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Abstract In this paper, a multi-population version of Adaptive Inflationary Differ-
ential Evolution, which automatically adapts the crossover probability
and the differential weight of the Differential Evolution, is presented.
The multi-population algorithm exploits the use of different popula-
tions, and the local minima found by each population, to assess the
distance between minima; a probabilistic kernel based approach is then
used to automatically adapt the dimension of a bubble in which the
population is re-initialized after converging to a local minimum. The
algorithm is tested on two real case functions and on two difficult aca-
demic functions.
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1. Introduction

Differential Evolution (DE), [13], is a population-based stochastic al-
gorithm for solving optimization problems. Although it has proved to
be a very efficient global optimizer, work has been done to enhance
its performance by combining it with deterministic or stochastic opti-
mizers [4, 5, 15]. In [19], Inflationary Differential Evolution Algorithm
(IDEA) was introduced. IDEA is based on the hybridization of Differ-
ential Evolution (DE) with the restarting procedure of Monotonic Basin
Hopping (MBH) algorithm [20]. The performance of IDEA was found to
be dependent upon the parameters controlling both the DE and MBH
heuristics [19]. In particular, the DE performance is strongly influenced
by the crossover probability, CR, and the differential weight, F, whose
best settings are heavily problem dependent [8].

The need to have an algorithm capable of self-adapting these two
parameters has resulted in many works [1, 3, 10, 12, 14]. The next step
in the development of IDEA has therefore been the adaptation of CR
and F , leading to Adaptive Inflationary Differential Evolution Algorithm
(AIDEA) [11]. This algorithm uses a probabilistic kernel based approach
to automatically adapt the values of both CR and F.

Starting from the successful results of AIDEA, this paper introduces a
multi-population version of AIDEA (MP-AIDEA), using different strate-
gies to create the mutant vector of the DE, different strategies to adapt
CR and F and a new mechanism to adapt the dimension of the search
space in which the population is re-initialized. Other multi-populations
DE algorithms have been presented in [16,21,22].

In the first part of this paper MP-AIDEA is described. Then the
results of four test cases are presented.

2. Multi-Population Adaptive Inflationary
Differential Evolution Algorithm

The algorithm presented in this paper is a further development of
AIDEA [11]. In the following, a summary of AIDEA and a detailed
description of MP-AIDEA are given.

AIDEA. The first step in the run of AIDEA is a DE process in which
each element of the population is associated to a different value of CR
and F . During the advancement of the population from parents to chil-
dren the values of CR and F are adapted using a kernel based approach.
The DE is run until the population contracts below a threshold, iden-
tified by the parameter ρ. When this contraction condition is satisfied
a local search is performed from the best individual in the population.
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The found local minimum is archived in a matrix of minima and the
population is restarted in a bubble of dimension δlocal around the local
minimum (local restart). Local restart is iterated up to a predefined
maximum value, identified by the value iun. When this value is reached
the population is restarted at a distance δglobal from the cluster of local
minima found thus far (global restart). The algorithm stops when the
maximum number of function evaluation is reached.

MP-AIDEA. In MP-AIDEA the single population of AIDEA is re-
placed by many populations. The common archive of local minima of
all the populations can be used to create the mutant vector of the DE.
Three strategies have been considered for the generation of the mutant
vector: 1) DE/best/1 -DE/rand/1 : the mutant vector is created ran-
domly using the best element or a random element of the population; 2)
DE/arch/1 -DE/rand/1 : the mutant vector is created randomly using
an element from the archive of local minima or a random element of the
population: 3) DE/arch/1 -DE/best/1 : the mutant vector is created
randomly using an element from the archive of local minima or the best
element of the population.

As regards the adaptation, the presence of many populations can be
exploited to adapt CR and F in a different way with respect to AIDEA.
Two strategies for the adaptation of CR and F are proposed: 1) MP-
AIDEA-CRF1 (CR and F adaptivity realized using CR and F values
equal for every element of each population and comparing the popula-
tions to each other) and 2) MP-AIDEA-CRF2 (CR and F adaptivity
realized using different CR and F values for each element of each popu-
lation and comparing elements of each single population to each other,
as in AIDEA [11]).

