Multi-Population Adaptive Inflationary Differential Evolution

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci

Department of Mechanical and Aerospace Engineering University of Strathclyde

marilena.di-carlo@strath.ac.uk

PPSN BIOMA - Bioinspired Optimization Methods and their Applications Ljubljana, 13 September 2014

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptiv

Multi-Population Adaptive Inflationary Differential Evolution

Introduction

 Differential Evolution (DE) is a very efficient population-based stochastic algorithm for global numerical optimization problems

- Differential Evolution (DE) is a very efficient population-based stochastic algorithm for global numerical optimization problems
- Its performance can be enhanced by combining it with others optimizer:

- Differential Evolution (DE) is a very efficient population-based stochastic algorithm for global numerical optimization problems
- Its performance can be enhanced by combining it with others optimizer:

Inflationary Differential Evolution Algorithm, IDEA

- Differential Evolution (DE) is a very efficient population-based stochastic algorithm for global numerical optimization problems
- Its performance can be enhanced by combining it with others optimizer:

Inflationary Differential Evolution Algorithm, IDEA

DE performance are strongly influenced by setting of the algorithm parameter:

- Differential Evolution (DE) is a very efficient population-based stochastic algorithm for global numerical optimization problems
- Its performance can be enhanced by combining it with others optimizer:

Inflationary Differential Evolution Algorithm, IDEA

DE performance are strongly influenced by setting of the algorithm parameter:

Adaptive Inflationary Differential Evolution Algorithm, AIDEA

- Differential Evolution (DE) is a very efficient population-based stochastic algorithm for global numerical optimization problems
- Its performance can be enhanced by combining it with others optimizer:

Inflationary Differential Evolution Algorithm, IDEA

DE performance are strongly influenced by setting of the algorithm parameter:

Adaptive Inflationary Differential Evolution Algorithm, AIDEA

Multi-population version of AIDEA (MP-AIDEA)

IDEA & AIDEA Multi-Population AIDEA Test Results Conclusions

IDEA & AIDEA Multi-Population AIDEA Test Results Conclusions

Contents

- Differential Evolution

IDEA & AIDEA Multi-Population AIDEA Test Results Conclusions

- Differential Evolution
- IDEA

IDEA & AIDEA Multi-Population AIDEA Test Results Conclusions

- Differential Evolution
- IDEA
- AIDEA

IDEA & AIDEA Multi-Population AIDEA Test Results Conclusions

- Differential Evolution
- IDEA
- AIDEA
- Multi-Population AIDEA

IDEA & AIDEA Multi-Population AIDEA Test Results Conclusions

- Differential Evolution
- IDEA
- AIDEA
- Multi-Population AIDEA
- Test Results

Differential Evolution IDEA AIDEA

Differential Evolution

 Initialize population in the search space

Differential Evolution IDEA AIDEA

Differential Evolution

- Initialize population in the search space
- Select three individuals \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3

Differential Evolution IDEA AIDEA

Differential Evolution

- Initialize population in the search space
- Select three individuals x₁, x₂ and x₃

Differential Evolution IDEA AIDEA

Differential Evolution

- Initialize population in the search space
- Select three individuals \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3
- Apply mutation:

$$\mathbf{v}_1 = \mathbf{x}_1 + F \cdot (\mathbf{x}_2 - \mathbf{x}_3)$$

Differential Evolution IDEA AIDEA

Differential Evolution

- Initialize population in the search space
- Select three individuals \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3
- Apply mutation:

 $\textbf{v}_1 = \textbf{x}_1 + F \cdot (\textbf{x}_2 - \textbf{x}_3)$

► Apply crossover to obtain trial vector \mathbf{u}_1 : $u_1^j = \begin{cases} v_1^j, & \text{if rand}(0,1) \le CR \text{ or } j = j_{rand} \end{cases}$

$$= \begin{cases} v_1, & \text{if rand}(0,1) \leq CK \text{ of } j = J_{rand} \\ x_1^j, & \text{otherwise} \end{cases}$$

