
AUTOMATED SLOGAN PRODUCTION

USING A GENETIC ALGORITHM

Polana Tomašič
XLAB, Pot za Brdom 100, 1000 Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

polona.tomasic@xlab.si

Gregor Papa
Computer Systems Department

Jožef Stefan Institute, Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

gregor.papa@ijs.si

Martin Žnidaršič
Department of Knowledge Technologies

Jožef Stefan Institute, Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

martin.znidarsic@ijs.si

Abstract Invention of slogans is an intelligent and highly creative task. As such,
it is a challenging problem for computational methods. In this paper
we present our solution based on the use of linguistic resources and
evolutionary computing.

Keywords: Computational creativity, Genetic algorithms, Slogan generation.

1. Introduction

Generation of slogans for companies and products is one of the less ex-
plored problems in the field of Computational Creativity. To our knowl-
edge, there is only one scientific study dedicated particularly to slogan

55



56 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(and other creative sentences) generation, namely the BrainSup frame-
work [13]. This approach requires the user to provide keywords, domain,
emotions and similar properties of the slogans. This shrinks the huge
search space of slogans and improves the quality of results. We, however,
have aimed at a completely autonomous approach that is not influenced
by the user in any way, apart from providing a short textual description
of the target entity.

In this paper, we present our slogan generation procedure, which is
based on a genetic algorithm (GA) [1]. Genetic algorithms ensure good
coverage of the search space and are relatively often used in Computa-
tional Creativity. For instance, they have been successfully used for gen-
erating recipes [11], poetry [7] and trivial dialog phrases [10]. However,
genetic algorithm has not previously been used for slogan generation.
Our method is the first to use it for that purpose. It follows the Brain-

Sup framework in the initial population generation phase, and it uses a
collection of heuristic slogan functions in the evaluation phase.

The results of the experiments indicate some deficiencies of our method.
The generated slogans nonetheless present a good starting point for
brainstorming.

2. Resources

Our slogan generation method requires some linguistic and semantic
resources for the generation of initial population:

Database of the existing slogans

The database of existing slogans serves as a basis for the initial
population generation and for comparison with generated slogans.
It contains famous slogans obtained from the Internet.

Database of the frequent grammatical relations

For the acquisition of the frequent grammatical relations between
words in sentences we used the Stanford Dependencies Parser [8].
Stanford dependencies are triplets containing two words, called
governor and dependent, and the name of the relation between
them. The parser also provides part-of-speech (POS) tags and
phrase structure trees. An example of its output is in Figure 1.
To get representatives of frequent grammatical relations between
words, we parsed 52,829 random Wikipedia pages, sentence by
sentence, and obtained 4,861,717 different dependencies.

Database of the slogan skeletons

A slogan skeleton contains information about each position in the
sentence - its POS tag and all its dependencies relations with other



Automated Slogan Production Using a Genetic Algorithm 57

words in the sentence. It does not contain any content words, only
stop words. An example of a skeleton from [13] is in Figure 2.
Skeletons were obtained by parsing existing slogans with the Stan-
ford Dependencies Parser.

Figure 1. Stanford dependencies parser’s output for the sentence “Jane is walking
her new dog in the park.”

Figure 2. Example of a skeleton from [13].

3. Slogan Generation

In this section we describe our slogan generation approach in terms of
its inputs, outputs and algorithmic steps. The whole procedure is shown
in the Algorithm 1.

3.1 Extraction of the Keywords and the Main Entity

Target keywords are extracted from the input text using the Nodebox
English Linguistics library [12]. The aim is to generate positive slogans.



58 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 SloganGenerator

Input: A textual description of a company or a product T , Size of
the population SP, Maximal number of iterations Max iter, Crossover
probability pcrossover, Mutation probability pmutation, Set of evaluation
weights W .
Output: A set of generated slogans S.

