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Abstract This paper proposes a lossy image representation where a reference im-
age is approximated by an evolved image, constituted of variable number
of triangular brushstrokes. The parameters of each triangle brush are
evolved using differential evolution, which self-adapts the triangles to
the reference image, and also self-adapts some of the control parame-
ters of the optimization algorithm, including the number of triangles.
Experimental results show the viability of the proposed encoding and
optimization results on a few sample reference images.
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1. Introduction

In this paper, evolvable lossy image representation utilizing an image
compared to its evolved generated counterpart image, is proposed. The
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image is represented using a variable number of triangular brushstrokes
[5], each consisting of triangle position and color parameters. These pa-
rameters for each triangle brush are evolved using differential evolution
[3,10], which self-adapts the control parameters, including the proposed
self-adaptation for the number of triangles to be used. Experimental
results show the viability of the proposed encoding and evolution con-
vergence for lossy compression of sample images.

The approach presented is built upon and compared with [5], by ad-
dressing and also extending the original challenge. Namely, the challenge
introduced in [5] uses triangles in trying to build an approximate model
of an image [5]. The triangle is an efficient brush shape for this challenge,
since it covers more pixels than a single point, and also allows overlaying
and blending of colors over several regional surface pixels, which lines
can not. Also, an arbitrary triangle shape is less constrained than any
further point-approximated shape, and also other shapes can be built
by combining several triangles.

Instead of genetic programming in [5], in this paper differential evolu-
tion is used with a fixed size tree-like chromosome vector, which is cut-off
self-adaptively to form codon and anti-codon parts of the chromosome.
Also, our approach uses a modified challenge, where we can reconstruct
the model for the reference image solely using the evolved model with-
out using the reference image, whereas the [5] needs the reference image
when drawing pixels to the canvas in deciding which pixels match the
reference image for accepting them into the evolved canvas. Also, in
this paper the triangle brushstroke encoding differes and is proposed
especially designed for an efficient DE encoding.

In the following section, related work is presented, then the proposed
approach is defined. In Section 4, the experimental results are reported.
Section 5 concludes the paper with propositions for future work.

2. Related Work

In this section, related work on evolutionary computer vision, evolu-
tionary art, image representation, and evolutionary optimization using
differential evolution, are presented. These topics are used in the pro-
posed method, defined in the next section.

2.1 Image-Based Modeling, Evolutionary Computer

Vision, and Evolutionary Art

Image-based approaches to modeling include processing of images,
e.g. two-dimensional, from which after segmentation certain features
are extracted and used to represent a geometrical model [7]. For art
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drawings modeling, automatic evolutionary rendering has been applied
[2, 9]. In [11] animated artwork is evolved using an evolutionary algo-
rithm. Then, Izadi et al. [5] evolved triangular brushstrokes challenge
using genetic programming for two-dimensional images, using unguided
and guided searches on a three or four branch genetic program, where
roughly 5% similarity with reference images was obtained on average
per pixel. In this paper, we build upon and compare our new approach
with [5], by addressing and also extending its challenge. After extending
the challenge, we optimize it using DE, which is described in the next
section.

2.2 Evolutionary Optimization Using Differential

Evolution

Differential evolution (DE) [10] is a floating-point encoding evolution-
ary algorithm for continuous global optimization. It has been modified
and extended several times with various versions being proposed [4]. DE
has also been applied to remote sensing image subpixel mapping [14],
image thresholding [8], and for image-based modeling using evolutionary
computer vision to reconstruct a spatial procedural tree model from a
limited set of two dimensional images [12,13]. Neri and Tirronen in their
survey on DE [6] concluded that, compared to the other algorithms, a
DE extension called jDE [3], is superior to the compared algorithms in
terms of robustness and versatility over a diverse benchmark set used in
the survey. Therefore, we choose to apply jDE in this approach.