Differential Evolution IDEA AIDEA

Differential Evolution

- Initialize population in the search space
- Select three individuals \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3
- Apply mutation:

 $\mathbf{v}_1 = \mathbf{x}_1 + F \cdot (\mathbf{x}_2 - \mathbf{x}_3)$

- Apply crossover to obtain trial vector u₁:
 - $u_1^j = egin{cases} v_1^j, & ext{if rand}(0,1) \leq CR ext{ or } j = j_{rand} \ x_1^j, & ext{otherwise} \end{cases}$
- Repeat operation for all the individuals

Differential Evolution IDEA AIDEA

Differential Evolution

- Initialize population in the search space
- Select three individuals \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3

Apply mutation:

 $\mathbf{v}_1 = \mathbf{x}_1 + F \cdot (\mathbf{x}_2 - \mathbf{x}_3)$

- Apply crossover to obtain trial vector u1:
 - $u_1^j = egin{cases} \mathsf{v}_1^j, & ext{if rand}(0,1) \leq CR ext{ or } j = j_{rand} \ \mathsf{x}_1^j, & ext{otherwise} \end{cases}$
- Repeat operation for all the individuals

Survival selection:

$$\mathbf{x}'_{i} = \begin{cases} \mathbf{u}_{i}, & \text{if } f(\mathbf{u}_{i}) \leq f(\mathbf{x}_{i}) \\ \mathbf{x}_{i}, & \text{otherwise} \end{cases}$$

Differential Evolution IDEA AIDEA

IDEA

- DE drawbacks:
 - Stagnation of the optimization process
 - CR and F difficult to tune and heavily problem dependent

Differential Evolution IDEA AIDEA

IDEA

- DE drawbacks:
 - Stagnation of the optimization process
 - CR and F difficult to tune and heavily problem dependent
- IDEA (Inflationary Differential Evolution Algorithm)
 M. Vasile, E. Minisci, M. Locatelli, 2011
 - Hybridization of DE with the restarting procedure of Monotonic Basin Hopping (MBH) algorithm

Differential Evolution IDEA AIDEA

IDEA

1. Initialize population in the search space and run Differential Evolution

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

Differential Evolution IDEA AIDEA

IDEA

1. Initialize population in the search space and run Differential Evolution

Differential Evolution IDEA AIDEA

IDEA

 Population contraction: r ≤ ρ ⋅ r_{max} r = max (||x_i - x_j||) and r_{max} is the maximum value of r recorded during the convergence

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci

Multi-Population Adaptive Inflationary Differential Evolution

Differential Evolution IDEA AIDEA

IDEA

3. Perform **local search** from the best individual in the population and locate local minimum

Differential Evolution IDEA AIDEA

IDEA

4. Restart population in a bubble of dimension δ_{local} around the local minimum

Differential Evolution IDEA AIDEA

IDEA

5. Repeat DE until convergence

Differential Evolution IDEA AIDEA

IDEA

5. Repeat DE until convergence

Differential Evolution IDEA AIDEA

IDEA

5. Repeat DE until convergence

Differential Evolution IDEA AIDEA

IDEA

6. When more than n_{LR} local restarts have been performed **globally** restart the population at a distance δ_{global} from the centers of the clusters of local minima

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

Differential Evolution IDEA AIDEA

AIDEA

- DE drawbacks:
 - Stagnation of the optimization process
 - CR and F difficult to tune and heavily problem dependent

Differential Evolution IDEA AIDEA

AIDEA

- DE drawbacks:
 - Stagnation of the optimization process
 - CR and F difficult to tune and heavily problem dependent
- AIDEA (Adaptive Inflationary Differential Evolution Algorithm)
 E. Minisci, M. Vasile, 2014
 - Hybridization of DE with the restaring procedure of Monotonic Basin Hopping (MBH) algorithm
 - Adaptation of the DE parameters CR and F

