Empirical Convergence Analysis Of Genetic
Algorithm For Solving Unit Commitment
Problem

Domen Butala

Coauthors:
doc. dr. Dejan Velus¢ek
doc. dr. Gregor Papa

Ljubljana, September 13th, 2014



Introduction

Convergence analysis
m An Upper Bound on the Convergence Speed
m Convergence of Homogenous Algorithm
m Combination of Both Approaches

Implementation
m Problem formulation
m Algorithm

B Results and comparisons
m One-point crossover
m Multi-point crossover

H Appendix
[@ Authors
Bibliography



Introduction

Introduction

m Power system



Introduction

Introduction

m Power system

m Unit Commitment problem?



Introduction

Introduction

m Power system
m Unit Commitment problem?

m Motivation for an optimization approach



Introduction

Introduction

m Power system
m Unit Commitment problem?
m Motivation for an optimization approach

m Techniques as MIP, MILP, LR, Benders
Decomposition, Dynamic Programming, ...



Convergence analysis
.

An Upper Bound on the Convergence Speed

An Upper Bound on the Convergence Speed

Theorem

[1] Let the size of population of the GA be n > 1, coding length
| > 1, mutation probability 0 < p, < % and let {)?h t > 0} be the
Markov chain population, =(t) distribution of t™ generation of X,
and m be the stationary distribution. Then it holds

17 — 7| < (1~ (2pm)™)".



Introduction Convergence analysis Implementation Results and comparisons Appendix Authors Bibliography
g g

Convergence of Homogenous Algorithm

Convergence of Homogenous Algorithm

[2] Let a,b,c > 0 be constants and i intensity perturbations of
algorithm. If it holds

an+ c(n—1)A®
min(a, b/2,cd) ’

(1)
then

vx € SN lim lim P([X{] C f*|X{ =x) = 1.

i—o0 t—00



Convergence analysis

.
Combination of Both Approaches

Combination of Both Approaches

Idea, to get the best algorithm possible, is to set a sequence of
parameters {(n¢, pm(t)), t >} that it holds n; < ny11 and

pm(t) > pm(t + 1).

A Genetic algorithm set like this could be called a
variable-structure GA [1].



Implementation
°

Problem formulation

Problem formulation

T n

njln{ Z Z mp;. tx €+ max{sj+ — i1, O}SC;)}
uytp t=1 i=1
n
Zx,type > PDPy(price), Vt (2)
i=1
1, "if x7P°>0
- ) it ) £
Sit { 0, otherwise. } Ve (%)

St,'7t = (—1)1_Si’t Z 1 I=[t—a,t+b] A a,b>0: } (4)

Si t=5; FVEEI NS} t_a_1=5] t1b41=1—5; ¢
stj ¢ > tup; V stj < —tdown;, Vt, i (5)

Xi ¢ = Xmax; ¢ (6



Implementation

Algorithm

Algorithm

1. t=0
2: P(t) = SetlnitialPopulation(P)



Implementation

Algorithm

Algorithm

1:
2:
3:
4:
5:
6:

t=0
P(t) = SetlnitialPopulation(P)
Evaluate(P(t))
while not EndingCondition() do
t+=1
P(t) = Selection(P(t — 1))



Implementation

Algorithm

Algorithm

1:
2:
3:
4:
5:
6:
T:

t=0

P(t) = SetlnitialPopulation(P)

Evaluate(P(t))

while not EndingCondition() do
t+=1
P(t) = Selection(P(t — 1))
P(t) = Crossover(P(t))



Implementation

Algorithm

Algorithm

1:
2:
3:
4:
5:
6:
T:
8:

t=20
P(t) = SetlnitialPopulation(P)
Evaluate(P(t))
while not EndingCondition() do
t+=1
P(t) = Selection(P(t — 1))
P(t) = Crossover(P(t))
P(t) = Mutation(P(t))



Implementation

Algorithm

Algorithm

1:
2:
3:
4:
5:
6:
T:
8:
9:

t=20

P(t) = SetlnitialPopulation(P)

Evaluate(P(t))

while not EndingCondition() do
t+=1
P(t) = Selection(P(t — 1))
P(t) = Crossover(P(t))
P(t) = Mutation(P(t))
Evaluate(P(t))

end while

._\
e



Results and comparisons
®0

One-point crossover

Results

Table 1. Parameter settings.

Parameters / Settings Ny Ny N3 Ny Ns Ng
Tterations 10,000 10,000 10,000 10,000 10,000 10,000
Population size 30 30 30 60 30 60
Elitism 4 4 4 4 0 4
Crossover OPC OPC OPC OPC OPC OPC
Crossover Probability 50% 5% 50% 50% 50%, vary
Mutation Probability

- population 25% 25% 40% 25% 25% vary

- individual 20% 20% 25% 20% 20%, vary




Results and comparisons
oce

One-point crossover

4.4351e7 One Point Crossover

4.430 M
' N,

4.425

S
B > S »
o = = N
w o w o

Value of Criterion Function

4.400

4.395

IS
ral )
Uin ©
= O

SNWBUIN0OO

PR RSED.
ARRRRRRR

2000 4000 6000 8000 10000
Number of iterations.

10



Results and comparisons

Multi-point crossover

1.0551€8 ) One Point vs Four Point Crossover
— N
- N
1.050
’s
|
1.045 |

Value of Criterion Function.

1.030/

0 2000 4000 6000 8000 10000
Number of iterations.

11



Appendix

Appendix

Algorithm was implemented in the programming language Python.

m Numpy
m Cython

m Numba

On some parts of the code performance comparisons were made to
implementations in other languages (R, Matlab and C#).

12



m Domen Butala
Financial Mathematics, Faculty of Mathematics and Physics,
Ljubljana, Slovenia
domen.butala@yahoo.com

m Dejan Veluscek
Department of Mathematics, Faculty of Mathematics and
Physics, Ljubljana, Slovenia
dejan.veluscek@fmf.uni-lj.si

m Gregor Papa
Computer Systems Department, JoZef Stefan Institute,
Ljubljana, Slovenia
gregor.papa@ijs.si

13



Bibliography

[§ Y. Gao, An Upper Bound on the Convergence Rates of

Canonical Genetic Algorithms. Complexity International, Vol.
5, 1998.

[d R. Cerf, Asymptotic Convergence of Genetic Algorithms.
CNRS, Université d'Orsay, Paris, 1997.

14



	Introduction
	Convergence analysis
	An Upper Bound on the Convergence Speed
	Convergence of Homogenous Algorithm
	Combination of Both Approaches

	Implementation
	Problem formulation
	Algorithm

	Results and comparisons
	One-point crossover
	Multi-point crossover

	Appendix
	Authors
	Bibliography