The original DE has a main evolutionary loop where a population
of vectors is computed within each generation. For one generation,
counted as g, each vector xi, ∀i ∈ {1, ...,NP} in the current population
of size NP , undergoes DE evolutionary operators, namely the mutation,
crossover, and selection. Using these operators, a trial vector (offspring)
is produced and the vector with the best fitness value is selected for the
next generation. For each corresponding population vector, mutation
creates a mutant vector vi,g+1 (‘rand/1’ [10]):

vi,g+1 = xr1,g + F (xr2,g − xr3,g), (1)

where the indexes r1, r2, and r3 are random and mutually different
integers generated in from set {1, ...,NP}, which are also different from
i. F is an amplification factor of the difference vector, mostly within
the interval [0, 1]. The term xr2,g − xr3,g denotes a difference vector,
which is named the amplified difference vector after multiplication with
F . The mutant vector vi,g+1 is then used for recombination, where with
the target vector xi,g a trial vector ui,j,g+1 is created, e.g. using binary
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crossover:

ui,j,g+1 =

{
vi,j,g+1, if rand(0, 1) ≤ CR or j = jrand,

xi,j,g otherwise,
(2)

where CR denotes the crossover rate, ∀j ∈ {1, ...,D} is a j-th search pa-
rameter of D-dimensional search space, rand(0, 1) ∈ [0, 1] is a uniformly
distributed random number, and jrand is a uniform randomly chosen
index of the search parameter, which is always exchanged to prevent
cloning of target vectors. Since the jDE self-adapts the F and CR con-
trol parameters to generate the vectors vi,g+1 and ui,g+1, corresponding
values Fi and CRi, ∀i ∈ {1, ...,NP} are updated prior to their use in the
mutation and crossover mechanisms:

Fi,g+1 =

{
Fl + rand1 × Fu if rand2 < τ1,

Fi,g otherwise,
(3)

CRi,g+1 =

{
rand3 if rand4 < τ2,

CRi,g otherwise,
(4)

where {rand1, ..., rand4} ∈ [0, 1] are uniform random floating-point num-
bers and τ1 = τ2 = 0.1. Finally, the selection operator evaluates and
compares the trial to current vector and propagates the fittest:

xi,g+1 =

{
ui,g+1 if f(ui,g+1) < f(xi,g),

xi,g otherwise.
(5)

3. Differential Evolution for Self-Adaptive
Triangular Brushstrokes

In this section, the encoding aspect, genotype-phenotpye rendering,
and evaluation mechanisms of the proposed approach are defined.

3.1 Encoding Aspect

We encode an individual compressed image into a DE vector as fol-
lows. A DE vector x = (x1, x2, ..., x8Tmax , F,CR, TL, TU) is composed of
floating-point scalar values packed sequentially as {xj : ∀j ∈ {1, ...,D +
4}}, starting with a triangles-coding part of length D = 8Tmax, and
the rest are the self-adaptive control parameters of the vector to be used
during the DE. The self-adaptive control parameters part of the x vector
encodes and uses the scaling factor F and crossover rate CR as in the
jDE [3]; then the TL

i , T
U
i ∈ {1, .., Tmax} control parameters follow.
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The self-adaptive TL
i and TU

i control parameters determine index-wise
triangles encoded in the vector x to be used for rendering the evolved im-
age, i.e. the portion of x to render an image is {xj : ∀j ∈ {TL, ..., TU}}.

In this paper, we propose to have the whole vector represent a triangle
set, organized similar to serializing a tree as a linear vector in visiting
nodes by depth-first search. However, the leaf nodes are mostly exposed
to being cut-off, whereas the root node is encoded in the middle of the
vector and the near-root nodes are therefore more protected in being
retained, since they are more anchored due to cut-offs mostly around
the codon edges. After being included into a new trial vector, all nodes
have an equal probability of having their triangle data changed.