Differential Evolution IDEA AIDEA

AIDEA

CR and F adaptation

► Initialization of *CRF*, regular mesh in the space: $CR \in [0.1, 0.99]$

 $F \in [-0.5, 1]$

Differential Evolution IDEA AIDEA

AIDEA

- CR and F adaptation
 - ▶ Initialization of *CRF*, regular mesh in the space:
 - $\begin{array}{l} \textit{CR} \in [0.1, 0.99] \\ \textit{F} \in [-0.5, 1] \end{array}$
 - Sample of CR and F values from the Parzen distribution associated to CRF and association of each (CR, F) couple to an individual of the population

Differential Evolution IDEA AIDEA

AIDEA

CR and F adaptation

▶ Initialization of *CRF*, regular mesh in the space:

 $CR \in [0.1, 0.99]$ $F \in [-0.5, 1]$

- ▶ Sample of *CR* and *F* values from the Parzen distribution associated to *CRF* and association of each (*CR*, *F*) couple to an individual of the population
- ► Computation for each individual **x** and its child **x**' of the difference:

$$d = f(\mathbf{x}') - f(\mathbf{x})$$
Differential Evolution IDEA AIDEA

AIDEA

CR and F adaptation

Initialization of CRF, regular mesh in the space:

 $CR \in [0.1, 0.99]$ $F \in [-0.5, 1]$

- ▶ Sample of *CR* and *F* values from the Parzen distribution associated to *CRF* and association of each (*CR*, *F*) couple to an individual of the population
- ► Computation for each individual **x** and its child **x**' of the difference:

 $d = f(\mathbf{x}') - f(\mathbf{x})$

 CRF update: (CR, F) couples with lower d are substituted by (CR, F) couples with higher d

 $\begin{array}{l} \textbf{MP-AIDEA} \\ \delta_{\textit{local}} \text{ adaptation} \\ \textbf{MP-AIDEA versions} \end{array}$

MP-AIDEA

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

 $\begin{array}{l} \textbf{MP-AIDEA} \\ \delta_{local} \text{ adaptation} \\ \textbf{MP-AIDEA versions} \end{array}$

MP-AIDEA

Adaptation of other parameters: multi-population AIDEA

 $\begin{array}{l} \textbf{MP-AIDEA} \\ \delta_{local} \text{ adaptation} \\ \textbf{MP-AIDEA version} \end{array}$

- Adaptation of other parameters: multi-population AIDEA
- Adaptation of the dimension of the bubble for the local restart δ_{local}

 $\begin{array}{l} \textbf{MP-AIDEA} \\ \delta_{local} \text{ adaptation} \\ \textbf{MP-AIDEA versions} \end{array}$

- Adaptation of other parameters: multi-population AIDEA
- Adaptation of the dimension of the bubble for the local restart $\delta_{\textit{local}}$
- Strategies for the generation of the mutant vector:
 - DE/best-DE/rand
 - DE/arch-DE/rand
 - DE/arch-DE/best

 $\begin{array}{l} \textbf{MP-AIDEA} \\ \delta_{local} \text{ adaptation} \\ \textbf{MP-AIDEA versions} \end{array}$

- Adaptation of other parameters: multi-population AIDEA
- Adaptation of the dimension of the bubble for the local restart δ_{local}
- Strategies for the generation of the mutant vector:
 - DE/best-DE/rand
 - DE/arch-DE/rand
 - DE/arch-DE/best
- CR and F adaptation:
 - MP-AIDEA-CRF1
 - Same CR and F values for every individual of the same population
 - MP-AIDEA-CRF2
 - Different CR and F values for each element of each population

 $\begin{array}{l} \text{MP-AIDEA} \\ \delta_{\textit{local}} \text{ adaptation} \\ \text{MP-AIDEA versions} \end{array}$

- $\delta_{\textit{local}}$ adaptation
 - Computation of the minimum and maximum distance between all local minima, d_{minMIN} and d_{minMAX}

MP-AIDEA δ_{local} adaptation MP-AIDEA versions

- $\delta_{\textit{local}}$ adaptation
 - Computation of the minimum and maximum distance between all local minima, d_{minMIN} and d_{minMAX}
 - Creation of a regular mesh B in the space $[d_{minMIN}, d_{minMAX}]$