1: Keywords,Entity ⇐ GetKeywordsAndEntity(T )
2: P ⇐ CreateInitialPopulation(SIP,Keywords,Entity)
3: Evaluate(P )
4: while Max iter > 0 do

5: ChooseParentsForReproduction(P )
6: Crossover(P, pcrossover)
7: Mutation(P, pmutation)
8: DeleteSimilarSlogans(P )
9: while Size(P ) < SP do

10: AddARandomSeed(P )
11: end while

12: Evaluate(P )
13: Max iter ⇐Max iter − 1
14: end while

15: S ⇐ P

That is why all the sentences with the negative polarity in the input
text are being removed. A sentence has a negative polarity if it contains
words that are associated with negative emotions. After the removal,
the most frequent words are selected as keywords. The main entity is
usually the name of the company and is obtained by selecting the most
frequent entity in the whole text using nltk library [2].

Example of the keywords and the entity, extracted from the Coca-
Cola Wikipedia page:
keywords = [’win’, ’celebrate’, ’enjoy’, ’follow’, ’available’, ’raspberry’,
’snowy’, ’cherry’, ’famous’, ’wonderful’, ’familiar’, ’sugar’, ’sparkle’, ’pas-
sion’, ’beloved’, ’fountain’, ’bubble’, ’enjoyment’, ’drink’, ’fluid’, ’diet’,
’candy’, ’tour’, ’beverage’, ’contribution’, ’dream’, ’vision’, ... ]
entity = Coke

3.2 Generation of the Initial Population of Slogans

The procedure of generating the initial population of slogans is based
on the BrainSup framework [13], with some modifications. It follows
the steps in Algorithm 2. Skeletons are obtained from the database of
slogan skeletons, and fillers are words from the database of all grammat-



Automated Slogan Production Using a Genetic Algorithm 59

ical relations between words in sentences and must satisfy all predefined
dependencies and POS tags. If there are any keywords in a set of all
possible filler words, the algorithm assigns them higher priority for the
selection phase. The main difference between our algorithm and the
BrainSup method is in selection of filler words. We select them at ran-
dom, while the BrainSup framework uses a beam search in the space of
all possible lexicalizations of a skeleton to promote the words with the
highest likelihood of satisfying the user specifications.

Algorithm 2 CreateInitialPopulation

Input: Size of the population SP, a set of target keywords K, and the
target entity E.
Output: A set of initial slogans S.

1: S ⇐ ∅
2: while SIP > 0 do

3: SloganSkeleton⇐ SelectRandomSloganSkeleton()
4: while not AllEmptySlotsFilled(SloganSkeleton) do

5: EmptySlot⇐ SelectEmptySlotInSkeleton(SloganSkeleton)
6: Fillers⇐ FindPossibleFillerWords(EmptySlot)
7: FillerWord⇐ SelectRandomFillerWord(Fillers)
8: FillEmptySlot(SloganSkeleton, F illerWord)
9: end while

10: AddFilledSkeleton(S, SloganSkeleton)
11: SP ⇐ SP − 1
12: end while

3.3 Evaluation of Slogans

To order the slogans by their quality, an aggregated evaluation func-
tion was constructed. It is composed of 9 different sub-functions, each
assessing a particular feature of a slogan with scores in the interval [0,1].
Parameter of the aggregation function is a list of 9 weights that sum to
1. They define the proportions of sub-functions in the overall score. In
this subsection we give a short description for every one of them.

Bigram Function. In order to work with 2-grams, we obtained the
data set of 1,000,000 most frequent 2-grams and 5000 most frequent
words in Corpus of Contemporary American English (COCA) [3]. We
assume that slogans containing many frequent 2-grams, are more likely
to be semantically coherent. That is why they get higher bigram evalu-
ation score.



60 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Length Function. This function assigns score 1 to slogans with less
than 8 words, and score 0 to longer ones.

Diversity Function. The diversity function evaluates a slogan by
counting the number of repeated words. The highest score goes to a
slogan with no repeated words. If a slogan contains identical consecutive
words, it receives score 0.

Entity Function. It returns 1, if slogan contains the main entity,
and 0, if it doesn’t.

