of pheromone
values
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ACO hybridized with constraint programming (6)

Evaluation:

◮ Advantage of ACO:

Good in finding high quality solutions for moderately constrained problems

◮ Advantage of CP:

Good in finding feasible solutions for highly constrained problems

ACO-CP: Good with intermediate number of feasible solutions

Problem:

◮ Constraint propagation takes a lot of time

◮ Moreover: contraint propagation is repeated many times
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Beam search

1st construction step:

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

η1,2 η1,3
η1,4

kext = 2

kbw = 3
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Beam search

2nd construction step:

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

η2,3 η2,4 η4,2 η4,3

kext = 2

kbw = 3
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Beam search

After 2nd construction step: use lower bound

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

kext = 2

kbw = 3
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Beam search

3rd construction step:

1

2 3 4

3 4 2 4 2 3

4 3 4 2 3 2

kext = 2

kbw = 3
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Hybrid algorithm: Beam-ACO

Idea:

◮ Instead of na independent solution constructions per iteration,

◮ perform a probabilistic beam search with beam width kbw = na

Advantages:

◮ Strong heuristic guidance by a lower bound

◮ Embedded in the adaptive framework of ACO
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Hybrid algorithm: Beam-ACO

Applications Beam-ACO was applied to the following problems:

◮ Open shop scheduling (OSS)

Blum, Computers & Operations Research (2005)

◮ Longest common subsequence (LCS) problem

Blum, Mastrolilli, HM 2007

◮ Supply chain management

Caldeira et al., FUZZ-IEEE 2007, ISFA 2007

◮ Simple assembly line balancing (SALB)

Blum, INFORMS Journal on Computing (2008)

◮ Travelling salesman problem with time windows (TSPTW)

López-Ibañez et al., EvoCOP 2009
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Hybrid algorithm: Beam-ACO

Question: Why does it work so well?

Observation: Beam-ACO uses 2 types of complementary problem information

1. A greedy function

2. Lower (respectively, upper) information

These two types of information are especially well exploited

in Beam-ACO!
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Swarm intelligence

Interesting Examples

◮ Metaheuristics with Metaheuristics

◮ Metaheuristics with Constraint Programming

◮ Metaheuristics with Tree Search

◮ Metaheuristics with Problem Relaxation

◮ Metaheuristics with Dynamic Programming
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Large-scale neighborhood search (1)

General references:

◮ R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very

large-scale neighborhood search techniques, Discrete Applied

Mathematics, 123(1-3):75–102, 2002

◮ M. Chiarandini, I. Dumitrescu, and T. Stützle. Very Large-Scale

Neighborhood Search: Overview and Case Studies on Coloring

Problems, In: Hybrid Metaheuristics–An Emerging Approach to

Optimization, volume 114 of Studies in Computational Intelligence, pages

117–150, Springer Verlag, Berlin, Germany, 2008

Key issues in local search:

◮ Defining an appropriate neighborhood structure

◮ Choosing a way of examining the neighborhood of a solution



Hybrid Metaheuristics, May 2010, BIOMA 2010, Ljubljana, Slovenia c© C. Blum

Large-scale neighborhood search (2)

General tradeoff:

◮ Small neighborhoods:

1. Advantage: It is fast to find an improving neighbor (if any)

2. Disadvantag: The average quality of the local minima is low

◮ Large-scale neighborhoods:

1. Advantage: The average quality of the local minima is high

2. Disadvantage: Finding an improving neighbor might itself be NP -hard

due to the size of the neigbhorhood

Ways of examining large neighborhoods:

◮ Heuristically

◮ In some cases an efficient exact technique may exist
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Example: Biological Background

◮ Given: A set of haplotype sequences from a population of individuals

◮ Goal: Study the evolutionary history of the chosen individuals

◮ Important for the discovery of the genetic basis of complex diseases

In case the population has evolved from a relatively small set of founders , the

evolutionary history can be studied by trying to reconstruct the haplotype

sequences from founder fragments

◮ Problem: Generally, neither the founder sequences nor their number are

known
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The Founder Sequence Reconstruction Problem (FSRP)

◮ Given: A set of m recombinants C = {C1, . . . , Cm}

⋆ Here: ∀i, Ci is a binary string of length n

◮ Candidate solution: A set of k founders F = {F1, . . . , Fk}

⋆ Here: ∀j, Fj is a binary string of length n

◮ A solution is valid if C can be reconstructed from F .