 $\begin{array}{l} \text{MP-AIDEA} \\ \delta_{\textit{local}} \text{ adaptation} \\ \text{MP-AIDEA version} \end{array}$

MP-AIDEA

 $\delta_{\textit{local}}$ adaptation

- ► Computation of the minimum and maximum distance between all local minima, *d_{minMIN}* and *d_{minMAX}*
- Creation of a regular mesh B in the space $[d_{minMIN}, d_{minMAX}]$
- Sample of δ_{local} from the Parzen distribution associated to B for each population

MP-AIDEA $\delta_{\textit{local}}$ adaptation MP-AIDEA version

MP-AIDEA

$\delta_{\textit{local}}$ adaptation

- Computation of the minimum and maximum distance between all local minima, d_{minMIN} and d_{minMAX}
- Creation of a regular mesh B in the space $[d_{minMIN}, d_{minMAX}]$
- ► Sample of δ_{local} from the Parzen distribution associated to *B* for each population
- Computation for each population of the distance between consecutive local minima:

$$p = \left\| \mathbf{x}_{min}^{k+1} - \mathbf{x}_{min}^{k} \right\|$$

MP-AIDEA δ_{local} adaptation MP-AIDEA version

MP-AIDEA

$\delta_{\textit{local}}$ adaptation

- Computation of the minimum and maximum distance between all local minima, d_{minMIN} and d_{minMAX}
- Creation of a regular mesh B in the space $[d_{minMIN}, d_{minMAX}]$
- ► Sample of δ_{local} from the Parzen distribution associated to *B* for each population
- Computation for each population of the distance between consecutive local minima:

$$p = \left\| \mathbf{x}_{min}^{k+1} - \mathbf{x}_{min}^{k} \right\|$$

► Update of B: population with higher values of p are characterized by a better value of δ_{local}

 $\begin{array}{l} \mathsf{MP-AIDEA} \\ \delta_{\mathit{local}} \text{ adaptation} \\ \mathsf{MP-AIDEA} \text{ versions} \end{array}$

MP-AIDEA versions

	CRF1	CRF2	DE-mut1	DE-mut2	DE-mut3	δ_{local}
MP-AIDEA 1	\checkmark		\checkmark			
MP-AIDEA 2	\checkmark			\checkmark		
MP-AIDEA 2	\checkmark				\checkmark	
MP-AIDEA 4	\checkmark		\checkmark			\checkmark
MP-AIDEA 5	\checkmark			\checkmark		\checkmark
MP-AIDEA 6	√				\checkmark	\checkmark
MP-AIDEA 7		\checkmark	\checkmark			
MP-AIDEA 8		\checkmark		\checkmark		
MP-AIDEA 9		\checkmark			\checkmark	
MP-AIDEA 10		\checkmark	\checkmark			\checkmark
MP-AIDEA 11		\checkmark		\checkmark		\checkmark
MP-AIDEA 12		\checkmark			\checkmark	\checkmark

DE-mut1: DE/best-DE/rand DE-mut2: DE/arch-DE/rand DE-mut3: DE/arch-DE/best

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

 $\begin{array}{l} \mathsf{MP-AIDEA} \\ \delta_{\mathit{local}} \text{ adaptation} \\ \mathsf{MP-AIDEA} \text{ versions} \end{array}$

MP-AIDEA versions

	CRF1	CRF2	DE-mut1	DE-mut2	DE-mut3	δ_{local}
MP-AIDEA 1	\checkmark		\checkmark			
MP-AIDEA 2	~			\checkmark		
MP-AIDEA 2	\checkmark				\checkmark	
MP-AIDEA 4	\checkmark		\checkmark			\checkmark
MP-AIDEA 5	\checkmark			\checkmark		\checkmark
MP-AIDEA 6	\checkmark				\checkmark	\checkmark
MP-AIDEA 7		\checkmark	\checkmark			
MP-AIDEA 8		\checkmark		\checkmark		
MP-AIDEA 9		\checkmark			\checkmark	
MP-AIDEA 10		\checkmark	\checkmark			\checkmark
MP-AIDEA 11		\checkmark		\checkmark		\checkmark
MP-AIDEA 12		\checkmark			\checkmark	\checkmark

