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Abstract This paper presents two memetic algorithms to solve multi-objective
min-max problems, such as the ones that arise in evidence-based robust
optimization. Indeed, the solutions that minimize the design budgets
are robust under epistemic uncertainty if they maximize the belief in
the realization of the value of the design budgets. Thus robust solu-
tions are found by minimizing with respect to the design variables the
global maximum with respect to the uncertain variables. A number
of problems, composed of functions whose uncertain space is modelled
by means of evidence theory, and presenting multiple local maxima as
well as concave, convex, and disconnected fronts, are used to test the
performance of the proposed algorithms.

Keywords: Evidence-based robust optimization, Multi-objective optimization, Worst-
case scenario design.

1. Introduction

Worst-case scenario problems arise whenever a performance index, or
cost function, has to be optimal with respect to a design vector d, and at
the same time robust against an uncertain vector u. This class of prob-
lems is common in several fields, such as game theory, decision making,
robust control, risk analysis, and robust design. For instance, the lower
expectation in the realization of the value of a particular performance
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Algorithm 1 Min-max optimization via restoration.

1: Initialize archive Au = {u1}, and set i = 1
2: while the stopping condition is not met do

3: Compute di = argmin
d∈D

{
max
u∈Au

f(d,u)

}

4: Compute ui+1 = argmax
u∈U

f(di,u)

5: Add ui+1 to the archive Au

6: i← i+ 1
7: end while

8: Return {di,ui+1}.

index for a model of a system can be defined as the degree of belief that
one has in a certain proposition being true, given the available evidence.
In the framework of imprecise probabilities, it can be seen as a lower
bound to the cumulative distribution function of classical probability
theory. Its use is therefore interesting in engineering design, as it gives
the lower limit of the confidence that the design budgets under uncer-
tainty will be below a given threshold. In this framework both epistemic
and aleatory uncertainties can be treated even when no exact informa-
tion on the probability distribution associated to an uncertain quantity
is available. Stochastic variables and associated probability are replaced
by a multivalued mapping from a collection of subsets of an uncertain
space U into a lower expectation (Belief function in the case of Evi-
dence Theory). The main drawback of the use of multivalued mappings
is that the computation of the lower expectation, i.e. the Belief, has a
complexity that is exponential with the number of uncertain variables.
Recently, some strategies were proposed in [10] to obtain an estimation
of the maximum Belief with a reduction of the computational cost. The
approach starts by translating an optimization under uncertainty into
a single or multi-objective min-max problem equivalent to a worst-case
scenario optimization problem. Several methods have been proposed to
address single-objective min-max problems, especially using evolution-
ary approaches [2, 3], and metamodels [4, 5, 12]. For the multi-objective
case, a gradient-based approach is presented in [1]. An interesting ap-
proach is based on the procedure proposed in [4, 8] for single-objective
problems, and exploited in [6] for interval multi-objective linear pro-
gramming. Such procedure is based on an iterative minimization over
the design space and subsequent restoration of the global maximum over
the uncertain space as shown in Algorithm 1. The stopping condition
can be the achievement of a desired accuracy, or a maximum number
of function evaluations, for example. In this paper we present a multi-
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objective version of Algorithm 1 implemented in an algorithm called
MACSminmax. MACSminmax, employs MACS2 and IDEA at steps 3
and 4, respectively. Another algorithm, MACSν, is presented in this
paper and compared to MACSminmax. MACSν is a variant of MACS2
containing heuristics to deal with min-max problems. The paper starts
with a brief introduction to Evidence Theory and its use in the context
of robust design optimization in Section 2. Section 3 introduces the
two memetic algorithms, MACSminmax and MACSν. Section 4 finally
presents the results on some test cases.

