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Abstract  This paper presents an implementation and empirical convergence anal-
ysis results of genetic algorithm for solving unit commitment problem
in a power market. Various parameter settings are presented includ-
ing an algorithm with a sequence of parameters, also called a variable-
structure genetic algorithm. Implemented algorithm successfully solves
both small and large scale problems and shows how much more efficient
variable-structure genetic algorithm is in practice.
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1. Introduction

In a power market total production has to meet the demand, net
exports and system reserves over a given period of time, subject to the
start-up and shut-down times of the generating units. The objective is
to minimize the total costs of production while satisfying the start-up
and shut-down time constraints. In reality power generating units are
not only minimizing costs but also maximizing their profit.

The solution of a unit commitment is a complex optimization problem.
It is one of the most widely studied problems in Electrical Engineering.
A number of different techniques have been proposed to solve it as Mixed
Integer Programming (MIP) [4] or an alternative Mixed Integer Linear
Programming (MILP) [1]. Also Lagrangian Relaxation (LR) [4], Benders
Decomposition [10], Evolutionary Programming (EP) [7] and Dynamic
Programming (DP) are used.

Power generating units can reschedule their commitments (decisions)
over and over again. They can do a reschedule when they believe that
some parameters have changed enough to affect their decisions. This
means that power plants can sell the energy in a futures market, later
buy it back and finally commit their schedules on a day-ahead (or often
called spot) power auction. If the market price of a certain product
in futures market is higher than the expected spot price, power plants
with lower marginal prices decide to sell (part of) the energy in advance.
When this is not the case, they decide to wait and sell the energy on a
day-ahead power auction.

In this paper we will focus not only on the implementation part of the
algorithm but also on the convergence analysis. With empirical analysis
we will briefly try to justify the relevance of theoretical convergence
analysis demonstrated in the section 2.

2. Convergence Analysis

In this section we present three important theorems from [5] and [2].
The first theorem tells us something about an upper bound on the con-
vergence speed and the last two tell us under which conditions we can
expect a genetic algorithm (GA) to converge. Based on the presented
theorems we do an empirical analysis and try to evaluate theoretical re-
sults in practice for a problem of unit commitment using the GA in a
power market.

2.1 An Upper Bound on the Convergence Speed

Next theorem tells us an upper bound for convergence of the GA.
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Theorem 1 [5] Let the size of population of the GA be n > 1, coding
length 1 > 1, mutation probability 0 < p,, < % and let {X¢,t > 0} be the

Markov chain population, © distribution of t'" generation of X, and 7
be the stationary distribution. Then it holds

|7 ®) — 7| < (1= 2pm)™)".
Theorem 1 identifies us next relationships.

m Bigger than the mutation probability, faster the convergence.

m  Bigger than the population size and coding length, slower the con-
vergence.

But on the other hand it is well known that algorithms with parame-
ters set like this affect negatively on a long term convergence of the GAs.
This was shown by studies [3], [8], [12] but also by many others. In sec-
tion 2.2 let us take a closer look at two theorems which tells us that in
case of a very big population with “small enough” mutation probability
the GA converges in probability to a global optimum.

2.2 Convergence of Homogenous Algorithm

Theorem 2 [2] Let a,b,c > 0 be constants and i intensity perturbations
of algorithm. If it holds

an + c¢(n —1)A®
min(a,b/2,cd) (1)

then

Ve e SN lim lim P([X]] C f*X{ =12)=1.
i—00 t—00

Theorem 2 tells us that we can, with a big enough population, solve
an optimization problem. Additionally we can completely arbitrarily
choose the parameters a, b and c. If we choose very big ¢, then we
rule out the importance of § because it holds min(a,b/2) < cd. If it
is A® a constant and N becomes very big, we can always successfully
tackle with a problem. A® represents the difficulty of adopting new and
better solutions. Condition 1 is quite rough regarding the population size
limit m. It is important that perturbation mechanism lets the process
visit the whole space, even though random perturbations could be very
small. That is why the role of crossover is not crucial (algorithm without
crossover corresponds to the case of b = 00).
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2.3 Convergence of Inhomogeneous Algorithm

In practice we will not wait for Markov chain to reach the equilibrium
state before we would lower the intensity of perturbations. That is why
we want to lower the intensity gradually depending on time. At the
same time we want to maintain the properties of a limit law. Let us,
from now on, assume that ¢ and t are increasing simultaneously. So, let
the 7 be increasing function of time, where it holds limy_,~ i(t) = oc.