◮ This is the case when each Ci ∈ C can be decomposed into a sequence of

pi ≤ n fragments Fri1Fri2 . . . F ripi
, such that each fragment Frij appears at

the same position in at least one of the founders

◮ Given F , a minimal decomposition, where the number of breakpoints
∑n

i=1 pi − n is minimal, can be derived in polynomial time
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FSRP: Optimization Goal, and Example

◮ Optimization goal: Given k, find a valid solution F∗ that minimizes f(·)

Example:

1 1 0 1 1 0 1

1 0 1 0 0 0 1

0 1 1 1 1 1 1

0 1 1 0 1 0 0

1 1 0 0 0 1 1

0 1 1 0 1 0 0

1 1 0 1 1 1 1

1 0 1 0 0 0 1

b b b b b| c c

c c c c c c c

a a a |b b b b

a a a a a a a

b b b| c c |b b

Recombinants C Founders F Reconstruction
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Branch & Bound Algorithm: RECBLOCK

1

0

0

?

?

?

〈〉

100 010 001 110 101 011

100 010 001 110 101 011

Partial solution Search Tree

Wu, Y., Gusfield, D. Improved algorithms for inferring the minimum mosaic of a set of

recombinants. In: Proceedings of CPM 2007, Volume 4580 of LNCS, Springer Verlag, Berlin (2007),

pages 150–161
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Branch & Bound Algorithm: RECBLOCK

Observation: Given some fixed founders, RECBLOCK can be used to obtain the

optimal setting for the remaining founders

Example: 4 fixed founders {1, 2, 4, 7}, and 3 missing founders {3, 5, 6}

7

6

5

4

3

2

1
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Variable Neighborhood Descent (VND)

Observation: VND is a heuristic version of variable neighborhood search (VNS)

1: input: a solution s, rmax neighborhood functions

2: r := 1

3: while r ≤ rmax do

4: s′ := PickBestNeighbor(s,Nr)

5: if f(s′) < f(s) then

6: s := s′

7: r := 1

8: else

9: r := r + 1

10: end if

11: end while

12: output: a (possibly) improved solution s
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Hybrid VND for the FSRP

1: input: a solution s, number k of founders

2: r := 1

3: while r ≤ k do

4: ŝ := DeleteFounders(s, r)

5: s′ := RECBLOCK(ŝ)

6: if f(s′) < f(s) then

7: s := s′

8: r := 1

9: else

10: if maximal number of trials reached then r := r + 1

11: end if

12: end while

13: output: a (possibly) improved solution s
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Swarm intelligence

Interesting Examples

◮ Metaheuristics with Metaheuristics

◮ Metaheuristics with Constraint Programming

◮ Metaheuristics with Tree Search

◮ Metaheuristics with Problem Relaxation

◮ Metaheuristics with Dynamic Programming
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Problem Relaxation

Observe: Problem relaxations can be obtained (among others) by

◮ Simplifying constraints of an IP formulation

◮ Dropping constraints of an IP formulation

(e.g. integrality contraints)

◮ Moving constraints in terms of penalties to the objective function

(e.g. Lagrangian relaxation)

Use of relaxations:

◮ As bounds for branch & bound algorithms

◮ As approximation for integer solutions

◮ As heuristic information for solution construction
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Tabu Search

Main feature: Use of tabu lists for storing solution features

Note: Tabu lists are used to avoid going back to already visited solutions

Search space An example move



Hybrid Metaheuristics, May 2010, BIOMA 2010, Ljubljana, Slovenia c© C. Blum

Hybrid Tabu Search

Specific Reference:

◮ M. Vasquez and Y. Vimont. Improved results on the 0–1

multidimensional knapsack problem. European Journal of Operational

Research, 165(1):70–81, 2005

Characteristics:

