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Abstract Effective production planning requires models that are capable of ac-
counting for the complexity and uncertainty intrinsic to manufacturing
systems. While the identification of a globally optimal plan is desirable,
a more important requirement is the ability of a model to produce pro-
duction plans that are sufficiently realistic to be implemented in prac-
tice and are robust to perturbations in the system. Here, we present
a simulation-based optimization approach that employs discrete event
simulation and a genetic algorithm as a methodology to support decision
making in the area of production planning. The model aims to minimize
the sum of expected backorders and inventory costs, while incorporat-
ing system constraints and the uncertainty that derives from variations
of manufacturing lead times, occurrence of work centre failures and re-
pair service times. Preliminary results for a real-world problem indicate
that the model is capable of producing feasible production plans that
correctly account for the uncertainty intrinsic to the underlying manu-
facturing system.

Keywords: Discrete event simulation, Genetic algorithms, Production planning,
Stochastic variables, Uncertainty.

1. Introduction

Production planning, which specifies how resources should be allo-
cated to production activities [16], forms an integral part of medium-
term planning within manufacturing processes. Given the increasing
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pressures faced by manufacturers, the development and deployment of
effective models that support production planning is essential.

Ideally, an optimal production plan should be able to achieve customer
satisfaction [18] along with profit maximization, while considering un-
certainty in the system [14,16]. Therefore, an appropriate methodology
needs to perform optimization while accounting for the effects that un-
certain parameters may have on the implementation of a production
plan. This should then lead to an optimized solution that is robust to-
wards various source of uncertainty in the manufacturing system. The
lack of an instrument that is fully able to meet this requirement is one
of the main reasons why, currently, decisions in production planning are
often made in a subjective manner (based on the experience and “sixth
sense” of a few people) or guided by inappropriate (simplistic) method-
ologies.

Optimization and simulation models have been previously deployed
to solve the production planning problem, albeit independently. Opti-
mization models are able to generate optimal or near-optimal solutions,
but the real applicability of these solutions is often limited. This is be-
cause of the oversimplifying assumptions made by many optimization
models and their inability to fully incorporate uncertainty [9, 17]. Fur-
thermore, when trying to incorporate the high level of complexity and
the stochastic [13] and dynamic nature of manufacturing systems [3] into
optimization models, standard approaches become computationally in-
tractable. On the other hand, simulation approaches are capable of cap-
turing the uncertainty of the system [16] and of accurately reproducing
its behaviour [11]. Therefore, simulation often provides a better repre-
sentation of a real production system, since the variability introduced
through exogenous and endogenous factors can be explicitly considered
and the impact of these factors can be assessed [2]. However, in contrast
to optimization approaches, the results obtained from simulation mod-
els are fundamentally descriptive: while a clear picture of the system is
obtained, the results do not provide explicit guidance towards improved
solutions.

In an attempt to combine the respective advantages of simulation
and optimization techniques, simulation-based optimization has been
suggested as a means of handling problems where the high level of com-
plexity precludes a complete analytic formulation and the ultimate goal
is the identification of a robust, near-optimal solution [10]. More specif-
ically, the combined application of discrete event simulation (DES) and
genetic algorithms (GAs) has been successfully applied to address sev-
eral problems related to manufacturing systems. For instance, Azzaro-
Pantel et al. [3] were able to improve the efficiency of a multi-purpose,
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multi-objective plant with limited storage by accurately modelling the
dynamic behaviour of the production system through DES and solving
the scheduling problem using a GA. Al-Aomar [1] combined DES and
a GA to determine robust design parameters. The author integrated
Taguchis’s robustness measures of signal-to-noise ratio and the quality
loss function into a GA in order to enhance the selection scheme. Ding
et al. [8] employed DES to capture the uncertainty involved in the sup-
plier selection process and used a GA to optimize the supplier portfolio.
Cheng and Yan [5] applied an integration of DES and a messy GA to
determine the near optimal combination of resources in order to enhance
the performance of construction operations. This approach enabled the
authors to cope with the complexity and large dimensionality of the
problem and to obtain adequate solutions. Wu et al. [21] integrated
DES with a GA to determine the order point for different product types
of a cross-docking center in order to minimize total cost. Through this
approach the solution space was efficiently reduced and more simula-
tion effort was allocated to promising areas via smart computing budget
allocation. Korytkowski et al. [12] proposed an evolutionary simulation-
based heuristics, where DES and a GA were deployed to find near op-
timal solutions for dispatching rules allocation. The sequence of orders
determined through this approach improved the performance of a com-
plex multi-stage, multi-product manufacturing system.

