Introduction	Convergence analysis o o	Implementation O O	Results and comparisons	Appendix	Authors	Bibliography

Empirical Convergence Analysis Of Genetic Algorithm For Solving Unit Commitment Problem

Domen Butala

Coauthors: doc. dr. Dejan Velušček doc. dr. Gregor Papa

Ljubljana, September 13th, 2014

<□▶ <□▶ < □▶ < □▶ < □▶ = □ - つへ⊙

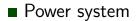
Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00 0			

1 Introduction

2 Convergence analysis

- An Upper Bound on the Convergence Speed
- Convergence of Homogenous Algorithm
- Combination of Both Approaches

3 Implementation


- Problem formulation
- Algorithm
- 4 Results and comparisons
 - One-point crossover
 - Multi-point crossover
- 5 Appendix

6 Authors

7 Bibliography

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00			

Introduction

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00			

Power system

Unit Commitment problem?

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00			

Power system

Unit Commitment problem?

Motivation for an optimization approach

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00			

Power system

Unit Commitment problem?

- Motivation for an optimization approach
- Techniques as MIP, MILP, LR, Benders Decomposition, Dynamic Programming, ...

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
	•		00			

An Upper Bound on the Convergence Speed

An Upper Bound on the Convergence Speed

Theorem

[1] Let the size of population of the GA be $n \ge 1$, coding length l > 1, mutation probability $0 < p_m \le \frac{1}{2}$ and let $\{\vec{X}_t, t \ge 0\}$ be the Markov chain population, $\pi^{(t)}$ distribution of t^{th} generation of \vec{X}_t and π be the stationary distribution. Then it holds

$$||\pi^{(k)} - \pi|| \le (1 - (2p_m)^{nl})^k.$$

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00			
	•					

Convergence of Homogenous Algorithm

Convergence of Homogenous Algorithm

Theorem

[2] Let a, b, c > 0 be constants and i intensity perturbations of algorithm. If it holds

$$m > rac{an+c(n-1)\Delta^{\otimes}}{\min(a,b/2,c\delta)},$$
 (1)

then

$$\forall x \in S^N: \qquad \lim_{i \to \infty} \lim_{t \to \infty} P([X_t^i] \subset f^* | X_0^i = x) = 1.$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00 0			
	•					

Combination of Both Approaches

Combination of Both Approaches

Idea, to get the best algorithm possible, is to set a sequence of parameters $\{(n_t, p_m(t)), t \ge\}$ that it holds $n_t < n_{t+1}$ and $p_m(t) > p_m(t+1)$.

A Genetic algorithm set like this could be called a variable-structure GA [1].

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			00 0			

Problem formulation

Problem formulation

$$\min_{\substack{x_{i,t}^{type} \\ s_{i,t}^{t}}} \left\{ \sum_{t=1}^{T} \sum_{i=1}^{n} (mp_{i,t} x_{i,t}^{type} + \max\{s_{i,t} - s_{i,t-1}, 0\} sc_{i}) \right\} \\
\sum_{i=1}^{n} x_{i,t}^{type} \ge PDP_{t}(price), \forall t \qquad (2) \\
s_{i,t} = \left\{ \begin{array}{cc} 1, & \text{``if } x_{i,t}^{type} > 0, \\ 0, & \text{otherwise.} \end{array} \right\}, \forall t, i \qquad (3) \\
st_{i,t} = (-1)^{1-s_{i,t}} \sum_{i=1}^{T} 1_{\left\{ s_{i,t} = s_{i,\bar{t}} \forall \bar{t} \in I \land s_{i,t-a-1} = s_{i,t+b+1} = 1 - s_{i,t} \right\}} \\
st_{i,t} \ge tup_{i} \lor st_{i,t} \le -tdown_{i}, \forall t, i \qquad (5) \\
x_{i,t} = xmax_{i,t} \qquad (6)$$

Introduction	Convergence analysis O O	Implementation ○ ●	Results and comparisons 00 0	Appendix	Authors	Bibliography
Algorithm						

・ロト 《母 》 《玉 》 《玉 》 (日)

Introduction	Convergence analysis O O	Implementation ○ ●	Results and comparisons 00 0	Appendix	Authors	Bibliography
Algorithm						

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへ⊙

- 1: t = 0
- 2: P(t) =SetInitialPopulation(P)
- 3: Evaluate(P(t))
- 4: while not EndingCondition() do
- 5: t + = 1
- 6: P(t) = Selection(P(t-1))

