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An Upper Bound on the Convergence Speed

An Upper Bound on the Convergence Speed

Theorem

[1] Let the size of population of the GA be n > 1, coding length
| > 1, mutation probability 0 < p, < % and let {)?h t > 0} be the
Markov chain population, =(t) distribution of t™ generation of X,
and m be the stationary distribution. Then it holds

17 — 7| < (1~ (2pm)™)".
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Convergence of Homogenous Algorithm

Convergence of Homogenous Algorithm

[2] Let a,b,c > 0 be constants and i intensity perturbations of
algorithm. If it holds

an+ c(n—1)A®
min(a, b/2,cd) ’

(1)
then

vx € SN lim lim P([X{] C f*|X{ =x) = 1.
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Combination of Both Approaches

Combination of Both Approaches

Idea, to get the best algorithm possible, is to set a sequence of
parameters {(n¢, pm(t)), t >} that it holds n; < ny11 and

pm(t) > pm(t + 1).

A Genetic algorithm set like this could be called a
variable-structure GA [1].
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Problem formulation

T n

njln{ Z Z mp;. tx €+ max{sj+ — i1, O}SC;)}
uytp t=1 i=1
n
Zx,type > PDPy(price), Vt (2)
i=1
1, "if x7P°>0
- ) it ) £
Sit { 0, otherwise. } Ve (%)

St,'7t = (—1)1_Si’t Z 1 I=[t—a,t+b] A a,b>0: } (4)

Si t=5; FVEEI NS} t_a_1=5] t1b41=1—5; ¢
stj ¢ > tup; V stj < —tdown;, Vt, i (5)

Xi ¢ = Xmax; ¢ (6
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One-point crossover

Results

Table 1. Parameter settings.

Parameters / Settings Ny Ny N3 Ny Ns Ng
Tterations 10,000 10,000 10,000 10,000 10,000 10,000
Population size 30 30 30 60 30 60
Elitism 4 4 4 4 0 4
Crossover OPC OPC OPC OPC OPC OPC
Crossover Probability 50% 5% 50% 50% 50%, vary
Mutation Probability

- population 25% 25% 40% 25% 25% vary

- individual 20% 20% 25% 20% 20%, vary
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One-point crossover
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Multi-point crossover
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Appendix

Algorithm was implemented in the programming language Python.

m Numpy
m Cython

m Numba

On some parts of the code performance comparisons were made to
implementations in other languages (R, Matlab and C#).
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