In this way, the TL and TU allow us to render only a sub-portion
of the triangles set, similarly to taking an inseparable portion of a GP
tree traversal as in [5]. This gives us an arbitrary length render set, and
keeps the crossover of anti-codon to help us find the number of triangles
Ti ∈ {1, ..., Tmax}, which is more suitable for image approximation:

Ti =

{
TU
i − TL

i + 1 if TL
i < TU

i

(Tmax − TL
i ) + TU

i otherwise.
(6)

The TL
i and TU

i are updated similarly to the Fi control parameter:

TL
i,g+1 =

{
⌊randL1 × Tmax⌋ if randL2 < τL,

TL
i,g otherwise,

(7)

TU
i,g+1 =

{
⌊randU1 × Tmax⌋ if randU2 < τU,

TU
i,g otherwise,

(8)

where τL = τU = τ1 = 0.1 of the jDE.

3.2 Genotype-Phenotype Rendering

A DE vector xi,∀i ∈ {1, ...,NP} encoded using floating-point num-
bers xi,j,∀j ∈ {1, ...,D + 4} constituting a genotype is rendered into a
phenotype image zi = {zi,x,y} of Rx width and Ry height in pixels, to
be compared against a reference image z∗ as follows.

The triangle brushstrokes (Figure 1) are represented as (cx, cy, r, α1,
α2, b

Y, bCb, bCr), where cx ∈ [0, ..., Rx), cy ∈ [0, ..., Ry), and r ∈ [0, Rx/√
Tmax] define the circumscribed circle center and radius for the triangle

to be rendered; α1 ∈ [1◦, 360◦) and α2 ∈ [1◦, 180◦) define the points
of this triangle on its circumscribed circle; and bY ∈ [16, 236), bCb ∈
[16, 241), and bCr ∈ [16, 241) are the color components of the brush for
the triangle contained pixels.
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Figure 1. The triangle brush definition and the circumscribed circle.

The triangles’ vertices encoded by i-th DE vector construct Ti tri-
angles, each triangle Tk = (cx,k, cy,k, rk, α1,k, α2,k),∀k ∈ {1, ..., Ti} (Tk

being packed as xi = {xi,j}, j = 8k + m, m ∈ {1, ..., 8}), defining the
vertices of a triangle P1,k, P2,k, and P3,k:

P1,k = ⌊(cx,k + rk cosα1,k, cy,k + rk sinα1,k)⌋ , (9)

P2,k = ⌊(cx,k + rk cos(α1,k + π), cy,k + rk sin(α1,k + π))⌋ , (10)

P3,k = ⌊(cx,k + rk cosα2,k, cy,k + rk sinα2,k)⌋ . (11)

The brush color bYCbCr
k = (bYk , b

Cb
k , bCr

k ) is first transformed into RGB
color model as bRGB

k = (bRk , b
G
k , b

B
k ) (b

R
k , b

G
k , b

B
k ∈ [0, 255]), where:

bRk =
⌊
1.164(bYk − 16) + 1.596(bCr

k − 128)
⌋

(12)

bGk =
⌊
1.164(bYk − 16) − 0.813(bCr

k − 128) − 0.391(bCb
k − 128)

⌋
(13)

bBk =
⌊
1.164(bYk − 16) + 2.018(bCb

k − 128)
⌋

(14)

For each triangle Tk, a solid color is rendered without antialiasing over
the triangle brush area rasterizing [1] with a transparency factor of 1/Ti:

bk =

⌊
255

Ti

bRGB
k

⌋
. (15)

This is analogous to blending the triangle as a part-transparent layer
within the evolved image Z i =

∑
k zk,x,y and computes R, G, and B

color layers for the pixels of the i-th individual:

zk,x,y =
∑

Tk over (x,y)

bk,x,y =
∑

Tk over (x,y)

⌊
255

Ti
bRGB
k,x,y

⌋
, (16)
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where Tk over (x, y) denotes each triangle being rendered over the pixel
(x, y) such that bk,x,y contains the rendered pixels of a brushstroke.
Triangles defined possibly over the edges of image canvas are drawn by
clipping away pixels outside of the canvas area.