2. Evidence-Based Robust Design Optimization

Evidence theory [7] allows to adequately model both epistemic and
aleatory uncertainty when no information on the probability distribu-
tions is available. For instance, during the preliminary design of an
engineering system, experts can provide informed opinions by express-
ing their belief in an uncertain parameter u being within a certain set of
intervals. The level of confidence an expert has in u belonging to one of
the intervals is quantified by using a mass function generally known as
Basic Probability Assignment (bpa). All the intervals form the so-called
frame of discernment Θ, which is a set of mutually exclusive elementary
propositions. The power set of Θ is called U = 2Θ, or the set of all the
subsets of Θ (the uncertain space in the following). An element θ of U
that has a non-zero bpa is called focal element. When more than one
parameter is uncertain, the focal elements are the result of the Cartesian
product of all the elements of each power set associated to each uncertain
parameter. The bpa of a given focal element is then the product of the
bpa of all the elements in the power set associated to each parameter.
All the pieces of evidence completely in support of a given proposition
form the cumulative belief function Bel, defined as follows:

Bel(A) =
∑

∀θi⊆A

m(θi) (1)

where A is the proposition about which the Belief is evaluated. For
example, the proposition can be expressed as:

A = {u ∈ U | f(u) ≤ ν} (2)

where f is the outcome of the system model and the threshold ν is the
desired value of a design budget. It is important to note that the set A
can be disconnected or present holes, likewise the focal elements can be
disconnected or partially overlapping. This introduces discontinuities in
the search space, making the problem more difficult to solve.
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An engineering system to be optimized can be modelled as a function
f : D × U ⊆ ℜm+n → ℜ. The function f represents the model of the
system budgets (e.g. power budget, mass budget, etc.), and depends on
some uncertain parameters u ∈ U and design parameters d ∈ D, where
D is the available design space and U the uncertain space. What is
interesting for the designers is the value of the function f for which Bel =
1, i.e. it is maximum. This value of the design budget is the threshold
νmax above which the design is certainly feasible, given the current body
of evidence. If q objective functions exist, then the following problem
can be solved without considering all the focal elements:

νmax = min
d∈D

F = min
d∈D

[max
u∈Ū

f1(d,u), . . . ,max
u∈Ū

fq(d,u)]
T (3)

Problem in 3 is a multi-objective min-max over the design space D and
the uncertain space Ū , where Ū is a unit hypercube collecting all the
focal elements in a compact set with no overlapping or holes. The trans-
formation between U and Ū is given by:

xU =

(
bu
U,i − bl

U,i

)
(
bu
Ū,i
− bl

Ū ,i

)xŪ ,i + bl
U,i −

(
bu
U,i − bl

U,i

)
(
bu
Ū,i
− bl

Ū ,i

)bl
Ū ,i

(4)

where bu
U,i and bl

U,i (resp. b
u
Ū,i

and bl
Ū ,i

) are the upper and lower bound-

aries of the i− th hypercube to which xU,i (resp. xŪ,i) belongs.

3. Multi-Objective Min-Max Memetic
Optimization

Problem (3) searches for the minimum of the maxima of all the func-
tions over Ū and represents an example of worst-case scenario design op-
timization. The maximum of every function is independent of the other
functions and corresponds to a different uncertain vector. Therefore, all
the maxima can be computed in parallel with q single-objective maxi-
mizations. The maximization of each function is performed by running
a global optimization over Ū using Inflationary Differential Evolution
(IDEA). The minimization over D is performed by means of MACS2.
IDEA [9] is a population-based memetic algorithm for single-objective
optimization. It hybridizes Differential Evolution and Monotonic Basin
Hopping in order to simultaneously improve local convergence and avoid
stagnation. MACS2 [13] is a memetic algorithm for multi-objective op-
timization based on a combination of Pareto ranking and Tchebycheff
scalarization. The search for non-dominated solutions is performed by
a population of agents which combine individualistic and social actions.
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The initial population is randomly generated in the search domain. In-
dividualistic actions perform a sampling of the search space in a neigh-
borhood of each agent. Then, subsets of the population perform social
actions aiming at following particular descent directions in the criteria
space. Social agents implement a Differential Evolution operator and
assess the new candidate solutions using Tchebycheff scalarization. Cur-
rent non-dominated solutions are then stored in an archive. Both social
and individualistic actions make use of a combination of the population
and the archive.

