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Abstract Recent development of LED technology enabled production of lighting
systems with nearly arbitrary light distributions. A nontrivial engineer-
ing task is to design a lighting system or a combination of luminaries for
a given target light distribution. Here we use heuristics for solving the
problem restricted to symmetrical distributions. A genetic algorithm
and several versions of local search heuristics are compared showing
that practically useful approximations can be achieved with majority of
the algorithms.
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provement.

1. Introduction

Nowadays, technology of Light Emitting Diodes (LEDs) enables to
lower the energy consumption of luminaires and to design more efficient
lighting systems that make it possible to deliver the light to the environ-
ment in a controlled way. The many possible designs lead to new prob-
lems of choosing the optimal or at least a very good design depending
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on possibly different goals such as optimization of energy consumption,
production cost, and, last but not least, the light pollution of the envi-
ronment. Nowadays, in many cases trial and error method followed by
simulation is used in practice. We believe that using analytical models
and optimization tools may speed up the design and at the same time
possibly improve the quality of solutions. Here we adopt an analytical
model for a version of the general problem, and use heuristic methods
based on the model to provide nearly optimal solutions. The heuristics
used in this study are three versions of local search and a genetic algo-
rithm. We also compute solutions provided by blind random search to
avoid trivialities. The rest of the paper is organized as follows. In the
next section we briefly explain the practical motivation for this research.
Section 3 gives the analytical model and the optimization problem that
is addressed in the paper. In Section 4, the algorithms are outlined.
Experimental results are presented in Section 5. The paper ends with a
summary of conclusions and idea for future work.

2. Motivation

Only a few years ago, emerging new technology of Light Emitting
Diodes (LEDs) was in the first stage of implementation [1]. Meanwhile
the demand to lower the energy consumption of luminaires and to build
more efficient lighting systems that can deliver the light where needed
has pushed the development of high power LEDs. Following the de-
velopment of LEDs, many luminaire manufacturers developed LED lu-
minaires as a replacement for the existing energy inefficient luminaires.
Naturally, the use of LEDs introduces new and unique challenges to the
development engineers. One of these challenges is to design and simulate
an efficient light engine for the luminaire. The light engine consist of
the source which in this case are LEDs, and the appropriate secondary
optics. The choice of the secondary optics is the key in developing a
good system. For designing a good system nowadays technology enables
two options. Having the know-how and the resources, a specific lens to
accomplish the task can be developed. However, the resources coupled
with the development and production of optical elements may be enor-
mous. Therefore a lot of manufactures are using the second option, that
is to use readymade of the shelf lenses. There are specialized companies
in the world that produce different type of lenses for all of the major
brands of LEDs. The trick here is to choose the best combination of
lenses to get the most efficient system. The current practice in develop-
ment process is a trial and error procedure, where the developer chooses
a combination of lenses, and then simulates the system via Monte Carlo
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Figure 1. Modeled spatial light distribution presented in polar diagrams.

ray-tracing methods. The success heavily depends on the engineers’ in-
tuition and experience and still needs sizeable computation resources for
checking the proposed design by simulation.

A natural avenue of research related to the second approach is to
replace trial and error method by a more efficient design method based on
analytical and algorithmic tools. For these aim, a theoretical framework
is needed. Among the first known theoretical results is the analytical
model [8] that was proposed for LEDs without secondary optics. Namely,
the usual practical situation is that we have the target light distribution
given by large dataset of points in the space with (desired or measured)
light intensity. The idea of [8] that is at the same time already a part
way towards the solution is to fit the data with suitable functions that
in turn can provide a construction of a light engine which approximates
the target light distribution. Later we will explain a modification of the
analytical model of [8] that we use in our study where we successfully
approximate symmetric spatial distributions. The general problem is
much more challenging. Development of a useful analytical model for
general case is to the best of our knowledge an open research problem.
Having the target light distribution in a manageable form, the design of
the light engine may be possible. Depending on the application, several
questions/tasks are natural, for example: (1) design the engine having
exactly (or, approximately) the target light distribution (2) design such
engine using as few LEDs as possible (3) design such engine as cheap as
possible. A combination of these goals may be of interest which in turn
leads to a number of multicriteria optimization problem(s).