That is how Markov chain becomes inhomogeneous and transition
probabilities become time dependent. From now on let us define X; =
X?. We can define convergence power of the increasing sequence i(t)
with A, for which holds that

i) i) i)+

converges for # > A\ and diverges for § < A where A >0 € R

With T1,...,T},... we set times of successful visits of the chain {X;}
inS,eg T, =inf{k: k > T, 1,X; € S}. Let us focus on behavior of
the chain {Xr, }.

Theorem 3 /2]

1 That chain {X7,} would reach f* after finite number of steps
Vo e S P@EAUNYu > U, [ X, C X0 =) =1,

convergence power of sequence i(u) has to be positive constant from
the set of real numbers; 01,605 > 0 € R have to exists to

Zi(u)‘el = 00 and z:z'(u)_e2 < 00.

u>0 u>0
2 7If convergence power A\ of the sequence i(t) and the population
size m suffice the inequalities
an + c(n —1)A® < X < min(a, b/2, c§)m,

then with probability 1 chain {Xr,} reaches f* after finite number
of steps.

3 Let exist the constant t > 1 € R that for Vr € N sequences i([tu] +
r) and i(u) are logarithmic equivalent. If convergence power A of
the sequence i(u) and population size m suffice the inequalities

an + c(n — 1)A® < min(a, b/2, cd)m < A,
then
Ve e S tli)m P([X{] C fYXo=2)=1.



Empirical Convergence Analysis of GA for Unit Commitment Problem 131

24 Combination of Both Approaches

To be able to successfully use the results of both approaches we have
to slightly correct an algorithm. Let us define a sequence of parameters
{(n¢, pm(t)),t >} that it holds ny < ngpq and pp,(t) > pm(t + 1).

Thus, we run the GA with settings (n1,pn,(1)) first. Let us define
a solution close to the optimal with X (co). When it is reached, with
predefined scheme, we rename the population Xl(oo) to Xo (0) and use
it as an initial population of the GA with settings (n2,pmn(2)). Using
this approach we are increasing the population size and decreasing the
mutation probability thus increasing the algorithm’s efficiency.

We can call such the GA a variable-structure GA [5]. We should
note that the convergence is not a natural property of the GA but it is
followed by elitism property in a selection operator [6].

3. Implementation and Model Description

In this section we will denote a mathematical formulation of the prob-
lem. Based on this we will describe an algorithm for the optimization
problem.

3.1 Problem formulation
T n
ntliri{ Z Z(mpi,tﬂfﬂpe +max{s;; — sit-1, 0}862‘)}
Tt =1 i=1
n
x%pe > PDP,(price), Vt (2)
i=1
1, 7if 2% >0 ,
; = ’ ’ ! 3 Vt, 3
St { 0, otherwise. ! (3)

stit = (_1)1_5i,t Z 1{ I=[t—a,t+b] A a,b>0: } (4)

5i,4=5; FVIEI N8j t—a—1=5i14b41=1—5it

sty > tup; V st < —tdown;, Vt, i (5)
Tit = TMAT;¢ (6)
Wheret =1,...,T is an observed time interval, ¢ = 1,...,n is an unit

index and type is a unit type. Furthermore, x%p © € R is the production

of unit 4 of type type in time t, xmin,; is the technical minimum of unit
i in time ¢, rmax;; is the installed capacity of unit ¢ in time ¢, s;; is a
status of unit ¢ in time ¢, st;; represents a number of working or non-
working hours of unit ¢ in time interval “near” ¢, tup; and tdown; is the
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minimal time interval of unit ¢ in which unit cannot change its status
decision due to the technical limitations, PDP; is a price dependent
production, mp;; a marginal price of unit ¢ in time ¢ and sc; are the
starting costs of unit 7.

Goal. A goal of the optimization is to find a solution with minimal
costs to the system. Cost objective function describes costs of the system
in a way that it calculates sum of product of production and marginal
costs and total start-up costs on the whole time interval.