Keywords Function. If one up to half of the words in a slogan
belong to the set of keywords, the keywords function returns 1. If a
slogan doesn’t contain any keyword, the score is 0. If more than half of
the words in the slogan are keywords, the score is 0.75.

Word Frequency Function. This function prefers slogans with
many frequent words, because slogans with many infrequent words are
considered bad. The score is obtained by dividing the number of frequent
words by the number of all words in the slogan. Word is considered to
be frequent, if it is among 5000 most frequent words in COCA.

Polarity and Subjectivity Functions. To calculate the polarity
and subjectivity scores based on the adjectives in the slogan, we used
the sentiment function from pattern package for Python [4].

Semantic Relatedness Function. This function computes the re-
latedness between all pairs of content words in the slogan. Stop words
are not taken into account. Each pair of words gets a score based on
the path distance between corresponding synsets (sets of synonyms) in
WordNet [9]. The final score is the sum of all pairs’ scores divided by
the number of all pairs.

3.4 Production of a New Generation of Slogans

A list of all generated slogans is ordered descending with regard to
the evaluation score.

We use a 10% elitism [5]. The other 90% of parent slogans are selected
using a roulette wheel [6].

A new generation is built by pairing parents and performing the
crossover function followed by the mutation function, which occur with
probabilities pcrossover and pmutation respectively. Offspring are then
evaluated and compared to the parents, in order to remove very sim-



Automated Slogan Production Using a Genetic Algorithm 61

ilar ones. If the number of the remaining slogans is smaller than the size
of the population, some additional random slogans are generated using
the method for initial slogans production. After that, slogans proceed
into the next generation. These steps are repeated until the predefined
maximal number of iterations is achieved.

Crossover. There are two types of crossover function, the big and
the small one. Both inspect POS tags of the words in both parents, and
build a set of possible crossover locations. Each element in the set is a
pair of numbers. The first one provides a position of crossover in the
first parent and the second one in the second parent. The corresponding
words must have the same POS tag. Let the chosen random pair from
the set be (p, r). Using the big crossover, the part of the first parent,
from the pth position forward, is switched with the part of the second
parent, from the rth position forward. For the small crossover only the
pth word in the first parent and the rth word in the second parent are
switched. Examples for the big and the small crossover are in Figure 3.

We [PRP] bring [VBP] good [JJ] things [NNS] to [DT] life [NN].

Fly [VB] the [DT] friendly [JJ] skies [NNS].

We bring friendly skies.

Fly the good things to life.

Just [RB] do [VB] it [PRP]. 

Drink [VB]more [JJR] milk [NN].

Just drink it.

Do more milk.

big:

small:

Figure 3. Examples for the big and the small crossover.

Mutation. Two types of mutation are possible. Possible big muta-
tions are: deletion of a random word; addition of an adjective in front
of a noun word; addition of an adverb in front of a verb word; replace-
ment of a random word with new random word with the same POS tag.
Small mutations are replacements of a word with its synonym, antonym,
meronym, holonym, hypernym or hyponym. A meronym is a word that
denotes a constituent part or a member of something. The opposite of a
meronym is a holonym - the name of the whole of which the meronym is
a part. A hypernym is a general word that names a broad category that
includes other words, and a hyponym is a subdivision of more general
word.



62 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Functions for obtaining such replacements are embedded into the
Nodebox English Linguistics library and are based on the WordNet lex-
ical database [9].

Deletion of similar slogans. Every generated slogan is compared
to all its siblings and to all the evaluated slogans from the previous
generation. If a child is identical to any other slogan, it gets removed. If
more than half of child’s words are in another slogan, the two slogans are
considered similar. Their evaluation scores are being compared and the
one with the higher score remains while the other one is removed. The
child is also removed, if it contains only one word or if it is longer than
10 words. Deletion of similar slogans prevents the generated slogans to
converge to the initial ones.

4. Experiments

We made a preliminary assessment of the generator with experiments
as described in this section.