The initialization of a genotype is such that the cx, cy, α1, α2, b
Y, bCb,

bCr, TL
i , and TU

i are initialized uniform randomly to integer values within
their respective definition intervals, while r is kept as a floating-point.
All parameters are however evolved as floating-point scalar values in DE.

3.3 Evaluation

Evaluation of the phenotype image Z i to be compared against a refer-
ence image Z ∗ is as follows. A reference image Z ∗ is represented as RGB-
encoded colored pixels integer values in layers Z ∗ = {(zRx,y, zGx,y, zBx,y)}.

To obtain a difference assessment value, the following comparison met-
ric is used for comparing an evolved image Z = Z i to Z

∗:

f(Z ) = 100×

Ry−1∑

y=0

Rx−1∑

x=0

| z∗Rx,y − zRx,y | + | z∗Gx,y − zGx,y | + | z∗Bx,y − zBx,y |

3× 255 ×RxRy
.

(17)

4. Experiments

The following experiments assess the viability of the approach on dif-
ferent control parameters, each with several independent runs. The pa-
rameter sets are as follows: the DE population size NP = {25, 50, 100}
and Tmax = {10, 20, ..., 150}, thereby for each run RNi={0,1,...,51} this
counts for total of 45 parameter sets, i.e. 2340 independent runs. The
maximum number of function evaluations (MAXFES) used is same as
with [5], MAXFES is 1e+5. For image rendering, basic GDI+ is used.

4.1 Obtained Results

The obtained fitness values at the MAXFES termination of 1e+5, over
different parameters of Tmax and NP , are seen in Tables 1 and 2. The
best values obtained overall for an image are marked in bold text font.
The fitness convergence graphs for these best runs are seen in Figure 2,
where after the initialization, the fitness is roughly below 40 (i.e. 40%
similarity with reference), then drops below 15 for all test images and
even further to slightly above 6 for two of them.

The convergent obtained results depend on the MAXFES used being
same as with [5], but also NP and Tmax, as reported below. From Ta-
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Table 1. Obtained fitness over Tmax and NP : test instances Liberty and Palace.

