
Introduction Convergence analysis Implementation Results and comparisons Appendix Authors Bibliography

Empirical Convergence Analysis Of Genetic
Algorithm For Solving Unit Commitment

Problem

Domen Butala

Coauthors:
doc. dr. Dejan Velušček
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An Upper Bound on the Convergence Speed

An Upper Bound on the Convergence Speed

Theorem

[1] Let the size of population of the GA be n ≥ 1, coding length
l > 1, mutation probability 0 < pm ≤ 1

2 and let {~Xt , t ≥ 0} be the

Markov chain population, π(t) distribution of tth generation of ~Xt

and π be the stationary distribution. Then it holds

||π(k) − π|| ≤ (1− (2pm)nl)k .
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Convergence of Homogenous Algorithm

Convergence of Homogenous Algorithm

Theorem

[2] Let a, b, c > 0 be constants and i intensity perturbations of
algorithm. If it holds

m >
an + c(n − 1)∆⊗

min(a, b/2, cδ)
, (1)

then

∀x ∈ SN : lim
i→∞

lim
t→∞

P([X i
t ] ⊂ f ∗|X i

0 = x) = 1.
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Combination of Both Approaches

Combination of Both Approaches

Idea, to get the best algorithm possible, is to set a sequence of
parameters {(nt , pm(t)), t ≥} that it holds nt < nt+1 and
pm(t) > pm(t + 1).

A Genetic algorithm set like this could be called a
variable-structure GA [1].
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Problem formulation

Problem formulation

min
x typei,t

{ T∑
t=1

n∑
i=1

(mpi ,tx
type
i ,t + max{si ,t − si ,t−1, 0}sci )

}
n∑

i=1

x typei ,t ≥ PDPt(price), ∀t (2)

si ,t =

{
1, ”if x typei ,t > 0,

0, otherwise.

}
, ∀t, i (3)

sti ,t = (−1)1−si,t
∑

1{ I=[t−a,t+b]∧ a,b≥0:
si,t=si,t̄ ∀t̄∈I ∧ si,t−a−1=si,t+b+1=1−si,t

} (4)

sti ,t ≥ tupi ∨ sti ,t ≤ −tdowni , ∀t, i (5)

xi ,t = xmaxi ,t (6)
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Algorithm

Algorithm

1: t = 0
2: P(t) = SetInitialPopulation(P)

3: Evaluate(P(t))
4: while not EndingCondition() do
5: t+ = 1
6: P(t) = Selection(P(t − 1))
7: P(t) = Crossover(P(t))
8: P(t) = Mutation(P(t))
9: Evaluate(P(t))

10: end while
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One-point crossover

Results
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One-point crossover
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Multi-point crossover
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Appendix

Algorithm was implemented in the programming language Python.

Numpy

Cython

Numba

On some parts of the code performance comparisons were made to
implementations in other languages (R, Matlab and C#).
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