4.1 Experimental Setting

In presented experiments and results we use a case of the U. S. soft
drinks manufacturer Coca-Cola. The input text was obtained from
Wikipedia [15].

First, we tried to find the optimal weights for the evaluation func-
tion. We tested different combinations of weights on a set of manually
evaluated slogans. The comparison of the computed and the manually
assigned scores showed that the highest matching was achieved with the
following weights: [bigram: 0.22, length: 0.03, diversity: 0.15, entity:
0.08, keywords: 0.12, frequent words: 0.1, polarity: 0.15, subjectivity:
0.05, semantic relatedness: 0.1].

In our experiments we used probabilities for crossover and mutation
p crossover = 0.8, p mutation = 0.7. The probability for mutation was
set very high, because it affects only one word in a slogan. Consequently
the mutated slogan is still very similar to the original one. Thus the
high mutation probability does not prevent population to converge to
an optimum solution. For the algorithm to decide which type of crossover
to perform, we set probabilities for the big, the small and both crossovers
to 0.4, 0.2 and 0.4 respectively. The mutation type is chosen similarly.
Probabilities of the big and the small mutation were set to 0.8 and 0.2.
These control parameters were set according to the results of testing on a
given input text, as their combination empirically leads to convergence.



Automated Slogan Production Using a Genetic Algorithm 63

Due to the high computational complexity of our method, the maxi-
mal number of iterations was set to 150. We performed 3 experiments
and for each of them we executed 20 runs of the algorithm using the
same input parameter values. The only difference between these three
tests was in the size of the population - 25, 50 and 75.

4.2 Results and Discussion

All 20 runs of the algorithm on the same input data had similar sta-
tistical results. Statistics of average slogans’ scores for each of the ex-
periments are gathered in Table 1. Slogans’ scores increased with each
iteration. The results in Figure 4 show that the slogans’ scores increased
very fast in relation to the number of evaluations when the size of the
population was set to 25. They increased a bit slower when the size of
the population was set to 50 and 75.

Table 1. Comparison of average slogans’ scores for sizes of population: 25, 50 and
75. (F = final slogans, IP = initial population).

Minimum Maximum Average Median Standard Deviation

IP (25) 0.000 0.720 0.335 0.442 0.271
IP (50) 0.000 0.721 0.318 0.377 0.270
IP (75) 0.000 0.736 0.311 0.412 0.270

F (25) 0.542 0.874 0.736 0.754 0.089
F (50) 0.524 0.901 0.768 0.775 0.082
F (75) 0.497 0.920 0.778 0.791 0.086

The numbers in graph show that our method ensures higher slogan
scores with each new iteration of genetic algorithm, for a given experi-
mental cases. Examples of slogans for one specific run of the algorithm
are listed in the following two lists. The first list contains 10 best rated
initial slogans and the second one contains 10 best rated final slogans
for the case when the size of the population was set to 25. Evaluation
scores are in the brackets.

Initial population:

1 The lucky player to sign the language in (0.714)

2 it should enjoy lead without learning line (0.706)

3 collection remains available more. fit more (0.647)

4 growing child have (0.600)

5 not a speed in a generator (0.595)



64 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4. Average slogans’ scores in relation to the number of evaluations.

6 Where the dream lives the environment (0.594)

7 Coke on the legal test (0.592)

8 called skip (0.560)

9 add to Coke Capazoo (0.559)

10 also stories that provide alternatives might read due as our com-
munity (0.527)

Final slogans:

1 love to take The Coke size (0.906)

2 rampage what we can take more (0.876)

3 love the man binds the planetary Coke (0.870)

4 devour what we will take later (0.859)

5 you can put The original Coke (0.850)

6 lease to take some original nose candy (0.848)

7 contract to feast one’s eyes the na keep (0.843)



Automated Slogan Production Using a Genetic Algorithm 65

8 it ca taste some Coke in August (0.841)

9 hoy despite every available larger be farther (0.834)

10 you Can love the simple Coke (0.828)

The analysis of initial populations and final slogans in all runs of ex-
periments shows that the majority of slogans are semantically incoherent
and have grammatical errors.