Liberty Palace

NP Tmax Best Worst Average STD Best Worst Average STD

25 10 8.29 11.99 9.93096 0.8233 8.69 13.69 10.1362 0.9655
25 20 8.03 13.14 10.0935 1.0845 7.83 11.5 9.12173 0.8092
25 30 8.41 13.74 10.0525 1.1712 7.52 11.1 8.97942 0.7992
25 40 8.13 12.81 10.4408 1.1416 7.34 11.36 8.91788 0.8922
25 50 8.49 13.37 10.6767 1.1768 7.65 12.53 8.87442 0.9788
25 60 7.95 14.65 10.9858 1.4284 7.9 11.88 8.99673 0.8761
25 70 8.28 14.21 11.4075 1.3630 7.79 13.17 9.50327 1.0482
25 80 8.72 15.89 11.7554 1.6330 7.97 12.34 9.43558 0.9765
25 90 8.84 16.24 12.1342 1.6608 8.41 13.54 9.82 1.2756
25 100 9.01 16.74 12.4798 1.7521 8.62 12.96 9.83635 0.8869
25 110 8.07 16.78 12.7412 1.7849 9.01 14.42 10.4119 1.2468
25 120 9.67 16.14 12.8467 1.7359 8.93 15.13 10.3858 1.3149
25 130 10.16 17.96 13.2692 1.7193 9.02 14.2 10.2858 1.0292
25 140 9.29 17.99 13.7029 1.7886 8.29 13.51 10.7779 1.0299
25 150 10.82 18.56 14.0373 1.6573 9.89 14.91 11.1206 1.0586
50 10 7.51 9.69 8.45077 0.4198 7.43 11.84 8.68058 0.8825
50 20 6.78 8.99 7.80173 0.4987 7.1 11.39 8.79173 0.9592
50 30 6.89 9.17 7.81788 0.5119 7.53 12.58 9.75654 1.1186
50 40 6.77 9.87 8.0375 0.6578 8.27 12.24 10.0575 0.9537
50 50 7.08 10.61 8.39923 0.7056 7.97 13.14 10.3338 1.1009
50 60 7.15 10.4 8.67115 0.7472 8.59 12.49 10.7817 1.0754
50 70 7.46 10.9 9.1025 0.8666 7.58 12.8 10.7744 1.1086
50 80 7.6 11.4 9.47981 0.8689 9.15 13.11 11.3802 1.0178
50 90 8.05 12.65 9.67346 0.9115 9.97 13.41 11.5227 0.9315
50 100 8.75 11.75 10.0152 0.7824 8.55 13.62 11.4356 0.9923
50 110 8.93 13.63 10.6356 0.9682 9.32 13.77 12.0712 0.9579
50 120 9.22 13.01 10.7502 0.9840 9.77 14.21 12.429 0.8972
50 130 9.42 12.59 11.0527 0.7707 11.37 14.07 12.7387 0.6134
50 140 9.99 13.39 11.5719 0.7815 9.69 15.5 12.9317 0.9708
50 150 10.2 14.56 12.2633 1.0702 9.58 15.36 12.8092 1.1717
100 10 7.1 9.12 7.98596 0.4241 7.91 13.88 10.9573 1.8019
100 20 6.85 9.77 7.83962 0.5360 8.86 14.59 12.1117 1.2862
100 30 7.15 11.8 8.49077 1.1563 9.59 16.15 12.9098 1.0589
100 40 7.22 13 8.86327 1.1092 9.65 14.97 13.2477 1.1543
100 50 7.41 12.75 9.34846 1.3939 11.01 15.52 13.8606 0.9750
100 60 8.06 12.97 9.77731 1.1539 11.5 16.14 14.1856 1.1234
100 70 8.67 13.28 10.1954 1.3722 10.77 16.32 14.3629 1.1713
100 80 8.73 14.48 11.0929 1.4093 10.98 17.06 14.9348 1.1679
100 90 9.04 14.92 11.3594 1.3483 11.1 16.8 15.104 1.2586
100 100 9.4 16.13 11.6604 1.4952 10.8 17.62 15.36 1.2330
100 110 10.17 15.68 12.3365 1.5685 13.01 17.86 16.0202 0.9744
100 120 10.26 15.45 12.3358 1.5076 11.07 17.99 15.6113 1.6455
100 130 10.22 16.19 13.2212 1.6108 12.33 18.37 16.4085 1.3168
100 140 11.42 16.65 13.7808 1.5502 11.64 18.35 16.1229 1.4990
100 150 11.35 18.68 14.6113 1.9726 10.11 18.34 16.2929 2.0056
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Table 2. Obtained fitness over Tmax and NP : test instances Vegetables and Baboon.