◮ Collaborative hybridization approach

◮ 1st algorithm phase: problem relaxation is used to produce a bunch of

promising solutions

◮ 2nd algorithm phase: tabu search is used to search around these solutions
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The 0-1 Multidimensional Knapsack Problem (MKP)

Given:

◮ n objects, each object i with a profit ci

◮ m resources, each resource j with a capacity bj

◮ Each object i has a requirement aij of each resource j

IP formulation:

max

n
∑

i=1

ci · xi

subject to

aij · xi ≤ bj j = 1, . . . , m

xi ∈ {0, 1} i = 1, . . . , n
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First Algorithm Phase

Main ideas:

◮ Dropping the integrality contraints

◮ For all k such that 0 ≤ kmin ≤ k ≤ kmax ≤ n solve

max

n
∑

i=1

ci · xi

subject to

aij · xi ≤ bj j = 1, . . . , m

0 ≤ xi ≤ 1 i = 1, . . . , n
n
∑

i=1

xi = k
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Second Algorithm Phase

Main ideas:

◮ From the 1st phase solutions: Produce integer solutions by rounding

◮ Use tabu search to search in the vicinity of these integer solutions

◮ Definition of vicinity: maximum Hamming distance
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Swarm intelligence

Interesting Examples

◮ Metaheuristics with Metaheuristics

◮ Metaheuristics with Constraint Programming

◮ Metaheuristics with Tree Search

◮ Metaheuristics with Problem Relaxation

◮ Metaheuristics with Dynamic Programming
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Dynamic Programming

How does it work?

1. Divide the given problem into sub-problems

2. Combine solutions of already solved sub-problems to solutions to bigger

sub-problems until a solution for the original problem is obtained

Required properties of the problem

1. Optimal substructure: Optimal solution to the problem must contain optimal

solutions to sub-problems

2. Space of sub-problems: Should be of moderate size (polynomial)
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Evolutionary Algorithms (EAs)

Selection

Recombination

Mutation

Replacement

(survival of the fittest)

Population

Parents

Offspring
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The k-Cardinality Tree (KCT) Problem (1)

Specific reference:

◮ C. Blum. A new hybrid evolutionary algorithm for the k-cardinality

tree problem, In: Proceedings of GECCO 2006, ACM Press, pages 515–522,

2006

Definition: The k-cardinality tree problem

Given:

◮ An undirected graph G = (V, E),

◮ Edge-weights we, ∀ e ∈ E, and node-weights wv, ∀ v ∈ V .

◮ A cardinality k < |V |
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The k-Cardinality Tree (KCT) Problem (2)

Let Tk be the set of all trees in G with exactly k edges

Optimization goal: Find a k-cardinality tree Tk ∈ Tk which minimizes

f(Tk) =

(

∑

e∈E(Tk)

we

)

+

(

∑

v∈V (Tk)

wv

)

Example: A 3-cardinality tree

1

1

1

1

1

1

1

1

1
10 10

6 15

10 1

10

10

8

3

10

10
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Dynamic Programming for the KCT Problem

Observation: KCT can be solved optimaly if G is a tree

Graphical explanation:

v

v1 v2 v3 v4

α1 = 0 α2 = 1 α3 > 0 α4 > 0

T (v1)
T (v2)

T (v3)

T (v4)

Complexity: O(k2|V |)
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Utilizing DP for Crossover

Given: Two k-trees T1 and T2 ( parents )

Case 1: T1 and T2 have a least one node in common

1. Merge T1 and T2 ↔ A graph Gc

2. Generage a minimum spanning tree T of Gc

3. Use DP for obtaining the best k-tree in T

Case 2: T1 and T2 do not have any node in common

1. Use tree construction to increase T1 until it touches T2 ↔ T

2. Use DP for obtaining the best k-tree in T
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Summary and Conclusions

Presented topics:

◮ Hybrid metaheuristics: a short intro

◮ Despite criticism: term hybrid metaheuristics is useful

◮ Five representative hybridization examples

Bottom line: More and more state-of-the-art methods are hybrids

But: Still a lot of space for new, conceptually different hybrids!!
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(Potentially) Useful Books