Here, we describe a simulation-based optimization approach for pro-
duction planning. The long-term aim of our work is to derive an effective
modeling approach that is capable of determining feasibe and robust
monthly production plans. Here, we formulate production planning as
an optimization problem that requires the minimization of the expected
sum of backorders and inventory costs, subject to a set of constraints
of the manufacturing system (e.g. resource constraints) and uncertain-
ties deriving from variations of manufacturing lead times, occurrence of
work centre failures and repair service times. Our choice of methodol-
ogy is motivated by the proven success of simulation-based optimization
in related problems (see [1, 3, 5, 8, 12, 21] and above), and we develop
a model based on the combination of DES and a meta-heuristic opti-
mizer (specifically, a GA). Finally, we describe preliminary results on a
real-world production planning problem.

2. Simulation-based Optimization Model

The production planning problem considered here is based on the
real manufacturing system of a large company that specializes in the
production of cleaning products, edible shortenings, fats, and oils. This
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study focuses exclusively on its activities related to the manufacturing
of cleaning products.

Discrete Event Simulation (DES) is a good option to model the dy-
namic behaviour of this production system [3], as it allows for the incor-
poration of stochastic events and the variations of processes that occur
in complex systems [19]. Specifially, the use of DES enables us to cap-
ture the uncertainty intrinsic to production planning that cannot be
represented by deterministic models [16].

The application of simulation-based optimization implies the absence
of an analytical problem formulation, i.e. the functional relationships
between dependent and independent variables are not known explicitly
[20]. Consequently, a suitable optimization approach needs to be able
to perform optimization based exclusively on function values obtained
via simulation, a so called “black-box approach”. Considering the com-
plexity and large dimensionality of the solution space, a suitable search
strategy should be able to find near-optimal solutions in a large and com-
plex solution space and be capable of escaping local optima. Finally, the
optimization method needs to be robust with respect to noise, since the
optimization procedure relies on stochastic responses generated by the
simulation model [10]. Meta-heuristics present suitable candidates for
this setting, and, in this study, a GA was selected as the optimizer.
This choice was motivated by previous research indicating the robust
performance of GAs under noisy conditions [4, 15], and, specifically, in
the context of DES optimization [13].

The DES model of the production system was developed in SimEventsr

(The MathWorks, Inc., 2013). This was integrated with MATLABr

R2013a (The MathWorks, Inc., 2013), and MATLAB’s standard GA
implementation was employed as the optimizer. Details of the simula-
tion model and optimizer are described in the following sections.

2.1 Simulation Model

The DES model represents the production of 31 products k within 7
work centres l. A work centre corresponds to the set of resources (e.g.,
machines, people, etc.) needed to manufacture certain products. Given
that some products can be manufactured in several work centres a total
of 41 processes j are considered in the DES model. A process j includes
all series of events involved in the initialization of orders of a product k,
its manufacture in a specific work centre l and its storage in an specific
sink s (with s = 1, 2, . . . , 41). Here orders are measured in number of
lots. The simulation time t of each simulation replication is 24 days,
which corresponds to the number of working days in a month.
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Figure 1. Order processing subsystem for work centre l.

The model component designed for the generation of orders for a
single work centre l is illustrated in Figure 1. The production plan to
be simulated is determined by the decision variables xj (used as inputs
for the function-call generator blocks), specified by the GA, and then
the number of production orders for each process j are initialized (by
event-based entity generator blocks). Given that some products k are
required as raw materials during the manufacturing process of other
products k, a higher priority is assigned to the initialization of orders for
those sub-products in order to assure the static logic of the model.