Vegetables Baboon

NP Tmax Best Worst Average STD Best Worst Average STD

25 10 14.13 17.21 15.7269 0.7148 15.02 18.59 16.38 0.7128
25 20 12.56 18.03 14.5658 0.9850 13.44 17.12 15.3815 0.8129
25 30 12.33 15.98 13.9215 0.8475 12.99 19.03 15.0204 1.1150
25 40 11.62 16.21 13.674 1.0436 11.99 16.85 14.4342 1.0135
25 50 12.16 17.08 13.88 1.0726 11.39 17.62 14.4573 1.2299
25 60 11.64 17.88 13.6438 1.2155 11.74 17.51 14.8038 1.2229
25 70 11.29 17.15 13.9056 1.3790 11.88 17.9 14.6267 1.3495
25 80 11.61 16.6 14.0871 1.3881 12.11 17.13 14.3606 1.2815
25 90 11.63 17.96 14.1062 1.4428 11.93 19.41 14.6644 1.5269
25 100 11.34 17 14.4533 1.4694 11.7 18.77 14.7642 1.7438
25 110 11.74 19.66 14.6085 1.7664 12.02 19.11 15.0046 1.7605
25 120 12.26 17.91 14.7737 1.5726 12.2 18.5 15.6467 1.6086
25 130 12.1 19.75 14.6338 1.9283 13.01 19.5 15.4254 1.5505
25 140 11.94 19.01 14.7635 1.6282 12.64 19.37 15.8235 1.8458
25 150 12.82 18.7 14.6487 1.3015 13.13 20.17 15.7952 1.6923
50 10 13.03 15 14.0723 0.4674 13.86 16.52 14.9192 0.5494
50 20 11.66 13.26 12.4644 0.3184 11.8 14.54 13.271 0.5569
50 30 11.12 13.59 12.2425 0.6528 11.59 13.62 12.5506 0.5732
50 40 10.94 14.1 12.1848 0.6656 11.1 13.84 12.3137 0.6090
50 50 11.04 13.92 12.2946 0.7609 11.34 14.36 12.4075 0.6304
50 60 11.29 15.86 12.5506 0.9222 11.25 14.1 12.3662 0.6161
50 70 11.18 15.21 12.6104 0.8682 11.54 14.57 12.5437 0.6510
50 80 11.32 15.26 12.8619 0.7658 11.07 15.56 12.9473 0.8087
50 90 11.84 15.28 13.0077 0.8038 11.32 16.2 12.857 1.0291
50 100 11.72 15.8 13.5058 0.9565 11.85 15.72 13.2658 0.7972
50 110 12.02 15.92 13.5204 0.8750 11.98 15.56 13.4275 0.7805
50 120 11.9 16.87 13.829 1.1151 12.43 15.66 13.5106 0.7265
50 130 12.51 15.97 14.094 0.8855 12.64 16.32 14.085 0.8259
50 140 12.16 17.07 14.8198 1.2154 12.54 16.31 14.15 0.8865
50 150 13.11 17.98 14.9838 1.2072 13.08 18 14.8765 1.0178
100 10 12.56 16.19 13.9815 0.8083 13.49 16.19 14.5367 0.5672
100 20 11.84 16.45 13.4704 1.0483 12.02 15.87 13.8244 0.8747
100 30 11.83 17.64 13.9133 1.3335 12 15.76 13.7206 0.9727
100 40 12.01 17.95 14.6354 1.3660 11.63 17.01 13.6467 1.3582
100 50 11.87 17.35 14.9156 1.4272 11.99 17.48 14.1658 1.5554
100 60 12.32 18 15.21 1.5119 12.12 17.46 14.5021 1.4517
100 70 12.13 18.05 15.6513 1.2457 12.12 17.16 14.3881 1.3782
100 80 12.9 18.86 16.2008 1.4121 12.13 17.56 14.8656 1.4214
100 90 12.32 20.04 16.3233 1.7789 12.25 18.66 15.2558 1.5144
100 100 12.98 20.55 16.7275 1.7119 13.09 18.42 15.5398 1.5064
100 110 13.76 20.18 17.2896 1.5242 13 19.62 15.84 1.6164
100 120 13.12 20.62 17.626 1.5807 13.34 19.58 16.4725 1.5223
100 130 13.52 20.12 17.9052 1.3516 13.84 19.6 16.9367 1.7362
100 140 14.08 20.52 18.216 1.6975 14.3 21 17.4387 1.7372
100 150 14.97 21.19 19.1221 1.2128 14.75 21.13 17.9488 1.6872
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Figure 2. Fitness convergence during optimization, for best runs of each test image.

