
PARALLEL CUDA IMPLEMENTATION
OF THE DESIRABILITY-BASED SCALA-
RIZATION APPROACH FOR MULTI-
OBJECTIVE OPTIMIZATION PROBLEMS

Eren Akça
HAVELSAN A.Ş., Ankara, Turkey

erenakca88@gmail.com

Ökkes Tolga Altınöz
Department of Electrical and Electronics Engineering

Faculty of Engineering and Architecture, TED University, Ankara, Turkey

tolga.altinoz@tedu.edu.tr

Sadi Uçkun Emel
HAVELSAN A.Ş., Ankara, Turkey

semel@havelsan.com.tr

Asım Egemen Yilmaz
Electrical and Electronics Engineering Department

Ankara University, Ankara, Turkey

aeyilmaz@eng.ankara.edu.tr

Murat Efe
Electrical and Electronics Engineering Department

Ankara University, Ankara, Turkey

efe@eng.ankara.edu.tr

Tayfur Yaylagul
HAVELSAN A.Ş., Ankara, Turkey

tyaylagul@havelsan.com.tr

93



94 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Abstract In this study, we present the results obtained for the parallel CUDA im-
plementation of the previously proposed desirability-based scalarization
approach for the solution of the multi-objective optimization problems.
Our simulations show that compared to the sequential Java implemen-
tation, it is possible to find the same solutions (up to 16-time faster
manner) by parallel CUDA implementation. We also try to outline
our experiences of troubleshooting throughout the implementation as
guidelines for upcoming researchers working in the same field.

Keywords: Aggregation, CUDA, Desirability functions, Genetic algorithm, GPGPU
programming, Multi-objective optimization, Parallelization, Scalariza-
tion.

1. Introduction

The problem for determining the best possible solution set with re-
spect to multiple objectives is referred to as a multi-objective (MO)
optimization problem. There are many approaches for the solution of
these kinds of problems. The most straightforward approach, the so-
called “scalarization” or “aggregation” is nothing but to combine the
objectives in order to obtain a single-objective [6]; and the most com-
mon method of this sort is the weighted sum [5,7, 8].

The solution of the MO optimization problem is a set that contains
trade-off solutions [11]. On the other hand, the problem instance defined
via the scalarization technique yields a single solution. In order to find
another trade-off solution, the parameters throughout the scalarization
process shall be varied, and the resulting problem instance (which is
different than the previous one) shall be solved. For the particular case
in which the problem is bi-objective (with the objective functions f1 and
f2) and the weighted-sum method is applied, the aggregated objective
function is w1f1 + (1 − w1)f2, where the weight w1 is a real number
between 0 and 1. By varying this weight, a new single-objective problem
instance (and a new solution) is obtained. Obviously, for this simple case,
the parameter setup of the “scalarization scheme” consists of only the
weight w1. For higher number of objectives and different scalarization
techniques, the scalarization scheme might address a parameter set with
multiple elements.

Scalarization techniques were popular in 1980s and early 1990s, prior
to development of powerful multi-objective optimization algorithms such
as the Non-Dominated Sorting Genetic Algorithm (NSGA) [10], NSGA-
II [3] or Vector Evaluated Genetic Algorithm (VEGA) [9], etc. After
the development of these powerful and successful multi-objective op-
timization algorithms, scalarization techniques were considered to be
old-fashioned, and they were abandoned. By the time, especially af-



Parallel CUDA Implementation of the Desirability-Based Scalarization 95

ter the evolution and rapid development of multi-core architectures in
2000s, researchers have started to reconsider and revisit the scalarization
techniques since these techniques are usually suitable for parallelization
when carefully implemented. In this study, with a similar motivation,
we demonstrate how one of these techniques can be parallelized and im-
plemented on the General Purpose Graphic Processing Units (GPGPUs)
via the Compute Unified Device Architecture (CUDA) framework.

2. The Main Idea Beneath the Scalarization and
the Weighted Sum Approach

As stated in the previous section, the main aim in a multi-objective
optimization problem is to find a set of trade-off solutions. The opti-
mality of a particular solution is determined via the definition of “dom-
ination” in the Pareto space. In Figure 1, the pictorial descriptions of
the domination and the set of non-dominated solutions (i.e. the Pareto
front) are given for a simple bi-objective problem.