In a classical minimization problem two solutions d1 and d2 are ranked
according to which one gives the lower value of the function. In the
minimization loop of a min-max problem, the same can be done only if
the maximization loop has returned the actual global maxima ũ1 and
ũ2. However, this is usually not true. Therefore a mechanism of cross-
check such that also (d1,u2) and (d2,u1) are evaluated is needed in
order to increase the probability that each maximization identifies the
global maximum, and correctly rank two solutions.

3.1 MACSν

MACSν (Algorithm 2) is the min-max variant of MACS2. It endows
MACS2 with special heuristics to increase the probability of finding the
global maxima in Ū . More in detail, a Cross-check (lines 7, 18, and
28) compares the values of the objective functions for a newly generated
design vector in the trial populations Pt (line 7) and Ps (line 18) against
the function values of a solution already archived in A (indicated with
subscript arch in Algorithm 2). In addition, the cross-check performs a
local search or a simple function evaluation in the inner maximization
loop depending on whether the location of the maxima changes or not,
respectively, for different design vectors. After the cross-check, a Min-

Max Selection (lines 11 and 22) compares the population P with
the new candidate populations Pt (line 11) and Ps (line 22) and selects
the design vectors to attribute to the next generation according to the
following rule: If d (resp. u) is unchanged, the old u (resp. d) is replaced
with the new one, if it yields a higher (resp. lower) value of the objective
function; if both d and u are different, the new vectors will replace
the old ones. At the end of the algorithm, and at the last iteration,
a Validation (line 24) mitigates the possibility that the cross-check
operators assign the same incorrect u to all d vectors in the population
and archive. This is done by starting from the minimum value of the first
objective in the archived Pareto front, and performing a global search in
the uncertain space. If the new uncertain vector gives a higher value of
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Algorithm 2 MACSν

1: Initialize population P , archive A = P , nfeval = 0, ǫ = 0.7, δ = 10−6

2: while nfeval < nfeval,max do

3: Run individualistic moves and generate trial population Pt

4: for all d ∈ Pt do

5: for all darch ∈ A do

6: if d ≻ darch then

7: Cross-check(Pt, A)
8: end if

9: end for

10: end for

11: Min-Max Selection(P,Pt)
12: Update P and A
13: Z ← ‖Fmax

arch − Fmin
arch‖

14: Run social moves and generate candidate population Ps

15: for all d ∈ Ps do

16: for all darch ∈ A do

17: if d ≻ darch or ‖F(d)− F(darch)‖ > ǫZ then

18: Cross-check(Ps, A)
19: end if

20: end for

21: end for

22: Min-Max Selection(P,Ps)
23: Update P and A
24: Validation(A)
25: for all d ∈ P do

26: for all darch ∈ A do

27: if d ≻ darch or d ≺ darch then

28: Cross-check(P,A)
29: else if ‖F(d)− F(darch)‖ < δ then

30: Replace u ∈ P with u ∈ A
31: end if

32: end for

33: end for

34: end while

the function, then it replaces the old one. This operation is repeated for
the elements in the archived Pareto front until there is no more variation
in their value.
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Algorithm 3 MACSminmax

1: Initialize archive Au = {u1}, nfeval = 0
2: while nfeval < nfeval,max do

3: Run MACS2 to compute dmin = argmin
d∈D

max
u∈Au

f(d,u) and asso-

ciated fd
4: Add dmin to the archive Ad

5: for all dmin ∈ Ad do

6: for all l ∈ {1, . . . , q} do
7: Run IDEA to compute ul

max = argmax
u∈Ū

f l(dmin,u) and

associated f l
u

8: if f l
u > f l

d
then

9: Add ul
max to the archive Au

10: else

11: Evaluate function to find ul
max = arg max

u∈Au

f l(dmin,u)