3. Analytical Model and Problem Definition

The fact that there are many different LEDs with different beam pat-
terns and many different secondary optics to choose from indicates that
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providing a general analytical model for all of them is presumably a very
challenging open research problem. Therefore in this study we restrict
attention only to LED-lens combinations that have symmetrical spatial
light distribution. In other words, the cross section of the surface which
represents the spatial distribution with a section plain that is coincident
with the vertical axis of the given coordinate system is alike at every
azimuthal angle of offset. This enables us to define the analytical model
in two dimensions, so it describes a curve rather a surface. To produce
the desired surface, we just revolve the given curve around the central
vertical axis with the full azimuthal angle of 360◦. Three examples from
our dataset are given in Figure 1. For the special case of symmetrical
spatial light distribution, an analytic model for the radiation pattern of
a single LED without the secondary optics was proposed in [8]. The au-
thor proposed two different models, one based on Gaussian and one on
cosine-power function. Based on our preliminary manual test fittings of
the models to measured data of three randomly chosen lenses from the
dataset [5] we use here we have concluded that the cosine-power func-
tions I (Θ) = a ∗ cos(Θ − b)c have slight advantage over the Gaussian
ones. Another argument is that the cosine-power functions seem to be
a more natural choice in this context because there are basic LEDs with
simple secondary optics for which the light distribution can be approxi-
mated with a single cosine-power function. We therefore start with the
analytical model from [8] using cosine functions:

M (Θ) =
∑

i

ai ∗ cos(Θ − bi)
ci (1)

It was observed in [8] that a sum of only three cosine-power func-
tions is sufficient in most cases. Our preliminary tests confirmed this
observation, so we assumed that the sum of three cosine-power func-
tions will probably be enough to fit LEDs with lenses that have sym-
metric radiation patterns with sufficient quality. In addition to the pa-
rameters of the original model, we introduce a normalizing parameter
Imax, as this simplifies (unifies) the range of the other three parame-
ters: a = {0, 0.001, 0.002, . . . , 1}, b = {−90,−89.9,−89.8, . . . , 90} and
c = {0, 1, 2, . . . , 100}, for all test lenses. Doing all of the above we have
rewritten the definition (1) as follows:

I (Θ) = Imax

∑

i

ai ∗ cos(Θ − bi)
ci (2)

The expression (2) thus represents our analytical model to fit LEDs
with attached secondary optics and symmetric spatial light distribution.
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The goodness of fit is as usual [8, 10] defined to be minimizing the
root mean square error (RMS), formally defined as:

RMS =

√
1

M

∑

i

[I(Θi)m − I(Θi)]
2 (3)

For a sufficiently accurate fit, the RMS value must be less than 5%
[8, 10]. On the other hand, current standards and technology allows up
to 2% noise in the measured data. Therefore, the target results of the
fitting algorithms are at less than 5% RMS error, but at the same time
there is no practical need for less than 1% or 2% RMS error.

We will assume that all the data are written in the form of vectors v
= (polar angle [Θ], intensity [I]). In reality, measured photometric data
from the lens manufacturers are available in one of the two standard
coded formats. That are the IESNA photometric digital format *.ies
[11] used primarily in the USA and the European format EULUMDAT
*.ldt [2]. Conversion of the data in the two standard formats can easily
be transformed into the list of vectors. In addition, due to the novel
parameter Imax each dataset will be normalized during the preprocessing
so that in each instance the maximal intensity of the vectors will be 1,
and the normalizing value Imax is given as additional input value to the
algorithms.

The problem can formally be written as:

INPUT: Imax and a list of vectors v= (polar angle [Θ], intensity [I])
TASK: Find parameters (a1, b1, c1, a2, b2, c2, a3, b3, c3) that minimize
the RMS error (3).

Different fitting algorithms were used to minimize RMS error. The
algorithms are presented and compared in the next sections.

4. Fitting Algorithms

In this section we describe five fitting algorithms. As the main objec-
tive of this study was to obtain good solutions to the practical problem,
the algorithms were chosen with this primary goal in sight. The selec-
tion is thus quite arbitrarily, and there may be some other algorithms
or some other versions that might outperform the selected versions.

Note that here the problem is a continous optimization problem and
hence, compared to discrete optimization, there are even more possibil-
ities to define a neighborhood for the local search based heuristics. In
fact, the neighborhoods we use can be seen as variable neighborhoods
[7], although they are all similar. Of course, there may be other neigh-
borhoods that would be worth consideration. The reason we keep the
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selected neighborhoods and did not try to look for other possibilities is
simply the fact that they already gave us results of sufficient quality.
Another natural question that may be asked here is why use discrete op-
timization heuristics on a continuous optimization problem. First, there
is no analytical solution for MST best approximation of this type of func-
tions, and second, in order to apply continuous optimization methods
such as the Newton method, usually we need a good approximation in
order to assure convergence. As the target RMS error is between 1% and
5%, the fine approximation based on continuous optimization methods
could be used as postprocessing. On the other hand, in view of the at
least 2% noise in the data, this postprocessing is not of practical interest
in this case.