We have to meet the constraints, especially important are the fol-
lowing two. The first one (2) ensures that needed levels of thermal
production are met and the second one (5) ensures that units are not
violating their technical constraints.

At this stage it is important to note that the thermal production
is dependent on the price and cross border commercial flows and vice-
versa. Because both variables are dependent on neighboring markets,
determination of both is a very complex problem. Also note that a more
representative criterion function of a power generating unit is of a form
ax? + bx + ¢ but in this case we have to find or know the parameters
a,b,c. This is not a content of the article, so we will not discuss this
problem.

3.2 Optimization

Let us write the pseudocode ofthe GA for our problem. This will serve
as a starting point for later discussion.

Algorithm 1 Genetic Algorithm

:t=0

P(t) = SetInitialPopulation(P)

Evaluate(P(t))

while not EndingCondition() do
t+=1
P(t) = Selection(P(t — 1))
P(t) = Crossover(P(t))
P(t) = Mutation(P(t))
Evaluate(P(t))

end while

—
e

Initial Solution. For the initial solution we implemented an algo-
rithm named priority list for a problem of unit commitment. Algorithm
is deterministic, for this reason it returns the same value for the same
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inputs every time. By using this algorithm we get an initial population
consisting of only one solution, therefore we have to do a trick to get
n different solutions. To differentiate between n initial solutions, we
replicate the one as n-times and then mutate all except one.

Mutation. The idea of a mutation operator is very simple. With
predefined probability, an individual from a population is chosen, on
which a random change is made. But before we do this, we have to
make sure that the change gives a feasible solution.

The operator mutation is built in a way that technical constraints of
mutated units are satisfied first; e.g. minimal up or down times. After
this step we have to check feasibility of constraint (2). If the solution
is feasible we accept it otherwise we save it in the dictionary of rejected
mutations. At the end of the mutation we loop through the dictionary
and check for feasible solutions. We accept all that are feasible. After
the step we empty the dictionary.

Crossover. A crossover operator is the most important operator
in the GA. The goal is to successfully combine two different solutions
to get two better offspring. This operator is the most complex in the
implemented algorithm. In the operator mutation we have already re-
alized that some minor corrections have to be done not to reject too
many (infeasible) solutions. The operator crossover has to apply similar
manipulations.

One-Point Crossover. Let us first present the one-point crossover
operator. Later we will also present the multi-point crossover which is a
partial generalization of this one.

The idea is very simple. First, we randomly determine pairs of pop-
ulations for the crossover and then we randomly determine a crossover
point ¢ which is the same for all units in a pair. Then we cross same
the units within a pair of solutions. If needed we have to “correct” an
infeasible solution to generate a feasible one.

A very important property of the operator is that it crosses only the
same chromosomes (units) under different solutions. For example, in
case of crossing two different units within one solution two units with
different parameters (minimal up or down time, different installed ca-
pacities, maintenance schedules, . ..) would be switched. This has to be
treated differently, e.g. with another operator which would already be a
joint operator of mutation and crossover.

At determination of a crossover point ¢t we have to check if the place is
acceptable for all units in the population. If needed we have to shift the
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time of crossover for a few time periods to left or to right for each unit.
That is how we determine a vector of crossover places T = (t1,...,t,)
for a pair of solutions. Because we did one additional operation, we
avoided the violations of minimum up or down times. Now we just have
to check the feasibility under constraint (2). If a solution is feasible and
better, we accept it. Otherwise we correct it with probability p and
reject it with probability 1 — p. If we decide to correct it, we have to
turn additional units on to meet the constraint (2).

Multi-Point Crossover. One-point crossover is a special case of
multi-point crossover. Therefore we can use our knowledge about the
one-point crossover.

The main difference between both is already described by its name.
Using multi-point crossover m we split the coding length to m + 1 ran-
domly determined intervals. But crossover operator basically stays the
same. Instead of only two intervals [0,t), [t,T] we have m + 1 intervals
[0,t1), [t1,t2), .., [tm,T). Doing so we have to provide a feasible solution
for the each interval.