Figure 1. Pictorial descriptions of domination and the Pareto front.

In order to obtain a set of solutions for a bi-objective optimization
problem via the weighted-sum method (for which the aggregated objec-
tive function w1f1 + (1 − w1)f2 is constructed), the weight w1 shall be
varied between 0 and 1 in a systematical manner; and a new solution
shall be found for each value of w1. Even though this approach seems to
be simple and well-working, it fails especially when the Pareto front is
concave (totally or between two particular points in the Pareto space).
In order to illustrate this, let us try to understand the main idea be-
neath the weighted-sum approach. As seen in Figure 2, the aggregated
objective function w1f1 + (1−w1)f2 corresponds to a line in the Pareto
space (particularly the f1f2 plane). Throughout the optimization pro-
cess, in which c = w1f1 + (1 − w1)f2 is minimized, the corresponding



96 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

line is shifted by preserving its slope. Eventually, the solution obtained
is nothing but the intersection of the corresponding line with the Pareto
front curve (which is considered to be convex, for the time being) as seen
in Figure 3.

Figure 2. Pictorial description of the solution via the weighted sum approach for
convex Pareto front.

Figure 3. Pictorial description of how different solutions can be found by altering
the weight in the weighted sum approach for convex Pareto front.

As seen in Figure 2, the slope of the line is determined by the weight,
and altering this parameter will yield a different line. As seen in Figure 3,
altering the weight would yield a different solution (in case the Pareto
front is convex).

On the other hand, let us consider the case for which the Pareto front
is concave between two points A and B as seen in Figure 4. In this
case, the point B is found as a solution. In case the weight is altered
as seen in Figure 5, the point A is found as an alternative solution.
Unfortunately, in such a case, even if the weight is altered in its whole
range, no points on the Pareto front other than A and B can be found
by this approach [2]. Without a topological proof, this can be observed
pictorially by intersecting different-slope lines with this concave Pareto
front in Figures 4 and 5.

Since it is impossible to know whether the Pareto front is convex
or concave in real life problems, the weighted-sum approach cannot
be applied confidently. Hence, in this study we propose to apply the
desirability-functions (by altering their shapes systematically) for scalar-
ization as defined in [1]. The next section is devoted to description of
this method.



Parallel CUDA Implementation of the Desirability-Based Scalarization 97

Figure 4. Pictorial description of the solution via the weighted sum approach for
concave Pareto front (where the point B is found as the solution).

Figure 5. Pictorial description of the solution by altering the weight in the weighted
sum approach for concave Pareto front (where the point A is found as the alternative
solution).

3. Desirability Function-Based Scalarization

Previously in [1], an alternative scalarization method utilizing the
so-called desirability functions was proposed. The concept of the desir-
ability functions was first introduced by Harrington in 1965 for multi-
objective industry quality control. After the proposition of the desir-
ability function concept, Deringer and Suich [4] introduced different de-
sirability function formulations. The main idea beneath the desirability
functions is as follows:

The desirability function is a mapping from the domain of real
numbers to the range set [0, 1].

The domain of each desirability function is one of the objective
functions; and it maps the values of the relevant objective function
to the interval [0, 1].



98 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Depending on the desire about minimization of each objective func-
tion (i.e. the minimum/maximum tolerable values), the relevant
desirability function is constructed.

The overall desirability value is defined as the geometric mean of
all desirability functions; this value is to be maximized.

Particularly, for a bi-objective optimization problem in which the
functions f1 and f2 are to be minimized, the relevant desirability func-
tions d1(f1) and d2(f2) can be defined as in Figure 6. The desirability
functions are not necessarily defined to be linear; certainly, non-linear
definitions shall also be made as described in [1]. Throughout this study,
we prefer the linear desirability functions.

Figure 6. The linear desirability functions constructed for the bi-objective opti-
mization problem.

In [1], a method for extraction of the Pareto front was proposed by
altering the shapes of the desirability functions in a systematical manner.
Particularly, by:

Fixing the parameters f1max tol
and f2max tol

seen in Figure 6 at
infinity, and

Varying the parameters f1min tol
and f2min tol

systematically,

it is possible to find the Pareto front regardless of its convexity or con-
cavity. This claim can be illustrated for the bi-objective case as follows:
as seen in Figure 7, the parameters f1min tol

and f2min tol
determine the

sector which is traced throughout the solution. The obtained solution
corresponds to a point for which the geometric mean of the two desirabil-
ity values. As seen in Figure 8, even in the case of concave Pareto front,
the solution can be found without loss of generality. In other words,
unlike the weighted-sum approach, the method proposed in [4] does not
suffer from the concave Pareto fronts.