We have started our experiments with two basic local search algo-
rithms, steepest descent and iterative improvement, where in both cases
the neighborhoods were defined in the same way, explained in more de-
tail below. We call this neighborhood fixed stepsize neighborhood. The
third local search algorithm is a variation of iterative improvement where
we introduce random step size; roughly speaking, given a step size and
direction as before, we randomly make a step in the direction that is at
most as long as in the fixed size neighborhood search. Naturally, when-
ever local search is used, the multi start version is worth consideration.
As preliminary testing of multi start version was not competitive with
single longer runs, therefore we decided to use a more advanced heuristics
that would on one hand take advantage of the seemingly successful local
search and possibly accumulate information obtained by independent lo-
cal searches. Our choice was to use a genetic algorithm. Finally, we also
run and compare results of a simple generation of random solutions.

4.1 Steepest Descent – SD

The algorithm begins with the initialization of the initial function
parameter values that are a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0, and
c1 = c2 = c3 = 1. Next it initializes the search step values which are
for da = 0.01, for db = 1 and for dc = Imax

10 giving the 512 neighbors of
the initial solution: (a1 ± da, b1 ± db, c1 ± dc, a2 ± da, b2 ± db, c2 ± dc,
a3±da, b3±db, c3±dc). If there is a neighbor with better RMS value, the
search moves to the neighbor with minimal RMS value (if there are more
minimal neighbors, all are chosen with the same probability). If none
of the 512 is better than the current solution a new set of neighboring
solutions are generated, this time with a double step. It goes for ten steps
and if there still is no better solution it breaks the search, multiplies the
step value with 0.9, so the step is finer, and begins the search from start
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in the neighborhood of the current solution. The algorithm stops when
the number of generated solutions reaches Tmax.

4.2 Iterative Improvement – Fixed Neighborhood –

IF

The algorithm uses the same neighborhood as SD. Instead of con-
sidering all 512 neighbors at once, the algorithm generates a neighbor
randomly, and moves to the neighbor if its RMS value is better than
the current RMS value. If no better neighbor is found after 1000 trials,
it is assumed that no better neighbor exists. As above, the algorithm
changes to a new neighborhood, this time with a double step. It goes for
ten steps and if there is still no better solution, it breaks the search, mul-
tiplies the step value with 0.9, so the step is finer and begins search from
the start in the neighborhood of the current solution. The algorithm
stops when the number of generated solutions reaches Tmax.

4.3 Iterative Improvement – Random Neighborhood

– IR

The search begins as the previous two algorithms. It initializes the
same initial function parameter values. Next it initializes the search step
value within a range, rather than a static fixed value. The ranges are
for da1 = da2 = da3 = {−0.1,−0.099,−0.098, . . . , 0.1}, for db1 = db2 =
db3 = {−9,−8.9,−8.8, . . . , 9} and dc1 = dc2 = dc3 = {−10,−9,−8, . . . ,
10}. It begins generating solutions, using the step range around the
initial solution and calculating their RMS error. As soon as it generates
a better solution, it stops, shifts the focus on that solution, resets the step
range to the initial value, and continues the search in the neighborhood
of the new best solution. If after 400000 generated solutions no better
is found, than the step range gets doubled, and the search continues
in the current neighborhood with a larger neighborhood. The stopping
condition are the same as before, whichever is achieved first stops the
search.

4.4 Genetic Algorithm – GA

The genetic algorithm mimics the evolutionary behavior [4,6,9]. Three
genetic operators are used. The natural selection [4] where the best in a
population survive, mutation [9] where randomly chosen parameters of a
surviving solution are changed producing a new solution, and crossover
[4,6,9] or breading where a new solution is created by randomly combin-
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ing and crossing parameters from two randomly chosen solutions that
have survived from the previous generation.