Attributes are assigned to the different product lots (via attribute
blocks). Specifications about the entity sink s (with s = 1, 2, . . . , 41)
where final products will be stored are assigned via an attribute called
OutputPortj. Furthermore, the time required to manufacture a specific
production lot (ManufacturingT imej) and the occurrence of a failure
in a work centre while processing a production lot (WorkCentreFailurej)
are additional attributes assigned to each lot of product. Two different
event-based random number generators are employed to set the last two
attributes mentioned. Both event-based random number generators pro-
duce a signal sampled randomly from the probability distribution func-
tions (PDFs) assigned to them. A synthetic data set was employed to
estimate PDFs for each stochastic variable included in the current study,
as data collection for these aspects of the system is currently incomplete.

Once the attributes have been assigned to the production orders, those
orders are transferred to a queue following a first-in first-out (FIFO)
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discipline. Subsequently, those queues of production orders that have to
be processed by the same work centre are merged (by a path combiner
block) into a single FIFO queue.

Figure 2. Production subsystem for work centre l.

Figure 3. Repair service centre of work centre l.

The model components of a production subsystem and repair service
centre are illustrated in Figure 2 and Figure 3, respectively. Each order
is manufactured as soon as the corresponding work centre (represented
by an N-server block) becomes available. In case of failure, the activity
of that work centre is blocked by the control signal Pausel. This signal
is generated from the corresponding repair service centre and it outputs
the number of entities present in that repair centre. Therefore, a signal
with value greater than zero indicates that the work centre l is being
repaired and stops its activity until that signal becomes zero (no entities
present in the repair service centre).

In case that no failure occurs (WorkCentreFailurej = 1), the pro-
duction batch is transferred to the corresponding sink s (determined by
OutputPortj). Whereas if a failure occurs (WorkCentreFailurej = 2),
that product batch is transferred to a repair service centre prior to its
storage. The delay caused by the work centre failure is sampled from
the corresponding PDF assigned to RepairServiceT imel. One impor-
tant assumption made is that after a production batch has left the re-
pair service centre no re-manufacture is required, since the manufactur-
ing process has been already completed (passed through the N-server
block). This is an effective way to model system failure without having
conflicting events.
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The stock of product k manufactured in work centre l, denoted by
Stockkl, is collected at the end of every replication and it is measured in
number of lots. Based on Stockkl, the total stock of product k (Stockk)
is calculated at the end of every replication as follows:

Stockk =
7∑

l=1

Stockkl (1)

consequently, for products manufactured by a single work centre this
formula reduces to:

Stockk = Stockk1 (2)

2.2 Optimization Model

The decision variables, denoted by xj, are the number of lots to be
produced in process j. A black box optimization approach is applied
in which the decision variables specified by the GA provide the input
to the DES model and the responses Stockk from the DES model are
employed to compute the value of the fitness function. A total of 41
decision variables xj, which are constrained to be positive integers, are
considered in the model. Given the stochastic nature of the DES outputs,
fitness is evaluated across n independent simulation trials (with n = 10).
Specifically, the fitness value f is estimated for each individual x as
follows:

f(x) = c̄ =
1

n

n∑

m=1

cm (3)

For each replication m, the response (Stockk) of the DES model is used
to calculate cm as follows:

cm =

31∑

k=1

InventoryCostk +BackorderCostk. (4)

Inventory and Backorder Costs are defined as:

InventoryCostk =

{
(Stockk −Dk)×Costk if Stockk > Dk

0 if Stockk ≤ Dk

and

BackorderCostk =

{
(Dk − Stockk)× Pricek if Stockk < Dk

0 if Stockk ≥ Dk

where, Dk indicates the demand for product k. Unsold amounts of prod-
uct k are penalized proportionally to the corresponding standard cost
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per lot (Costk), whereas backorders receive a fine equal to the prod-
uct price, which is the income lost (Pricek) for not selling that specific
amount of product. Given a lack of information on real inventory costs
and total cost derived from backorders per product (cost of customer dis-
satisfaction, cost of non-future purchases, cost of customers switching to
other brands, etc.), standard costs and product prices are currently em-
ployed to penalize inventory and backorders, respectively. These two
assumptions are not valid in reality for several reasons. First, excess of
inventory can be sold in future periods and inventory costs are not equal
to standard costs. Second, considering product price as the total loss
caused by product backorders is inaccurate and unrealistic.

Additional constraints are imposed given that some products k are
required as raw materials during the manufacturing process of other
products k. Therefore, the requirement of sub-products is represented
through linear constraints as follows:

41∑

j=1

aij × xj ≤ bi (i = 1, 2, . . . , 4) (5)

where bi denotes the quantity available of sub-product i and aij is the
amount required of sub-product i to produce one lot in process j.