DE-mut1: DE/best-DE/rand DE-mut2: DE/arch-DE/rand DE-mut3: DE/arch-DE/best

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Test Cases

Competition of the Congress on Evolutionary Computation (CEC)

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Test Cases

Competition of the Congress on Evolutionary Computation (CEC)

- 1. Spread Spectrum Radar Polyphase Code Design, CEC 2011
- 2. Tersoff Radar Function Minimization Problem, CEC 2011
- 3. Schwefel's Problem, CEC 2005
- 4. Rotated Version of Hybrid Composition Function, CEC 2005

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Test Cases

Competition of the Congress on Evolutionary Computation (CEC)

- 1. Spread Spectrum Radar Polyphase Code Design, CEC 2011
- 2. Tersoff Radar Function Minimization Problem, CEC 2011
- 3. Schwefel's Problem, CEC 2005
- 4. Rotated Version of Hybrid Composition Function, CEC 2005

Algorithm performance:

- Success rate: number of successful runs over 100 total runs
- Successful run: $f(\mathbf{x}_{min}) < f_{min} + \epsilon$

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Spread Spectrum Radar Polyphase Code Design

Spread Spectrum Radar Polyphase Code Design

Problem and algorithm parameters

D	f _{min}	FEs	$\delta_{local}*$	δ_{global}	ρ	n _{LR}
20	0.5	$1.5 \cdot 10^{5}$	0.1	0.1	0.2	10

* for AIDEA and MP-AIDEA versions which do not adapt δ_{local}

Introduction Test Cases IDEA & AIDEA Multi-Population AIDEA Tersoff Potential Function Minimization Problem Test Results Conclusions Rotated Version of Hybrid Composition Function

Spread Spectrum Radar Polyphase Code Design

Problem and algorithm parameters

D	f _{min}	FEs	δ_{local} *	δ_{global}	ρ	n _{LR}
20	0.5	$1.5 \cdot 10^{5}$	0.1	0.1	0.2	10

- * for AIDEA and MP-AIDEA versions which do not adapt δ_{local}
- Algorithm comparison
 - AIDEA
 - Best performing algorithms of CEC 2011 competition:

GA-MPC (Genetic Algorithm with Multi-Parent Crossover) WI-DE (Weed Inspired Differential Evolution)

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Spread Spectrum Radar Polyphase Code Design

MP-AIDEA and AIDEA success rate

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Spread Spectrum Radar Polyphase Code Design

Statistics of the results

Algorithm	Min	Mean	Max	Str.Dev.
MP-AIDEA 10	0.5000	0.5045	0.5690	0.0135
AIDEA	0.5000	0.5130	0.6422	0.0263
GA-MPC	0.5000	0.7484	0.9334	0.1249
WI-DE	0.5000	0.6560	0.9931	0.1160

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Tersoff Potential Function Minimization Problem

Tersoff Potential Function Minimization Problem

Problem and algorithm parameters

D	f _{min}	FEs
30	-36.9286	$1.5 \cdot 10^{5}$

	$\delta_{local}*$	δ_{global}	ρ	n _{LR}
Case 1	0.1	0.1	0.2	10
Case 2	0.3	0.1	0.2	10

* for AIDEA and MP-AIDEA versions which do not adapt $\delta_{\textit{local}}$

Tersoff Potential Function Minimization Problem

Problem and algorithm parameters

D	f _{min}	FEs
30	-36.9286	$1.5 \cdot 10^{5}$

	$\delta_{local}*$	δ_{global}	ρ	n _{LR}
Case 1	0.1	0.1	0.2	10
Case 2	0.3	0.1	0.2	10

* for AIDEA and MP-AIDEA versions which do not adapt $\delta_{\textit{local}}$

Algorithm comparison

- AIDEA
- Best performing algorithms of CEC 2011 competition:

GA-MPC (Genetic Algorithm with Multi-Parent Crossover) WI-DE (Weed Inspired Differential Evolution)

Tersoff Potential Function Minimization Problem

MP-AIDEA and AIDEA success rate

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Tersoff Potential Function Minimization Problem

• δ_{local} adaptation

Tersoff Potential Function Minimization Problem

Statistics of the results

Algorithm	Min	Mean	Max	Str.Dev.
Case 1				
MP-AIDEA 7	-36.9286	-36.7120	-34.3504	0.3835
AIDEA	-36.9286	-36.8046	-35.9700	0.2483
Case 2				
MP-AIDEA 10	-36.9286	-36.6689	-34.1647	0.4399
AIDEA	-36.9286	-36.6219	-35.4467	0.4694
GA-MPC	-36.8457	-35.03883	-34.1076	0.8329
WI-DE	-36.8	-35.6	-34.2	0.904

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Schwefel's Problem

Introduction Test Cases IDEA & AIDEA Multi-Population AIDEA Tersoff Potential Function Minimization Problem Test Results Conclusions Rotated Version of Hybrid Composition Function

Schwefel's Problem

Problem and algorithm parameters

D	f _{min}	FEs	$\delta_{local}*$	δ_{global}	ρ	n _{LR}
30/50	-460	$3 \cdot 10^5 \ / \ 5 \cdot 10^5$	0.1	0.1	0.2	5

* for AIDEA and MP-AIDEA versions which do not adapt δ_{local}

Schwefel's Problem

Problem and algorithm parameters

D	f _{min}	FEs	$\delta_{local}*$	δ_{global}	ρ	n _{LR}
30/50	-460	$3{\cdot}10^{5}$ / $5{\cdot}10^{5}$	0.1	0.1	0.2	5

* for AIDEA and MP-AIDEA versions which do not adapt $\delta_{\textit{local}}$

- Algorithm comparison
 - AIDEA
 - Best performing algorithms of CEC 2005 competition: IPOP-CMA-ES (Increasing Population Size Covariance Matrix Adaptation Evolution Strategy)

Introduction Test Cas IDEA & AIDEA Spread S Multi-Population AIDEA Tersoff F Test Results Schwefel Conclusions Rotated

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Schwefel's Problem

$$\begin{array}{l} \mathsf{D}=30\\ n_{pop}=10 \end{array}$$

Introduction Test Cases IDEA & AIDEA Multi-Population AIDEA Tersoff Potential Function Minimization Prob Test Results Conclusions Rotated Version of Hybrid Composition Funct

Schwefel's Problem

Schwefel's Problem

Statistics of the results (error values w.r.t. f_{min})

Algorithm	Min	Mean	Max	Str.Dev.
D = 30				
MP-AIDEA 10 AIDEA IPOP-CMA-ES	1.39e-9 2.01e-9 3.79e-9	2.45e+1 1.03e+2 4.43e+4	4.77e+2 1.00e+3 1.10e+6	7.25e+1 1.97e+2 2.19e+5
D = 50				
MP-AIDEA 10 AIDEA IPOP-CMA-ES	2.48e-8 5.61e-8 9.67e+0	8.91e+2 2.22e+3 2.27e+5	9.54e+3 1.33e+4 5.57e+6	1.27e+3 2.69e+3 1.11e+6

Schwefel's Problem

Statistics of the results (error values w.r.t. f_{min})

Algorithm	Min	Mean	Max	Str.Dev.
D = 30				
MP-AIDEA 10 AIDEA IPOP-CMA-ES	1.39e-9 2.01e-9 3.79e-9	2.45e+1 1.03e+2 4.43e+4	4.77e+2 1.00e+3 1.10e+6	7.25e+1 1.97e+2 2.19e+5
D = 50				
MP-AIDEA 10 AIDEA IPOP-CMA-ES	2.48e-8 5.61e-8 9.67e+0	8.91e+2 2.22e+3 2.27e+5	9.54e+3 1.33e+4 5.57e+6	1.27e+3 2.69e+3 1.11e+6