The algorithm begins with the generation and calculation of one hun-
dred and fifty thousand solutions for the zero population. It then chooses
via the natural selection ten best solutions. These ten are then locally
optimized with the algorithm that implements the iterative improve-
ment with random neighborhood for sixty thousand iterations. After
that it generates the next generation from the ten best solutions of
the previous generation. It generates twenty-five thousand mutant so-
lutions and twenty-five thousand crossover solutions. More precisely,
the mutation operator works as follows: in the randomly chosen in-
dividual, one to nine parameters are chosen to be changed (mutated)
by adding to the current parameter value a randomly chosen value
for da1 = da2 = da3 = {−0.01,−0.009,−0.008, . . . , 0.01}, for db1 =
db2 = db3 = {−0.25,−0.24,−0.23, . . . , 0.25} and dc1 = dc2 = dc3 =
{−2.5,−2.4,−2.3, . . . , 2.5}. The crossover operation takes two randomly
chosen individuals and choses one to nine parameters to be changed. The
new parameter values are generated by calculating the difference of the
according parameter pair of the two individuals (a1ia2i, b1i − b2i, c1i −
c2i), randomly choosing a value larger than zero and smaller than the
calculated difference and adding the chosen value to the smaller param-
eter value of the pair. Then it chooses the best ten from that generation
and optimizes them. It compares the optimized solutions from the pre-
vious generation and the current one. Again it chooses the ten best from
both. After that it begins with the generation of the next generation,
following the same steps as before.

The stopping condition is based on the number of generated solutions
as for other algorithms. In our experiment, the usual number of gen-
erated solutions was four million, which here means that the algorithm
stops when it optimizes the best solutions of generation five.

4.5 Blind Random Search – RAN

Tmax times generates random values of the parameters, evaluates the
RMS error, and remembers the best so far solution.

5. Results

We discuss the results of a comparative experiment in which all the
algorithms were run with Tmax = 4 million. All algorithms were saving
a log file during the runtime process, so we can extract the values at any
particular time of the process.
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Table 1. RMS error after 4 million calculating operations.

Lens/Algorithm SD IF RAN IR GA

C13353 3.991 3.408 7.013 8.671 3.061

CA11265 2.775 2.372 4.936 4.798 2.729

CA11268 2.227 2.229 4.100 2.471 2.578
CA11483 3.100 3.066 4.130 3.387 3.141
CA11525 3.150 1.108 3.217 1.907 1.087

CA11934 3.940 2.514 4.196 3.543 2.909

CA12392 1.636 1.641 3.424 2.445 2.277
CA13013 1.202 0.695 2.136 2.241 0.916

CP12632 5.537 5.493 4.918 4.974 4.362

CP12633 2.431 2.415 4.063 3.708 2.347

CP12636 2.348 2.107 4.571 4.217 2.479
FP13030 2.267 2.257 3.762 3.659 2.414

For the purpose of the algorithm evaluation, we have chosen a set of
real available lenses to be approximated. The set was chosen from the
online catalogue of one of the biggest and most present manufacturer in
the world Ledil Oy Finland [5]. The choosing from the broad spectrum
of lenses in the catalogue was based on the decision that the used LED is
Cree XP-E [3], and the demand that the lenses have a symmetric spatial
light distribution. We have preserved the lens product codes from the
catalogue, so the reader can find the lens by searching the catalogue for
the code from the first column in table 1 .

5.1 Quality Comparison

In the Table 1 below the overall best solutions after the long runs of
all algorithms on all twelve instances from the dataset are given. Recall
that the results are acceptable if they have RMS values lover than 5%
and that the approximation better than 1% is not of any use because of
the noise in data. The best two results for each instance are in bold.

First, observe that all the algorithms in most of the cases give ac-
ceptable results, i.e. lower than 5 which is the same as 5% recalling the
meaning of the normalizing parameter Imax. If we take a closer look,
at the values we can see that the iterative improvement with fixed size
IF is the winner when counting the number of best solutions, achiev-
ing the best solution in six out of twelve instances. The second best is
the genetic algorithm with four best solutions, followed by the steepest
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Table 2. RMS error after 750 thousand calculating operations.

Lens/Algorithm SD IF RAN IR GA

C13353 6.617 4.284 9.252 9.909 3.784

CA11265 3.,477 2.700 7.282 5.073 4.183
CA11268 2.376 2.620 5.893 2.471 2.932
CA11483 4.181 3.400 4.130 3.784 3.641

CA11525 3.813 3.395 4.811 3.789 1.601

CA11934 4.032 1.662 4.988 3.543 3.789
CA12392 1.814 1.661 3.597 2.717 2.577
CA13013 2.804 3.115 2.136 2.241 1.331

CP12632 9.501 9.839 8.474 5.054 4.703

CP12633 2.465 4.511 4.757 4.296 2.613

CP12636 5.000 6.297 5.506 4.217 3.803

FP13030 2.800 5.679 6.611 3.659 3.233

descent with two. Second, comparing the three local search algorithms
and the genetic algorithm in terms of the quality of their best solutions
on particular instances, we see that all best solutions are within 1%. We
can conclude that all four are fairly comparable in terms of the expected
quality of the solution. On the other hand, the blind random search
on average does not produce as good results as the other four, however
it may luckily guess good solutions, in one case even the best solution
obtained (on instance CP12632).