Finally, a strategy is proposed to adapt also the dimension of the bub-
ble for the local restart of the population, using a kernel based approach
similar to the one used for the adaptation of CR and F . Considering all
these possibilities, twelve different versions of the algorithm have been
developed and tested:

- MP-AIDEA 1: MP-AIDEA-CRF1-DE/best/1 -DE/rand/1

- MP-AIDEA 2: MP-AIDEA-CRF1-DE/arch/1 -DE/rand/1

- MP-AIDEA 3: MP-AIDEA-CRF1-DE/arch/1 -DE/best/1

- MP-AIDEA 4 to 6: MP-AIDEA 1 to 3 with δlocal adaptation

- MP-AIDEA 7 to 12: MP-AIDEA 1 to 6 based on CRF2 strategy

A detailed description of the common structure of the algorithms is
given in Algorithm 1. The procedure starts by setting values for npop
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(number of elements in each population), Npop (number of populations),
iun (maximum number of local restart), ρ̄ (size of the convergence box),
δglobal (distance from the cluster centres for the global restart) and δlocal
(dimension of the bubble for the local restart, if not adapted) as in line
1 and initializing the populations (line 3). The joint PDF for CR and
F is then initialised to be a uniform distribution (lines 4 and 5). For
MP-AIDEA-CRF1, DE is run (line 11) drawing probabilistically a value
for F and CR from CRF for each population (line 9) and CRF is
updated on the basis of the improvement of the populations (step 15).
For MP-AIDEA-CRF2, lines 9, 15 and 16 are to be considered inside
the for cycle over the elements of the population (different values of CR
and F for each element of the populations). If the populations contracts
below a predefined threshold (step 18), a local optimizer is run from
the current minimum (line 19) and the found local minimum is saved
in an archive of local minima of all the populations (line 32). iunm is
updated based on the improvement of the value of fmin,m (lines 23 to
28). If the adaptation of δlocal is performed, when all the population
have performed the local search, a matrix B for the adaptation of the
dimension of the bubble can be created (step 34, Algorithm 3) using the
local minima found thus far. At this point the populations go through
local or global restart according to lines 39 to 45. In particular, if the
local optimizer failed to improve the value of fmin more than iunmax

times, the population is restarted globally and iun is set to 0, otherwise
the population is restarted within a local bubble and iun = iun+1. The
dimension of the bubble for the local restart is sampled from matrix B

(line 40) or is the one defined at line 1 if δlocal is not adapted. The
adaptation of B (line 36) is done only when the local optimizer has been
applied to all the population for the second time (for each population,
the adaptation can be performed only if two local minima are known for
that population). At this point, the loop restart from the initialization
of CRF. As a terminal criterion the algorithms stops if the maximum
number of function evalutation nfeval,max has been reached.

CR and F adaptation. The updating procedure for CRF is de-
tailed in Algorithm 2 for MP-AIDEA-CRF1. For each population, the
maximum objective function difference between parents and children,
ddmax, is computed (line 1). Then the element of CRF are sequen-
tially evaluated and the first time that the dd value associated to the
considered row is lower than ddmax (line 4) the value of F used for the
considered population substitutes the corresponding elements CRFj,2

(line 5). For CR, the value associated to the considered population sub-
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stitutes CRFj,1 (line 7) only if ddmax is greater than a given value CRC
(line 6), [11].

For MP-AIDEA-CRF2 the for cycle in line 2 is substituted by a for

cycle over the elements of the single population and ddmax is replaced
by f (xi,k)− f (xi,k+2) for each element i of the population, as in [11].

δ adaptation. The generation of the matrix B for the adaptation
of the dimension of the bubble for the local restart is described in Algo-
rithm 3; it reflects the procedure for the creation of CRF and is based on
the computation of the distance between the local minima found by the
different populations and stored in the common archive of local minima.
The updating procedure for B, detailed in Algorithm 4, follows the same
approach used for the adaptation of CRF; the distance between local
minimum found at subsequent local restart is used to assess the validity
of the used dimension of the bubble for the local restart (a local restart
is effective if the algorithm move from a local minimum to another).

The process of adaptation of the dimension of the bubble for the local
restart will be presented in greater details in the first two test cases of
the Test Results section.

3. Test Results

The test cases are taken from the technical report of the CEC 2005
and CEC 2011 competitions [6,17]. The considered problems are: Spread
Spectrum Radar Polyphase Code Design and Tersoff Radar Function
Minimization Problem from CEC 2011; Schwefel’s Problem, Function 12,
and Rotated Version of Hybrid Composition Function, Function 16, from
CEC 2005. The statistics reported are computed on the results obtained
from 100 independent runs in which new populations are generated at
each run. The success rate reported in the next tables and figures is
computed as number of times (over the 100 runs) in which the minimum
found by the algorithm is lower than fmin+ǫ where fmin is the minimum
value of the function and ǫ is a given threshold [18]. ǫ = 0.001 for the
test cases from CEC 2011 and ǫ = 0.01 for the CEC 2005 problems [17].