In [1], the applicability and the efficiency of the proposed scalarization
approach was demonstrated via some multi-objective benchmark func-
tions. Each single-objective problem (i.e. the scalarization scheme) was



Parallel CUDA Implementation of the Desirability-Based Scalarization 99

Figure 7. Pictorial description of the solution via the desirability-function based
approach for convex Pareto front.

Figure 8. Pictorial description of the solution via the desirability-function based
approach for concave Pareto front.

solved with Particle Swarm Optimization. Despite no explicit demon-
stration or proof, it was claimed that:

There were no limitations about the usage of Particle Swarm Opti-
mization; i.e. any other heuristic algorithm could be incorporated
and implemented.

The proposed method can be easily parallelizable.

In this study, we demonstrate the validity of these claims by incorpo-
rating the Genetic Algorithm in the proposed method, and performing
a parallel implementation on GPGPUs via the CUDA framework. The
next section is devoted to the implementation details.

4. Parallel CUDA Implementation of the
Desirability Function-Based Scalarization

The main idea of our parallel implementation throughout this study
is illustrated in Figure 9. Each scalarization scheme is handled in a sep-
arate thread; after the relevant solutions are obtained, they are gathered
in a centralized manner to constitute the Pareto front from which the
human decision maker picks a solution according to his/her needs. This



100 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

approach ensures that the number of solutions found that can be found
in parallel is limited by the capability of the GPGPU card used. If the
problem is a mission-planning problem as in our case, the two objectives
might be “minimizing the overall mission completion time” and “min-
imizing the overall mission risk”; and the Pareto front is a plethora of
various alternative mission plans with different overall completion time
and risk values. In this case, the planner (or the commander) will pick
up a solution (i.e. a mission plan to be executed) by using his/her own
initiative. Regardless of the choice, it will be certain that the particular
picked solution will be non-dominated.

Figure 9. Pictorial description of the parallel CUDA implementation of the
desirability-function based approach.

As stated before, we implemented an elitist Genetic Algorithm for
verification of the aforementioned claims. The parallel CUDA imple-
mentation was compared to the sequential Java implementation in the
environment seen in Table 1. The Genetic Algorithm parameters used
throughout the simulations are given in Table 2.

Table 1. The environment in which the simulations are run.

Device and Global Memory Quadro K5000 and 4GB

CUDA Cores 1536

GPU and Memory Clock Rate 706 MHz and 2700 MHz

Memory Bus Width 256-bit

Maximum Number of Threads
per MP and Block 2048 and 1024

CUDA Driver and Capability 5.5 and 3.0



Parallel CUDA Implementation of the Desirability-Based Scalarization 101

Table 2. Genetic Algorithm parameters throughout the simulations.

Chromosome size 16-bit

Population size 100

Number of generations (iterations) 100

Elitism Rate 0.2

Mutation Rate 0.1

Crossover Rate 0.9

It was seen that both implementations (sequential Java and parallel
CUDA) were able to find the same solutions but in different elapsed
times. As seen in Figure 10, if the number of Pareto front solutions
increase, the advantage of the parallel CUDA appears dramatically.

Figure 10. Comparison of the sequential Java and the parallel CUDA implementa-
tions.

These results show how efficient the parallel CUDA implementation
will be in case numerous Pareto solutions are required by the decision
maker in a multi-objective optimization problem.

5. Lessons Learned and Future Work

Throughout the implementation, we have experienced and observed
the following:

Memory allocations shall be made in advance in a bulk manner,
since such operations deteriorate parallelism in case they are made



102 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

one by one. Bulk memory allocation and pointer assignment for
usage of each thread is possible in our case, since it is quite straight-
forward to determine how much memory will be required by the
Genetic Algorithm (since the parameters listed in Table 2 are def-
inite).

Random number generation is another issue. Various alternative
approaches can be preferred:

– To generate each random number at the CPU when required
and to transfer it to the GPU: This is the least efficient and
the slowest approach.