The default MATLAB implementation for solving integer and mixed
integer problems using a GA is applied in the current study. A detailed
description of the (MI-LXPM) GA and its truncation procedure (which
ensures compliance with integer constraints after crossover and muta-
tion) can be found in [7]. The inbuilt constraint-handling approach is
the parameter free penalty function approach proposed by Deb [6].

3. Preliminary Results

The model enables an accurate incorporation of uncertainty derived
from variations of manufacturing lead times, occurrence of work centre
failures and repair service times. The time required to run 15 itera-
tions of the GA is 12.15 hours. For this reason, very limited results
are reported in the present study, and we mostly focus on the validity
of the model designed. More extensive benchmarking of the approach
(including longer optimization runs and statistics across multiple trials)
is currently in progress.

As shown in Figure 4, when run for 15 iterations, the GA successfully
reduces the expected sum of backorders and inventory costs. The best
production plan after 15 iterations is presented in Table 1. For reference,
the amount of demand to be covered, the consolidated number of lots per
product to be manufactured and the actual number of lots produced is
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shown in Table 2. The allocation for work centre 204 provides a suitable
illustration of the results obtained. For the majority of products (except
for product B), work centre 204 displays a more reliable performance
than work centre 203. For this reason, the suggested production plan
(see Table 1) allocates a greater number of orders to work centre 204.
This solution is in accordance with our expectations and illustrates that
the reliability of work centres is correctly accounted for in the production
plan generated.

Figure 4. Best, mean and worst fitness value of the population at each iteration.

4. Future Research

There are a number of ways in which this research will be extended
in future work. Regarding the simulation component of the work, data
collection (from the company) needs to be completed. The data obtained
will be used to estimate PDFs of all stochastic variables, so that the use
of synthetic data can be avoided.

Regarding the optimizer, future work will include an investigation of
parameter settings, the sensitivity to noise and, potentially, the compar-
ison to alternative meta-heuristic optimization approaches. Moreover,
the number (n) of simulation trials employed to evaluate fitness will be
further analysed in order to balance quality of estimations and computa-
tional cost. Furthermore, a multi-objective formulation of the problem
will be explored in order to account for the robustness of solutions in
a more explicit manner. Specifically, the maximization of the signal-to-
noise ratio may be used as an additional objective to directly account
for the variability in the fitness values obtained [1].
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Table 1. Number of product lots to be manufactured in a specific work centre.

Product Work centre Prod. planb

A 204 14
B 203 7
B 204 6
C 203 10
D 203 6
E 203 10
F 203 8
G 203 7
G 204 14
H 203 3
H 204 11
I 203 3
I 204 8
J 203 14
K 203 6
L 203 12
L 204 13
M 203 7
M 204 19
N 204 14
O 203 5
O 204 10
P 203 4
P 204 4
Q 203 12
R 202 5
R 203 3
R 204 7
S 202 7
T 203 9
U 203 12
V 203 13
W 203 2
X 202 9
Yb 101 3

Zb 204 10
AA 204 6

ABb 205 8

ACb 205 16
AD 208 7
AE 301 9

abest production plan generated by the model after 15 iterations with n = 10.
bSub-products.
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Table 2. Demand, consolidated production plan per product and actual production
achieved.

Production a

Product Demand a Planned Actual b

A 10 14 7.3
B 9 13 6.1
C 12 10 4
D 10 6 2.4
E 15 10 4
F 13 8 3.2
G 12 21 10.1
H 11 14 7
I 9 11 5.5
J 8 14 5.6
K 15 6 2.4
L 12 25 11.6
M 13 26 12.6
N 12 14 7.3
O 13 15 7.3
P 9 8 3.9
Q 11 12 4.8
R 10 15 10
S 9 7 7
T 15 9 3.6
U 15 12 4.8
V 12 13 5.2
W 9 2 0.8
X 9 9 9
Yc 0 3 3
Zc 0 10 5.3
AA 10 6 3.3
ABc 0 8 8
ACc 0 16 16
AD 10 7 7
AE 10 9 9

ameasured in number of lots.
baverage value of 10 independent replications.
cSub-products.
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