3.1 Spread Spectrum Radar Polyphase Code Design

This problem has dimension nD = 20 and the best solution found is
fmin = 0.5. The maximum number of function evaluation is 1.5e5 [6].
The same parameters setting of [11] was used, that is δlocal = δglobal =
0.1, ρ = 0.2 and iun = 10. The results obtained using AIDEA in [11]
(where the DE strategy was DE/best/1 ) and new results obtained using
AIDEA with the DE strategy DE/best/1 -DE/rand/1 are reported in
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Algorithm 1 Multi-Population Adaptive Inflationary Differental Evo-
lution Algorithm
1: Set values for npop, Npop, iun, ρ̄, δglobal

2: Set nfeval,m = 0 and km = 1 for all populations m ∈ [1, . . . , Npop]
3: Initialize population xm,i,k for all m ∈ [1, . . . , Npop] and for all i ∈ [1, . . . , npop]

4: A regular mesh with (nD + 1)2 points (where nD is the dimensionality of the problem) in the
space CR ∈ [0.1, 0.99]xF ∈ [−0.5, 1] is created

5: Initialize CRF with points of the mesh: CRFj,1 ← CRj and CRFj,2 ← Fj for all j ∈

[1, . . . , (nD + 1)2]
6: Associate to each row of CRF an element ddj = 0 for all j ∈ [1, . . . , (nD + 1)2]
7: Row sort CRF in terms of dd values
8: for m ∈ [1, . . . , Npop] do
9: Sample CRm,k and Fm,k from CRF

10: for i ∈ [1, . . . , npop] do
11: xm,i,k+1 ← DE(xm,i,k, CRm,k, Fm,k)
12: nfeval,m = nfeval,m + 1
13: end for

14: km = km + 1
15: Update CRF (see Algorithm 2)
16: Row sort CRF in terms of dd values
17: ρm = max (||xm,i,k − xm,j,k||) ∀xm,i,k,xm,j,k ∈ Pm,k

18: if ρm < ρ̄ · ρmax,m then

19: Run a local optimizer from xbest,m and let xl,m be the local minimum found by the
local optimizer

20: if f (xl,m) < f (xbest,m) then

21: f (xbest,m) ← f (xl,m)
22: end if

23: if f (xbest,m) < fmin,m then

24: fmin,m ← f (xbest,m)
25: iunm = 0
26: else

27: iunm = iunm + 1
28: end if

29: else

30: Termination Unless nfeval,m ≥ nfeval,max goto (10)
31: end if

32: Add xbest,m to the archive of minima of population: Ag,m = Ag,m + {xbest,m}
33: end for

34: Create matrix B for adaptation of the dimension of the bubble (see Algorithm 3)
35: if (All population went for the 2nd time through the local minimizer) then

36: Update B (see Algorithm 4)
37: end if

38: for m ∈ [1, . . . , Npop] do
39: if iun ≤ iunmax then

40: Sample δlocal,m from B to define the bubble Dm

41: Initialize population xm,i,k for all i ∈ [1, . . . , npop] in the bubble Dm

42: else

43: Define clusters in the archive and compute baricentre xc,m of each cluster
44: Initialize population xm,i,k for all i ∈ [1, . . . , npop] such that ∀i, j||xm,i,k − xm,j,k|| >

δglobal

45: end if

46: end for

47: Termination Unless nfeval,m ≥ nfeval,max goto (4)

Table 1, along with the results of two of the best performing algorithms
of the CEC 2011 competition, the Genetic Algorithm with Multi Parent
Crossover (GA-MPC) [7] and the Weed Inspired Differential Evolution
(WI-DE) [9].