– To generate all random numbers at the CPU prior to the
solution and to transfer them to the GPU: This is better
than the previous one.

– To generate each random number directly at the GPU with
no CPU-GPU communication need: This is the most efficient
and the fastest approach. GPU generated random numbers
demonstrate sufficient randomness features.

Windows operating systems assigns a default 2-second time-out
for the processes initiated at the peripheral devices. As seen in
Figure 10, for our problem, the duration of the execution of each
CUDA thread was about 3 seconds (which exceeds the 2-second
time-out), causing the relevant process to be killed by the Win-
dows operating system prior to completion. This problem was
resolved by brute-force editing (and setting it to higher values) of
the relevant key value in the registry.

The results shown in Figure 10 were obtained without any paral-
lel/concurrent implementation of the single-objective optimization prob-
lem. As seen in Figure 11, some steps in the Genetic Algorithm can be
executed in a parallel or concurrent manner.

More specifically, the computation of the objective and the fitness
functions for the individuals in the Genetic Algorithm population can
be performed concurrently on GPGPUs, in case the stream mechanism in
CUDA is utilized as seen in Figure 12. The impact of such a modification
in the implementation might not be drastic for the benchmark problems
since they usually consist of computationally cheap functions. But in
case of computationally expensive functions as in our mission-planning
problem, the advantage of utilization of the streams is expected to be
quite dramatic. As a future work, our aim is to perform the utilization
of the streams as well as the shared memories in the GPGPUs, which
are not being used in the current implementation.



Parallel CUDA Implementation of the Desirability-Based Scalarization 103

Figure 11. The steps of the Genetic Algorithm with indications of parallelization.

Figure 12. The step of the Genetic Algorithm which can be executed concurrently
via utilization of the stream mechanism in CUDA.

In conclusion, in this study we have demonstrated that it is possible
to achieve up to 16 times faster GPU implementations for the multi-
objective problems via a careful and intelligent CUDA implementation.
Further improvements in the implementation shall be made in the near
future. Moreover, we have verified the claims in [4] and demonstrated
the efficiency of the proposed approach.

Acknowledgement

This study was made possible by grants from the Turkish Ministry
of Science, Industry and Technology (Industrial Thesis - San-Tez Pro-
gramme and HAVELSAN; with Grant Nr. 01568.STZ.2012-2) and the
Scientific and Technological Research Council of Turkey – TUBITAK
(with Grant Nr. 112E168). The authors would like to express their
gratitude to these institutions for their support.



104 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

References

[1] O. T. Altinoz, A. E. Yilmaz, and G. Ciuprina. A Multiobjective Optimization
Approach via Systematical Modification of the Desirability Function Shapes. In
Proc. 8th International Symposium on Advanced Topics in Electrical Engineer-
ing, pages 23–25, 2013.

[2] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. A new scalarization technique
to approximate Pareto fronts of problems with disconnected feasible sets. J.
Optimiz. Theory App., appeared online, June 2013, DOI 10.1007/s10957-013-
0346-0.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE T. Evolut. Comput., 2:182-197, 2002.

[4] G. Derringer and R. Suich. Simultaneous optimization of several response vari-
ables. J. Qual. Technol., 12:214–219, 1980.

[5] J. Keski and R. Silvenneinen. Norm methods and partial weighting in multicri-
teria optimization of structures. Int. J. Num. Meth. Eng., 24:1101–1121, 1987.

[6] R. Marler and S. Arora. Transformation methods for multiobjective optimiza-
tion. Eng. Optimiz., 37:551–569, 2009.

[7] R. Marler and S. Arora. The weighted sum method for multi-objective opti-
mization: new insights. Struct. Optimization, 41:853–862, 2010.

[8] S. F. P. Saramago and V. Steffen, Jr. Optimization of trajectory planning of
robot manipulators taking into account the dynamic of the system. Mech. Mach.
Theory, 33:883–894, 1998.

[9] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic
algorithms. In Proc. International Conference on Genetic Algorithm and their
Applications, 1985.

[10] N. Srinivas and K. Deb. Multi-Objective function optimization using non-
dominated sorting genetic algorithms. Evolutionary Computation, 2:221-248,
1995.

[11] H. Trautmann and J. Mehmen. Preference-based pareto optimization in certain
and noisy environments. Eng. Optimiz., 41:23–38, 2009.