Figure 3. The evolved and the reference images.

bles 1 and 2, we choose to report further evolved images upto MAXFES
of 1e+6 with all images. The best approximated images after MAXFES
of 1e+6 are shown in the Figure 3 which shows the evolution of the four
images. In each line of Figure 3, the best fitting vectors upto MAXFES
of 1e+6 in generations g = {0, 100, 200, 400, 700, 1200, 2000}, and the
final generation, are shown, then the rightmost the corresponding refer-
ence image. Figure 4 shows for each test image, dynamics of the number
of triangle brushes in current best vector during generations, displaying
varying convergent best Ti values across images.
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Figure 4. Number of best vector brushstrokes, for best runs of each test image.

Our approach searches for a representative image model and the values
obtained such as 6.77, can roughly be compared to the 4.83 of [5]. Such
representation of the problem also makes our NP parameter have higher
value, since we have no guided search and the problem is therefore more
general. Also, our approach does not use a dynamically re-allocatable
morphable variable-size tree structure as in genetic programming encod-
ing, inspite it rather uses a fixed size vector and limits its brushstrokes
set by two simple bounds, making the approach faster for execution.

5. Conclusion

This paper presents an evolvable lossy image representation, approx-
imating an image by comparing it to its evolved generated counterpart
image. The image is represented using a variable number of triangular
brushstrokes, each consisting of a triangle position and color parameters.
These parameters for each triangle brush are evolved using differential
evolution, which self-adapts the control parameters for mutation and
crossover. Also, the proposed DE extension splits the DE vector in the
codon and anticodon parts, where the triangles material is used only
from the codon part, adjusting the genetic tree center and its borders,
together with the number of triangle brushstrokes to be rendered. Exper-
imental results show the viability of the proposed encoding and evolution
convergence for the lossy representation of reference images, where fit-
ness is displayed dependent on the population size, maximal number of
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function evaluations allowed, maximal number of triangles used in image
representation, and different input reference images. Future work can
include addressing different encoding aspects, evolutionary operators,
control-parameters update, Euclidean distance for colors comparison,
and more case studies on input images with different properties.
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[3] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-Adapting Con-
trol Parameters in Differential Evolution: A Comparative Study on Numerical
Benchmark Problems. IEEE T. Evol. Comput., 10(6):646–657, 2006.

[4] S. Das and P. N. Suganthan. Differential Evolution: A Survey of the State-of-
the-art. IEEE T. Evolut. Comput., 15(1):4–31, 2011.

[5] A. Izadi, V. Ciesielski, and M. Berry. Evolutionary non photo–realistic ani-
mations with triangular brushstrokes. Lect. Notes Artif. Intell., 6464:283–292,
2010.

[6] F. Neri and V. Tirronen. Recent Advances in Differential Evolution: A Survey
and Experimental Analysis. Artif. Intell. Rev., 33(1-2):61–106, 2010.

[7] L. Quan. Image-Based Modeling. Springer, 2010.

[8] S. Rahnamayan and H. R. Tizhoosh. Image thresholding using micro opposition-
based Differential Evolution (Micro-ODE). In Proc. IEEE World Congress on
Computational Intelligence (WCCI), pages 1409–1416, 2008.

[9] J. Riley and V. Ciesielski. Fitness landscape analysis for evolutionary non-
photorealistic rendering. In Proc. IEEE Congress on Evolutionary Computation
(CEC), pages 1–9, 2010.

[10] R. Storn and K. Price. Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. J. Global Optim., 11:341–359,
1997.

[11] K. Trist, V. Ciesielski, and P. Barile, P. Can’t see the forest: Using an evolu-
tionary algorithm to produce an animated artwork. In Arts and Technology,
Springer, Berlin, Heidelberg, 2010, pages 255–262.

[12] A. Zamuda and J. Brest. Vectorized procedural models for animated trees re-
construction using differential evolution. Information Sciences, 278:1–21. 2014.
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