As we have so many results of acceptable quality, a natural question is
whether the time limit chosen above could be shortened. The long runs
in our implementations took 30 minutes for every run on a Intel Core
I3-4130 @ 3,5 Ghz, programmed in C++. (The code was not optimized).
Therefore it is interesting to compare shorter runs, see Table 2.

The shorter runs again show that most algorithms achieve the 5%
error bound already in short runs. It may be interesting to note that
the genetic algorithm is the only one that in the short runs finds so-
lutions under 5% bound for all instances. In addition, it is also the
winner in eight out of twelve cases looking the best obtained solution.
We also observe that in short runs, the two algorithms based on fixed
size neighborhood outperform the random size neighborhood iterative
improvement. As expected, blind random search is not competitive on
average, however curiously it is the winner on one instance.
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Finally, comparing the speed of convergence we observe that all of
the algorithms have a very steep convergence curve, a typical example
is given in Figure 2.

Figure 2. Linear interpolation of the approximation runtime process of CA13013
lens.

6. Conclusions

The goal of this part of the research was to design an efficient algo-
rithm to fit an analytic model to the measured data of LED and sec-
ondary lens combination with symmetric spatial light distribution. We
have designed several algorithms, and tested them on real lens data. The
results of the test showed that, four of the algorithms produce approx-
imations of acceptable quality. As the dataset used for testing includes
a good variation of realistic LED and secondary lens combinations we
can conclude that the practical approximation and design problem has
been solved.

From theoretical viewpoint it is interesting to note that the genetic
algorithm was very competitive, in short runs comparison even the best
among the tested algorithms. Of course, it is well known that with fine
tuning of parameters most of metaheuristics can be adopted to be very
successful on a particular dataset. However, here we should add that our
study started with testing the neighborhoods for local search and only
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in the last part of the research we used the genetic algorithm. So in this
case the parameter tuning of all algorithms took about the same effort.
We thus believe that the comparison is fair also from this viewpoint.

The study presented here gave important information about the num-
ber of complexity of solving the general problem in the case of instances
with symmetric spatial light distribution. Future work includes adapta-
tion of the model to lenses with asymmetric spatial light distribution.
Based on the new models, the heuristic data fitting that would lead
to the construction of desired light engines, analogous to the work pre-
sented here may be possible. The general model will presumably include
a larger number of parameters which in turn most probably means larger
search spaces and more challenging optimization problems.

Acknowledge

This work is supported in part by ARRS, the research agency of Slove-
nia.

References

[1] Escaping the bulb culture: the future of LEDs in architectural illumination.
LEDs magazine, (1):13–15, April 2005.

[2] I. Ashdown. Thinking Photometrically Part II. In LIGHTFAIR 2001 Pre-
Conference Workshop, March 2001.

[3] Cree Inc. http://www.cree.com/led-components-and-modules/products/

xlamp/discrete-directional/xlamp-xpe. Accessed 2014.

[4] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms. 2nd Edition. John
Wiley & Sons, 2004.

[5] Ledil Oy. http://www.ledil.com/. Accessed 2014.

[6] M. Mitchell. An Introduction to Genetic Algorithms. 5th Edition. MIT Press,
1999.

[7] N. Mladenovic, P. Hansen, and J. Brimberg. Sequential clustering with radius
and split criteria. Cent. Eur. J. Oper. Res., 21(Suppl. 1):95–115, 2013.

[8] I. Moreno and C.-C. Sun. Modeling the radiation pattern of LEDs. Opt. Ex-
press., 16(3):1808–1819, February 2008.

[9] D. Simon. Evolutionary Optimization Algorithms. John Wiley & Sons, 2013.

[10] C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, and S.-M. Huang. Precise optical
modeling for led lighting verified by cross correlation in the midfield region. Opt.
Lett., 31:2193–2195, 2006.

[11] The Subcommittee on Photometry of the IESNA Computer Committee. IESNA
standard file format for the electronic transfer of photometric data and related
information. Technical Report ANSIDESNA LM-63-02, Illuminating Engineer-
ing Society of North America, 2002.