The idea is to construct a feasible solution with the dealing of two
adjacent intervals at the time and basically translating a multi-point
crossover to a one-point crossover. So, we cross the [0,¢1), [t1,t2) first,
then the [t1,t2),[t2,t3) until we finally get to the [ty—1,tm), [tm,T).
With translation to a one-point crossover we get all needed instruments
to deal with the problem.

Selection.  The selection operator is the simplest operator in the im-
plemented algorithm. There is no need to create or find new and better
offspring but only to “shake” the population and randomly permute n of
the solutions where better solutions have higher probability to be chosen
as offspring.

As we have seen in the section 2.4, one of the most important prop-
erties of selection operator is the property of elitism. Therefore we have
chosen to implement it. Later we will see the algorithm’s behavior with-
out taking into account the elitism property.

4. Results

In this section we present results of the implemented algorithm of the
actual data. To present and study results as unbiased as possible we
compare them on the same data set but with different GA settings. The
goal is to successfully distinguish between the worst and best solutions.
The following parameters
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m crossover and mutation probability,
m crossover operator,

= selection operator

are chosen based on the theoretical analysis which we try to confirm
with empirical results.

4.1 Assumptions

First let us present the assumptions. The most important condition
is to meet the demand or in our case needs of the thermal production.
Let us call it a price dependent production. We observe two different
time periods; length of the first is 72 hours and length of the second
is 168 hours. In the first we analyze different settings of mutation and
crossover probability, one-point crossover and selection. In the second
we compare both, one-point and multi-point, crossover operators under
the same settings. The number of power plants which appear in the
optimization for specific problem is equal to N. Therefore the size of
our matrices is equal to 72 x N and 168 x V.

Each setting is run independently 30 times due to the stochastic prop-
erties of the algorithm. Only one would not suffice in providing unbiased
results.

4.2 Empirical Analysis

Let us analyze impact of the mutation, crossover and selection of the
convergence speed. First we observe a time interval of a length 72 hours
and for crossover operator we use only the one-point crossover (OPC)
to compare results under different parameters but the same conditions.
In this optimization 145 power plants are appearing.

Later we compare one-point and multi-point crossover (MPC) oper-
ators. In this case we observe a time interval of a length 168 hours.
The reason for this is that the results of the algorithm could be oth-
erwise biased due to the time constraints in the optimization. In this
optimization 167 power plants are appearing.

Comparison of various settings on one point crossover. In this
subsection we analyze different settings of the algorithm and compare
the results. Let us present settings NV; for all ¢ in the table below. We
will show 6 different settings which have been obtained by empirical
experiments. Using the selected parameters we are able to show the
impact on the GA’s performance under different domains and, the most
important, various conditions.
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Table 1. Parameter settings.

Parameters / Settings Ny N> N3 Ny Ns Ng
Iterations 10,000 10,000 10,000 10,000 10,000 10,000
Population size 30 30 30 60 30 60
Elitism 4 4 4 4 0 4
Crossover OopPC opPC OopPC OopPC OopPC OopPC
Crossover Probability 50% 75% 50% 50% 50% vary
Mutation Probability

- population 25% 25% 40% 25% 25% vary

- individual 20% 20% 25% 20% 20% vary

The mutation probability is actually lower than it seems. We have to
take a product of both mutation probabilities. In case of N7 the mutation
probability is equal to 10% (which is equal to 40% times 25%). Note
that we have used 50% probability to correct infeasible solutions in the
crossover operator.

All setting except the setting Ng are constant over time. For the set-
ting Ng we have constructed a sequence of parameter settings to show
how a sequence of settings affect the performance under different do-
mains. The idea is to analyze the algorithm’s performance which explore
the space of feasible solutions more aggressive at the beginning and less
later.

Thus let us define the sequence under different domains which we
obtained by the empirical results. In the interval [0,1000) iterations
we have set the crossover probability to 75% and mutation probability
pair to (45%, 25%). In the next interval [1000,2000) we have decreased
the mutation probability to (25%, 20%). In the interval [2000, 5000) we
have decreased crossover probability to 50%. And for the last interval
[5000, 10000) we have decreased mutation probability to (25%, 10%).

For a higher transparency let us present only the average values of a
criterion function of 30 independent runs.

The most obvious thing we see is that the algorithm with the setting
N5 does not converge at all. This confirms that the convergence of the
GA is a consequence of the elitism property.