AIDEA gives better results than GA-MPC or WI-DE. In Figure 1 the
success rates obtained using different population number Npop composed
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Algorithm 2 Updating procedure for CRF

1: For each population compute ddmax,m = max||f (xm,i,k+1) −
f (xm,i,k) || for all i ∈ [1, . . . , npop]

2: for m ∈ [1, . . . , Npop] do
3: for j ∈ [1, . . . , (nD + 1)2] do
4: if ddj < ddmax,m then

5: CRFj,2,k ← Fm,k

6: if ddmax,m > CRC then

7: CRFj,1,k ← CRm,k

8: end if

9: end if

10: end for

11: end for

Algorithm 3 Generation of matrix B for the adaptation of the bubble

1: Compute mean and minimum distance between all local minima in
Agm for all m ∈ [1, . . . , Npop]: dminMIN and dminMEAN

2: Create regular mesh with (nD + 1)2 points in the space
[dminMIN ,dminMEAN ]

3: Initialize B with points of the mesh
4: Associate to each row of B an element ddbj = 0 for all j ∈

[1, . . . , (nD + 1)2]
5: Row sort B in terms of ddb values

Algorithm 4 Updating procedure for B

1: For each population compute pm = ||xl,m,k+1 − xl,m,k||
2: for m ∈ [1, . . . , Npop] do
3: for j ∈ [1, . . . , (nD + 1)2] do
4: if ddbj < pm then

5: Bj,1,k ← δlocal,m
6: end if

7: end for

8: end for

by npop = 10 elements are shown for MP-AIDEA 1, 4, 7 and 10 and MP-
AIDEA 2, 5, 8 and 11. Results from MP-AIDEA 3, 6, 9, 12 are very
similar to MP-AIDEA 2, 5, 8, 11 and therefore are not shown. AIDEA
was tested with a number of individuals in the single population equal
to the total number of individuals of MP-AIDEA. The most successful
versions of MP-AIDEA are 1, 7 and 10; their results are always better
than AIDEA’s one. MP-AIDEA versions 2, 5, 8 and 11 show a success



48 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1. Spread Spectrum Radar Polyphase Code Design – AIDEA, GA-MPC and
WI-DE results.

Algorithm npop Min Mean Max Str.Dev. S.Rate

AIDEA DE/best 20 0.5000 0.5150 0.6509 0.0343 -
AIDEA DE/best-DE/rand 20 0.5000 0.5130 0.6422 0.0263 75
GA-MPC - 0.5000 0.7484 0.9334 0.1249 -
WI-DE - 0.5000 0.656 0.993 0.116 -
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Figure 1. Spread Spectrum Radar Polyphase Code Design – MP-AIDEA success
rate.

rate increasing with Npop and greater than the success rate of AIDEA
for Npop sufficiently high.

In Figure 2 the process of adaptation of the dimension of the bubble
for the local restart is shown for MP-AIDEA 4 and Npop = 3 for a
sequence of 19 subsequent local restarts before the global restart of the
algorithm. The bold line represents the mean value of δlocal over all the
populations. It is evident that δlocal = 0.1 proves to be a good guess for
the value of δlocal.

3.2 Tersoff Potential Function Minimization Problem

This problem has dimension nD = 30 and the best solution is fmin =
−36.9286. The maximum number of function evaluation is 1.5e5. AIDEA
and MP-AIDEA were tested using two different sets of parameters set-
tings: δlocal = δglobal = 0.1, ρ = 0.2, iun = 10 (Case 1) and δlocal = 0.3,
δglobal = 0.1, ρ = 0.2, iun = 10 (Case 2). The results obtained using
AIDEA in [11] and new results obtained using AIDEA with the DE
strategy DE/rand/1 -DE/best/1 are reported in Table 2, along with the
results obtained by GA-MPC and WI-DE.
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Figure 2. Spread Spectrum Radar Polyphase Code Design – adaptation of δlocal.

Table 2. Tersoff Potential Function Minimization Problem – AIDEA, GA-MPC and
WI-DE results.

Algorithm npop Min Mean Max Str.Dev. S.Rate

Case 1
AIDEA DE/best 20 -36.9286 -36.8527 -35.5171 0.2442 -
AIDEA DE/best-rand 20 -36.9286 -36.8046 -35.9700 0.2483 34

Case 2
AIDEA DE/best-rand 20 -36.9286 -36.6219 -35.4467 0.4694 11

GA-MPC - -36.8457 -35.03883 -34.1076 0.8329 -
WI-DE - -36.8 -35.6 -34.2 0.904 -

In Figure 3 the results obtained from different combinations of Npop ×
npop are shown for the best variants of MP-AIDEA and for both Case 1
and Case 2.