Test Cases Spread Spectrum Radar Polyphase Code Design Tersoff Potential Function Minimization Problem Schwefel's Problem Rotated Version of Hybrid Composition Function

Rotated Version of Hybrid Composition Function

Rotated Version of Hybrid Composition Function

Problem and algorithm parameters

D	f _{min}	FEs	$\delta_{\textit{local}}*$	δ_{global}	ρ	n _{LR}
10	120	1.10^{5}	0.1	0.1	0.2	5

* for AIDEA and MP-AIDEA versions which do not adapt δ_{local}
Introduction Test Cases IDEA & AIDEA Spread Spectrum Radar Polyphase Code Design Multi-Population AIDEA Tersoff Potential Function Minimization Problem Test Results Schwefel's Problem Conclusions Rotated Version of Hybrid Composition Function

Rotated Version of Hybrid Composition Function

Problem and algorithm parameters

D	f _{min}	FEs	$\delta_{\textit{local}}*$	δ_{global}	ρ	n _{LR}
10	120	1·10 ⁵	0.1	0.1	0.2	5

* for AIDEA and MP-AIDEA versions which do not adapt $\delta_{\textit{local}}$

- Algorithm comparison
 - AIDEA
 - Best performing algorithms of CEC 2005 competition: IPOP-CMA-ES (Increasing Population Size Covariance Matrix Adaptation Evolution Strategy)

Introduction Test Cases IDEA & AIDEA Multi-Population AIDEA Tersoff Potential Function Minimization Problem Test Results Schwefel's Problem Conclusions Rotated Version of Hybrid Composition Function

Rotated Version of Hybrid Composition Function

MP-AIDEA success rate

Algorithm	2x20	4x20	6x20	8x20
MP-AIDEA 4	2	1	1	0
MP-AIDEA 10	1	0	1	3

Introduction Test Cases IDEA & AIDEA Spread Spectrum Radar Polyphase Code Design Multi-Population AIDEA Tersoff Potential Function Minimization Problem Test Results Schwefel's Problem Conclusions Rotated Version of Hybrid Composition Function

Rotated Version of Hybrid Composition Function

MP-AIDEA success rate

Algorithm	2x20	4x20	6x20	8x20
MP-AIDEA 4	2	1	1	0
MP-AIDEA 10	1	0	1	3

Statistics of the results (error values w.r.t. f_{min})

Algorithm	Min	Mean	Max	Str.Dev.
MP-AIDEA 10	7.44e-11	1.05e+2	1.32e+2	2.35e+1
AIDEA	5.38e+1	1.02e+2	1.14e+2	8.42e+0
IPOP-CMA-ES	7.92e+1	9.13e+1	9.68e+1	3.49e+0

Conclusions

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

Conclusions

Multi-population version of AIDEA

- Multi-population version of AIDEA
 - Hybridization of DE and MBH
 - Adaptation of CR, F and δ_{local}

- Multi-population version of AIDEA
 - Hybridization of DE and MBH
 - Adaptation of CR, F and δ_{local}
- Test results:

- Multi-population version of AIDEA
 - Hybridization of DE and MBH
 - Adaptation of CR, F and δ_{local}
- Test results:
 - MP-AIDEA with adaptation of $\delta_{\textit{local}}$ give good results and do not require the setting of this parameter

- Multi-population version of AIDEA
 - Hybridization of DE and MBH
 - Adaptation of CR, F and δ_{local}
- Test results:
 - MP-AIDEA with adaptation of $\delta_{\textit{local}}$ give good results and do not require the setting of this parameter
 - Most successful versions of MP-AIDEA were able to locate for the first time the global minima of two difficult academic test functions

Future work

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution

Future work

 Adaptation of other parameters: maximum number of local restart n_{LR}

Thank you for your attention

Marilena Di Carlo, Massimiliano Vasile, Edmondo Minisci Multi-Population Adaptive Inflationary Differential Evolution