12: end if

13: end for

14: end for

15: end while

16: for all dmin ∈ Ad do

17: for all l ∈ {1, . . . , q} do
18: Run local search to refine ul

max ∈ Au associated to dmin

19: end for

20: end for

21: Return non-dominated dmin and associated ul
max

3.2 MACSminmax

MACSminmax (Algorithm 3) is a min-max memetic algorithm in-
spired by the procedure of Algorithm 1. This is the main difference with
MACSν. In MACSminmax, for each agent of the minimization the best
function value is computed with respect to an archive Au of candidate
uncertain vectors (line 3). The archive Au is composed of the results
of a global maximization or a simple function evaluation, depending on
which one of the two gives the higher function value (as explained above,
it is not guaranteed that the maximization finds the global maximum),
for each design vector contained in another archive Ad of candidate so-
lutions (lines 5 to 14). Thus, each element in the archive Au corresponds
to an element in the archive Ad. This is so if the global maxima change
for different design vectors. If they do not change, the archive Au is
composed of only one element. At the end of the main loop, a local
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search is run for each element of the archive Ad in order to refine the
accuracy of the elements in the archive Au. Finally, because the archive
Ad is filled with batches of solutions given in output by MACS2, the
solutions are non-dominated only inside each batch. Therefore a fur-
ther dominance check is necessary to find the non-dominated solutions
among the batches.

Interesting is a comparison between MACSminmax and MACSν. In
MACSν a maximization is run for every agent of the minimization,
whereas in MACSminmax each agent of the minimization is cross-checked
with the archive of candidate uncertain vectors through a function evalu-
ation. However, it is worth noting that the evaluation, in MACSminmax,
of each d against an archive Au of candidate uncertain vectors, as well
as the update of Au for each element of an archive Ad of candidate de-
sign vectors, is equivalent to the cross-checks implemented in MACSν.
Furthermore, the local search in MACSminmax after the main loop is
similar to the validation procedure in MACSν, where a global search
is run starting from the extrema of the Pareto front. Finally, in terms
of balance between exploration (social moves) and exploitation (individ-
ualistic moves) of the search space, both MACSν and MACSminmax
employ the same search algorithms, MACS2 and IDEA, therefore they
are equivalent so long as the parameters (population, F , CR) are set to
the same values.

4. Test Cases

MACSν and MACSminmax were tested on the six bi-objective and
one tri-objective test cases reported in Table 1, where n is the dimen-
sion of the design vector d, as well as the uncertain vector u – therefore
the total dimension of the test cases is 2n – and nfeval,max is the maxi-
mum number of function evaluations, i.e. the termination condition for
the algorithms. The test cases are composed of the functions in Table
2. The functions are easily scalable and present very challenging land-
scapes, with multiple maxima that can change significantly with the
design vector. Function MV10, in particular, is characterized by having
the maxima located on top of multiple sharp, steep peaks. Note also
that the test cases present several types of Pareto fronts, convex, con-
cave, linear, and disconnected. The uncertain vector u is assigned the
bpa structure reported in Table 3. The uncertain intervals present holes
and overlappings, that introduce discontinuities in the uncertain space.
The reference solution, i.e. the real front in Figures 1, was computed by
merging the results of 200 runs of the same problems solved by means
of MACSν with the results of 200 runs of MACSminmax.
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Table 1. Test cases.

Test Case Functions d n nfeval,max

TC1 f1 = MV1, f2 = MV3 [1, 5]n 2 2E5
TC2 f1 = MV2, f2 = MV8 [0, 3]n 8 1E6
TC3 f1 = MV2, f2 = EM1 [1, 5]n 8 1E6
TC4 f1 = MV8, f2 = MV9 [1, 3]n 2 4E5
TC5 f1 = MV8, f2 = EM1 [1, 5]n 4 1E6
TC6 f1 = MV10, f2 = MV9 [−4, 2π]n 1 1E5
TC7 f1 = MV2, f2 = MV8, f3 = EM1 [1, 5]n 4 1E6

Table 2. Test functions.