Our system currently lacks an evaluation function for detection or
correction of these mistakes.

Some seemingly good slogans can be found already in the initial popu-
lations. The evaluation function seems not yet aligned well with human
evaluation, as such slogans often do not make it to the final round.

5. Conclusions

The proposed slogan generation method works and could be poten-
tially useful for brainstorming. The genetic algorithm ensures that new
generations of slogan candidates have higher evaluation scores. The crit-
ical part of the method is the evaluation function, which is inherently
hard to formalize and needs further improvement. The definitions of
evaluation sub-functions are currently too simplified. We believe that
the refinement of semantic and sentiment evaluation functions would
increase the quality of slogans, not only their scores.

The current algorithm is suitable only for production of slogans in
English, because there is a wide range of lexical and semantic resources
for it. There is a possibility of generating slogans in a language with
different characteristics, for instance Slovenian. However, the lack of
resources and different language properties would require a lot of work
in order to adapt our algorithm for a non-English language.

There are also many other ideas for the future work that would im-
prove the quality of slogans. One is checking for grammatical errors
and correcting them if possible. New weights for the evaluation could
be computed periodically with semi-supervised learning on manually as-
sessed slogans. Also, control parameters for GA could be adaptively
calculated during the optimization process [14].

Acknowledgment

This research was partly funded by the European Union, European
Social Found, in the framework of the Operational Programme for Hu-
man Resources Development, by the Slovene Research Agency and sup-
ported through EC funding for the project ConCreTe (grant number
611733) and project WHIM (grant number 611560) that acknowledge



66 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of
the European Commission.

References

[1] T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, 1996.

[2] S. Bird, E. Klein, and E. Loper. Natural language processing with Python.
O’Reilly Media, 2009. http://www.nltk.org/

[3] M. Davies. N-grams data from the Corpus of Contemporary American English
(COCA). Downloaded from http://www.ngrams.info on April 15, 2014.

[4] T. De Smedt and W. Daelemans. Pattern for Python. J. Mach. Learn. Res.,
13:2063–2067, 2012.

[5] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu. Evolutionary Com-
putation. CRC Press, 2000.

[6] J. H. Holland. Adaption in Natural and Artificial Systems. MIT Press, 1992.

[7] R. Manurung, G. Ritchie, and H. Thompson. Using genetic algorithms to create
meaningful poetic text. J. Exp. Theor. Artif. In., 24:43–64, 2012.

[8] M. Marneffe, B. MacCartney, and C. Manning. Generating typed dependency
parses from phrase structure parses. In Proc. 5th International Conference on
Language Resources and Evaluation (LREC), pages 449–454, 2006.

[9] G. A. Miller. WordNet: A Lexical Database for English. Comm. ACM, 38:39–41,
1995.

[10] C. S. Montero and K. Araki. Is it correct?: towards web-based evaluation of
automatic natural language phrase generation. In Proc. Joint Conference of the
International Committee on Computational Linguistics and the Association for
Computational Linguistics (COLING/ACL), pages 5–8, 2006.

[11] R. G. Morris and S. H. Burton. Soup over bean of pure joy: Culinary ruminations
of an artifcial chef. In Proc. 1st IEEE International Conference on Communi-
cation in China (ICCC), pages 119–125, 2012.

[12] Nodebox. http://nodebox.net/code/index.php/Linguistics

[13] G. Özbal, D. Pighin, and C. Strapparava. BRAINSUP: Brainstorming Support
for Creative Sentence Generation. In Proc. 51st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 1446–1455, 2013.

[14] G. Papa. Parameter-less algorithm for evolutionary-based optimization. Com-
put. Optim. Appl., 56:209–229, 2013.

[15] Wikipedia. http://en.wikipedia.org/wiki/Coca-Cola on April 29, 2014.