Introduction	Convergence analysis O O	Implementation ○ ●	Results and comparisons 00 0	Appendix	Authors	Bibliography
Algorithm						

- 1: t = 0
- 2: P(t) =SetInitialPopulation(P)
- 3: Evaluate(P(t))
- 4: while not EndingCondition() do
- 5: t + = 1

6:
$$P(t) = \text{Selection}(P(t-1))$$

7:
$$P(t) = \text{Crossover}(P(t))$$

Introduction	Convergence analysis O O	Implementation ○ ●	Results and comparisons 00 0	Appendix	Authors	Bibliography
Algorithm						

- 1: t = 0
- 2: P(t) =SetInitialPopulation(P)
- 3: Evaluate(P(t))
- 4: while not EndingCondition() do
- 5: t + = 1

6:
$$P(t) = \text{Selection}(P(t-1))$$

7:
$$P(t) = \text{Crossover}(P(t))$$

8: P(t) = Mutation(P(t))

Introduction	Convergence analysis O O	Implementation ○ ●	Results and comparisons 00 0	Appendix	Authors	Bibliography
Algorithm						

- 1: t = 0
- 2: P(t) =SetInitialPopulation(P)
- 3: Evaluate(P(t))
- 4: while not EndingCondition() do
- 5: t + = 1

6:
$$P(t) = \text{Selection}(P(t-1))$$

7:
$$P(t) = \text{Crossover}(P(t))$$

- 8: P(t) = Mutation(P(t))
- 9: Evaluate(P(t))

10: end while

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Convergence analysis o o	Implementation 0 0	Results and comparisons ●○ ○	Appendix	Authors	Bibliography			
One-point crossover									

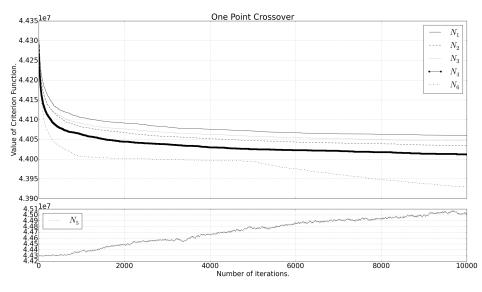
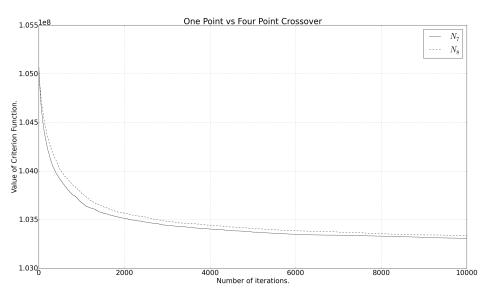

Results

Table 1. Parameter settings.

Parameters / Settings	N_1	N_2	N_3	N_4	N_5	N_6
Iterations	10,000	10,000	10,000	10,000	10,000	10,000
Population size	30	30	30	60	30	60
Elitism	4	4	4	4	0	4
Crossover	OPC	OPC	OPC	OPC	OPC	OPC
Crossover Probability	50%	75%	50%	50%	50%	vary
Mutation Probability						
- population	25%	25%	40%	25%	25%	vary
- individual	20%	20%	25%	20%	20%	vary

Introduction	Convergence analysis 0 0	Implementation O O	Results and comparisons ○● ○	Appendix	Authors	Bibliography
• • •						


One-point crossover

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography
			•			

Multi-point crossover

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography

Algorithm was implemented in the programming language Python.

- Numpy
- Cython
- Numba

On some parts of the code performance comparisons were made to implementations in other languages (R, Matlab and C#).

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の へ ()

Introduction	Convergence analysis O O O	Implementation O O	Results and comparisons 00 0	Appendix	Authors	Bibliography

Domen Butala

Financial Mathematics, Faculty of Mathematics and Physics, Ljubljana, Slovenia domen.butala@yahoo.com

Dejan Velušček

Department of Mathematics, Faculty of Mathematics and Physics, Ljubljana, Slovenia dejan.veluscek@fmf.uni-lj.si

Gregor Papa

Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia gregor.papa@ijs.si

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の へ ()

Introduction	Convergence analysis	Implementation	Results and comparisons	Appendix	Authors	Bibliography

- Y. Gao, An Upper Bound on the Convergence Rates of Canonical Genetic Algorithms. Complexity International, Vol. 5, 1998.
- R. Cerf, Asymptotic Convergence of Genetic Algorithms. CNRS, Université d'Orsay, Paris, 1997.