Let us now compare the crossover’s probability effect. Thus we limit
ourselves to compare the results with parameter settings N7 and N.
We see that the algorithm with the parameter setting Ns is around
20% more efficient at the beginning but after roughly 200 iterations we
cannot significantly distinct between the efficiency of both. Due to the
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Figure 1. One point crossover vairous settings.

crossover’s probability the algorithm with the parameter setting Ns is
around 35% slower than the algorithm with the parameter setting Nj.

If we only compare the mutation probability effect, we limit ourselves
to parameter settings N1 and N3. Similar to the crossover probability
effect, algorithms with higher probability are more efficient at the begin-
ning, but after few iterations we see that the algorithm with the lower
mutation probability becomes more efficient. For the first roughly 200
iterations the algorithm with the setting N3 is around 20% more efficient
than the algorithm with the setting Ny, but after that the algorithm Ny
becomes more efficient for about around 10% on average.

Algorithm with the parameter setting N4 is one of the most efficient
at the beginning. In comparison to the No or N3 it is more efficient
for about 5%. After few iterations the efficiency becomes comparable to
algorithms with parameter settings N1, No and N3. But due to double
the population size the algorithm with this setting needs on average
twice as much time as with other settings for one iteration.

Based on these results we were able to construct a sequence of param-
eter settings. We clearly see that the algorithm with this sequence has
the best result compared to other settings. Speed of the algorithm with
setting Ng is comparable to the algorithm with setting N4, but because
of the overall efficiency it is clearly significantly better. In addition to
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this, we need only around 1,000 iterations to get at least as good a result
as the algorithm with any other setting at 10,000th iteration.

One-Point versus Multi-Point Crossover. Let us now analyze
and compare both crossover operators. We compare operators on the
same data set with the same parameter settings. In this case we do the
optimization on a time interval of 168 hours.

Table 2. Parameter settings.

Parameters / Settings N~ Ng
Iterations 10,000 10,000
Population size 30 30
Elitism 4 4
Crossover MPC OPC
Crossover Probability 50% 50%
Mutation Probability
- population 25% 25%
- individual 20% 20%
1.0551€e8 One Point vs Four Point Crossover
— N
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Figure 2. Multi point vs one point crossover.

We see a similar pattern than when comparing the algorithm with
higher and lower crossover probabilities. At the beginning the algorithm
with multi-point crossover is significantly (20%) more efficient, but later
one-point crossover gets an advantage of 10% on average. This is due to
the fact that closer we get to a sub-optimal solution, harder it is to find
a better solution and therefore smaller steps should be taken to find it.
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We see that the difference between best solutions of the algorithm
with selected parameters is minimal, but the range between the best
and worst solution of each setting at the 10,000th iteration is for 37%
smaller in the N7 case. This could tell us that with this setting we are
able to find a better solution with a higher probability but it also could
tell us that it is more likely to stay in the local optima. The algorithm
with the setting N7 maintains the advantage though due to the more
efficient starting iterations and the fact that it is on average slower only
for about 15-20%.

Thus if we would like to optimize a time interval of which length is ap-
propriate for multi-point crossover, it is good to combine and apply both
when constructing a sequence of parameter settings. First we should use
multi-point crossover and later one-point crossover.

5. Conclusion

We have seen that the parameter settings of the algorithm can strongly
affect on the performance properties and the efficiency. Empirical re-
sults have shown theoretical analysis as valid for the unit commitment
problem solved by the GA. Regardless of that, detailed analysis of the
algorithm settings on real data should be done for each of the goals to
get the best results possible. This can be a time consuming, however
worth the effort due to the performance and efficiency gains. Further
projects in the future could be an implementation of a self-adaptive GA
[11]. That is how we would be able to find a good enough (or even opti-
mal) parameter settings. On the other hand one has to be aware of the
difficulty of finding better feasible solutions. This means that we will,
sooner or later, reach the performance limit.

In this article we have successfully analyzed and compared different
algorithm settings and were able to differentiate between them. We did
not focus on finding a global optimum on a chosen data set. We have also
shown successfully that a variable-structure GA can drastically improve
the efficiency of the algorithm.
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