ID Function

MV1 f =
∑n

i=1 diu
2
i

MV2 f =
∑n

i=1 (di − ui)
2

MV3 f =
∑n

i=1 (5− di) (1 + cos u1) + (di − 1) (1 + sinui)
MV8 f =

∑n
i=1 (2π − ui) cos (ui − di)

MV9 f =
∑n

i=1 (di − ui) cos (−5ui + 3di)
MV10 f =

∑n
i=1 (di + ui) cos (−ui(5|d| + 5) + 3di)

EM1 f =
∑n

i=1 (ui − 3di) sinui + (di − 2)2

From a sensitivity analysis on total number of agents (5, 10, 20) vs.
subset of social agents (1/3, 1/2, 1), and F (0.1, 0.5, 1, 2) vs. CR (0.1,
0.5, 0.9) for MACS2 and IDEA resulted that the best settings were:
200n function evaluations for both MACS2 and IDEA, for 10 agents for
MACS2, half of which perform the social actions, 5 agents for IDEA,
and F = 1 and CR = 0.1 for both MACS2 and IDEA. The sensitivity
analyses were run for test case TC4 with a total of 2E5 function eval-
uations, and the results assessed in terms of success rate of finding the
global maximum, as well as convergence Mconv and spreading Mspr as
per definition in [11]. The same settings were used in all the test cases.

Table 4 summarizes the success rates of finding the global maxima,
as well as convergence and spreading of MACSminmax in comparison
to MACSν. The results are the average performances obtained from
the 200 runs needed to achieve a confidence interval of 95% on the suc-
cess rate being within a ±5% interval containing its estimated value [9].
Columns maxf1, maxf2 and maxf3 contain the maximization success
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Table 3. bpa structure of the uncertain variables.

MV1, MV2, MV3
Interval [-5 -4] [-3 0] [-1 3]
bpa 0.1 0.25 0.65

MV8
Interval [0 1] [2 4] [3 2π]
bpa 0.1 0.25 0.65

MV9
Interval [-π/2 -π/6] [0 π] [3π/4 3π/2]
bpa 0.1 0.4 0.5

MV10
Interval [π 4] [5 6] [5.5 2π]
bpa 0.1 0.25 0.65

EM1
Interval [0 5] [7 14] [12 20]
bpa 0.1 0.5 0.4

rates computed with an accuracy of 10-4 with respect to the actual max-
ima, columns Mconv and Mspr contain the mean value of Mconv and Mspr

respectively, and columns pconv/tconv and pspr/tspr contain the success
rate of computing a front which convergence and spreading are below
the thresholds tconv and tspr also contained in the columns after the ‘/’
symbol. MACSminmax attains performances similar to MACSν, with
excellent success rates for almost all the test cases. For TC2, TC3 and
TC7, MACSminmax provides a significantly better spreading (2.0, 0.3,
and 2.1) than MACSν (16.1, 7.5, and 9.3). Note also that TC2 and TC3
are the test cases with the higher dimension, 16, whereas TC7 has the
highest number of objectives, 3. Moreover, for TC5 MACSminmax has
a significantly higher success rate for the maximization of the second
objective (87.6% against 54.1%): in function EM1 the global maximum
has a jump for a certain value of d. This makes the global maximum
been tracked more effectively with the global search implemented in
MACSminmax than with the local search of MACSν. However, for TC5
average converge and spreading computed by MACSminmax, and their
success rates, are worse than for MACSν. MACSν also performs better
at finding a front for TC6 which spreading is below a threshold equal
to 2. In conclusion, MACSminmax has equal or better capability in the
maximization in the uncertain space, and also in terms of convergence
and spreading, than MACSν, which in turns performed slightly better
in two cases. On one hand, such rather equivalent performances of the
two algorithms can be explained by the fact that they have equivalent
balance between exploration and exploitation, as explained in subsec-



Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 11

50 100 150
13.5

14

14.5

15

15.5

16

f
1

f 2

 

 

Real
MACSν
MACSminmax

(a) TC1

200 300 400 500 600
25

30

35

40

45

50

55

f
1

f 2

 