For Case 1 the best results are given by MP-AIDEA 1 and MP-
AIDEA 7. Changing the values of δlocal from 0.1 to 0.3 (Case 2) results
however in a successful performance of the algorithms with adaptation
of δlocal, that is MP-AIDEA 4 and MP-AIDEA 10. This is due to the
fact that for Case 1 the chosen value of δlocal was close to the optimal
value for this problem. This is proved in Figure 4, where the process
of adaptation of δlocal is shown for MP-AIDEA 4 using 3 populations.
Arbitrary chosen values, such as δlocal = 0.3 (Case 2) are very dissimilar
from the one obtained through the adaptation process (δlocal = 0.1).
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Figure 3. Tersoff Potential Function Minimization Problem – MP-AIDEA success
rate.
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Figure 4. Tersoff Potential Function Minimization Problem – adaptation of δlocal.

3.3 Schwefel’s Problem

Schwefel’s problem was tested with dimension nD = 30 and nD = 50.
The best solution is fmin = −460; the parameters settings is δlocal =
δglobal = 0.1, ρ = 0.2 and iun = 5. The maximum number of function
evalutions is 3e5 for the 30D problem and 5e5 for the 50D problem,
[17]. The results obtained using AIDEA with DE strategy DE/rand/1 -
DE/best/1 are reported in Table 3 as statistics of the objective function
error values with respect to fmin, as required by [17], along with the
results obtained by one of the best performing algorithms of the CEC
2005 competition, the Restart Covariance Matrix Adaptation Evolution
Strategy with Increasing Population Size (IPOP-CMA-ES) [2]. AIDEA
gives better results for the 30D problem and for the 50D problem it
locates the global minimum, while CMA-ES was not able to find it.
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Table 3. Schwefel’s Problem – AIDEA and IPOP-CMA-ES results.

Algorithm nD npop Min Mean Max Str.Dev. S.Rate

AIDEA 30 20 2.01e-9 1.03e+2 1.00e+3 1.97e+2 43
IPOP-CMA-ES 30 - 3.79e-9 4.43e+4 1.10e+6 2.19e+5 -

AIDEA 50 40 1.45e-8 2.63e+3 1.75e+4 2.74e+3 1
IPOP-CMA-ES 50 - 9.67e+0 2.27e+5 5.57e+6 1.11e+6 -
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Figure 5. Schwefel’s Problem – MP-AIDEA success rate.

In Figure 5 the success rates obtained for different values of Npop, with
npop = 10 for the 30D problem and npop = 20 for the 50D problem, are
shown for the most successful versions of MP-AIDEA. For the 30D prob-
lem MP-AIDEA gives better results than AIDEA in most of the cases;
for the 50D problem MP-AIDEA is able to find the global minimum of
the function.

3.4 Rotated Version of Hybrid Composition

Function

For this function the best solution is fmin = 120, nD = 10, δlocal =
δglobal = 0.1, ρ = 0.2 and iun = 5. The maximum number of function
evaluations is 1e5 [17]. The results obtained using AIDEA, IPOP-CMA-
ES and MP-AIDEA are shown in Table 4 and Table 5, where results
from different combinations of Npop × npop are presented.

The most successful variants of MP-AIDEA were able to locate the
global minimum of this function, a minimum that neither IPOP-CMA-
ES nor AIDEA were able to find.
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Table 4. Rotated Version of Hybrid Composition Function – AIDEA and IPOP-
CMA-ES results.

Algorithm npop Min Mean Max Str.Dev. S.Rate

AIDEA 40 5.38e+1 1.02e+2 1.14e+2 8.42e+0 0
IPOP-CMA-ES - 7.92e+1 9.13e+1 9.68e+1 3.49e+0 -

Table 5. Rotated Version of Hybrid Composition Function – MP-AIDEA success
rate.

Algorithm 2x20 4x20 6x20 8x20

MP-AIDEA 4 2 1 1 0
MP-AIDEA 10 1 0 1 3

4. Conclusions

In this paper a multi-population version of AIDEA have been pre-
sented and tested. Results have shown that MP-AIDEA can give results
which are better, or at least comparable, to the ones provided by AIDEA.
The new strategies DE/arch/1 -DE/rand/1 and DE/arch/1 -DE/best/1
have shown to be effective when the number of populations is not too
low. The adaptation of the bubble dimension has proven to give good
results, having moreover the advantage of not requiring the setting of the
parameter δlocal for the dimension of the bubble of the local restart. In
addition, the most successful versions of MP-AIDEA were able to locate
for the first time the global minima of two difficult academic functions.
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