 

Real
MACSν
MACSminmax

(b) TC2

200 300 400 500 600
80

90

100

110

120

130

140

f
1

f 2

 

 

Real
MACSν
MACSminmax

(c) TC3

6 7 8 9 10 11
5

5.5

6

6.5

7

7.5

f
1

f 2

 

 

Real
MACSν
MACSminmax

(d) TC4

6 8 10 12 14
40

50

60

70

80

f
1

f 2

 

 

Real
MACSν
MACSminmax

(e) TC5

2 4 6 8 10 12 14
12

14

16

18

20

22

24

f
1

f 2

 

 

Real
MACSν
MACSminmax

(f) TC6

100
200

300
400

0
10

20
30
40

50

60

70

 

f
1

f
2

 

f 3

Real
MACSν
MACSminmax

(g) TC7

Figure 1. Pareto fronts of the test cases.

tion 3.2. On the other hand, the better performance of MACSminmax
on some of the test cases can be due to more effective archiving, cross-
check and validation mechanisms, which are the only aspects that dif-
ferentiate MACSν and MACSminmax. The Pareto fronts for the seven
test cases are shown in Figure 1. As a comparison, the fronts computed
by means of MACSν and of MACSminmax are displayed. One can see
that MACSminmax performs as well as MACSν at identifying the true
Pareto front for all the test cases. In addition, it is worth noting that
TC4 presents a deceptive front, as the bottom-right portion of it has
a multitude of dominated fronts above it. This resulted to be a very
difficult part for both MACSν and MACSminmax to identify.

5. Conclusions

Two multi-objective min-max memetic algorithms, MACSminmax and
MACSν have been presented and compared in this paper. MACSν is a
variant of MACS2 endowed with cross-checks, and selection and valida-
tion mechanisms to properly maximize the subproblem. MACSminmax
makes use of an iterative restoration of the global maxima in the uncer-
tain space. Despite the different procedures, the two strategies imple-
ment similar cross-checks. The two algorithms have been tested on seven
scalable test cases that present several types of Pareto fronts. Results
show that both MACSminmax and MACSν are able to achieve similar
very good performances, in terms of finding the global maxima in the
uncertain space and the true Pareto front. However, MACSminmax per-
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Table 4. Results: comparison between MACSν and MACSminmax.

Test Case Algorithm maxf1 maxf2 maxf3 Mconv Mspr pconv / tconv pspr / tspr

TC1
MACSν 100% 100% - 0.2 1.7 100 / 0.5 79 / 2

MACSminmax 100% 100% - 0.2 1.3 100 / 0.5 100 / 2

TC2
MACSν 100% 65% - 0.5 16.1 100 / 1 0 / 2

MACSminmax 100% 60% - 0.6 2.0 100 / 1 64 / 2

TC3
MACSν 100% 100% - 0.6 7.5 46 / 0.5 3 / 2

MACSminmax 100% 100% - 0.1 0.3 100 / 0.5 100 / 2

TC4
MACSν 100% 91.3% - 0.3 0.9 83 / 0.5 97 / 2

MACSminmax 100% 85.7% - 0.4 1.0 77 / 0.5 91 / 2

TC5
MACSν 98.6% 54.1% - 1.2 5.8 48 / 1 60 / 6

MACSminmax 92.8% 87.6% - 2.7 8.0 24 / 1 42 / 6

TC6
MACSν 100% 100% - 0.3 1.2 95 / 0.5 97 / 2

MACSminmax 100% 100% - 0.3 2.0 91 / 0.5 63 / 2

TC7
MACSν 100% 100% 95.3% 5.0 9.3 50 / 5 8 / 5

MACSminmax 100% 100% 98.3% 4.6 2.1 66 / 5 100 / 5

formed significanly better in terms of spreading in the two test cases with
the highest dimension and the one with three objectives. Multi-objective
min-max optimization algorithms find applicability to worst-case sce-
nario problems, such as evidence-based robust engineering design.
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