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Evolutionary Optimization of a Robust Controller for Flight Maneuvers 137
Salvatore D’Angelo, Edmondo Minisci, Marco Dutto

Evolutionary Balancing of Healthy Meals 147
Barbara Koroušić Seljak



Preface

Solving complex computational problems requires powerful hardware and
clever algorithms. Thanks to unimagined technological progress, computing
power has been increasing exponentially over generations of computers, and all
recent trends indicate the growth rate will continue in the future. In parallel to
this process, computer scientists are developing novel algorithms to solve the
tasks whose complexity is often beyond human comprehension. Engineering
design, dynamic systems control, econometric modeling and bioinformatics are
only few fields where traditional well-understood algorithms are insufficient.
In search for better computational techniques, biological systems have proved
to be a rich source of inspiration. This comes at no surprise: efficiency and
perfection of natural phenomena, such as the evolution of species, collective
behavior of organisms, their adaptivity and information processing capabilities,
are still far ahead of those exhibited by man-made systems.

Mimicking the principles of biological systems and employing them as
problem-solving heuristics is a particularly well-established practice in the de-
sign of optimization algorithms. In some cases, computer models were origi-
nally implemented to formally study the phenomena occurring in nature, and
later adopted as general-purpose optimization techniques by computer special-
ists. Genetic algorithms are the most widely known technique of such origin.
On the other hand, some approaches, such as ant colony optimization, arose
from straightforward attempts of applying concepts from nature in solving op-
timization problems of a certain class. After years of theoretical and empirical
research, bioinspired optimization has reach the stage where the algorithms,
either in the form of commercial software packages or tailored applications,
are being regularly used in solving complex optimization problems in science,
engineering and business. Interestingly, many techniques produce excellent
results in practice despite the lack of the theory explaining and predicting their
behavior.

This volume contains some of the latest theoretical and practical contribu-
tions to the field of bioinspired optimization. The papers were presented at the
International Conference on Bioinspired Optimization Methods and their Ap-
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plications (BIOMA 2004), held in Ljubljana, Slovenia, on 11 and 12 October
2004.

The aim of organizing (the first) BIOMA was to bring together a group of
theoreticians and practitioners to present their recent achievements in a single
stream of talks, and exchange the ideas in informal discussions. We felt that, in
addition to numerous well-established large conference series, an event of this
format could also contribute to the progress of the field and its promotion. The
participating authors were mainly attracted through our research links. After
the review process, 14 papers were accepted for publication, contributed by
26 (co)authors coming from 7 countries. Thomas Bäck, a distinguished ex-
pert in theory and applications of evolutionary algorithms, presented the work
of himself and coauthors from NuTech Solutions on evolution strategies as
a bioinspired optimization tool for engineering. The remaining contributions
were divided into two categories, one dealing with theoretic and algorithmic
issues, and the other presenting practical applications. The latter addressed a
variety of real-world problems, such as production process optimization and
scheduling, engineering design and testing, flight maneuvers control, and bal-
ancing of healthy meals. In addition to oral presentations, the participants
demonstrated several software packages and applications in a demo session.

BIOMA 2004 was sponsored by the Ministry of Science, Education and Sport
of the Republic of Slovenia. It was organized as part of the 7th International
Multiconference Information Society (IS 2004) taking place at the Jožef Stefan
Institute, Ljubjana, from 11 to 15 October 2004. BIOMA was held at the newly
founded Jožef Stefan International Postgraduate School that opens for the first
generation of students in the academic year 2004/2005 and will also include
bioinspired optimization in its curriculum.

We are grateful to the conference sponsors, members of the program and
organizing committees, the invited speaker, and regular paper and software
presenters for taking part in making the conference successful. Shaping the
conference and putting this volume together was enjoyable, and we hope you
will find the event stimulating and the book informative.

Ljubljana, 24 September 2004

BOGDAN FILIPIČ AND JURIJ ŠILC
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Abstract The basic variants of evolution strategies, a special instance of evolutionary algo-
rithms, are discussed in this paper. Gleaned from the model of organic evolution,
evolution strategies are characterized by the additional self-adaptive process that
fine-tunes their strategy parameters during optimization. This property is a fun-
damental ingredient for the application to challenging engineering applications
involving resource-intensive simulation runs. For one instance of such applica-
tions, the single-criterion and multi-criterion airfoil design problem, the results
of an evolution strategy are presented and discussed in this paper.

Keywords: Evolutionary algorithm, Multi-criterion optimization, Airfoil design

1. Introduction
Evolution strategies [1, 10, 13] are one of the main paradigms in the field

of evolutionary computation, focusing on algorithms for adaptation and opti-
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mization which are gleaned from the model of organic evolution. Evolution
strategies are nowadays a widely accepted method for optimization in the field
of engineering.

In the following sections we will give an overview of the working principles
of evolution strategies and then demonstrate its capabilities with an example of
the field from airfoil design. Finally, some conclusions are discussed.

2. The Algorithm
2.1 Working Principle

In general, evolutionary algorithms mimic the process of natural evolution,
the driving process for the emergence of complex and well adapted organic
structures, by applying variation and selection operators to a set of candidate
solutions for a given optimization problem. The following structure of a general
evolutionary algorithm reflects all essential components of an evolution strategy
as well (see e.g. [3]):

Algorithm 1:

t := 0;
initialize P (t);
evaluate P (t);
while not terminate do

P ′(t) := variation(P (t));
evaluate(P ′(t));
P (t + 1) := select(P ′(t) ∪Q);
t := t + 1;

end while

In case of a (µ,λ)-evolution strategy, the following statements regarding the
components of Algorithm 1 can be made:

P (t) denotes a population (multiset) of µ individuals (candidate solutions
to the given problem) at generation (iteration) t of the algorithm.

The initialization at t = 0 can be done randomly, or with known starting
points obtained by any method.

The evaluation of a population involves calculation of its members quality
according to the given objective function (quality criterion).

The variation operators include the exchange of partial information be-
tween solutions (recombination) and its subsequent modification by add-
ing normally distributed variations (mutation) of adaptable step sizes.
These step sizes are themselves optimized during the search according
to a process called self-adaptation.
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By means of recombination and mutation, an offspring population P ′(t)
of λ � µ candidate solutions is generated.

The selection operator chooses the µ best solutions from P ′(t) (i.e., Q =
∅) as starting points for the next iteration of the loop. Alternatively, a
(µ+λ)-evolution strategy would select the µ best solutions from the union
of P ′(t) and P (t) (i.e., Q = P (t)).

The algorithm terminates if no more improvements are achieved over a
number of subsequent iterations or if a given amount of time is exceeded.

The algorithm returns the best candidate solution ever found during its
execution.

In the following, these basic components of an evolution strategy are ex-
plained in some more detail. For extensive information about evolution strate-
gies, refer to [1, 10, 13].

Using a more formal notation following the outline given in [14, 12], one
iteration of the strategy, that is a step from a population P (T ) towards the next
reproduction cycle with P (T+1), can be modeled as follows:

P (T+1) := optES(P (T )) (1)

where optES : Iµ → Iµ is defined by

optES := sel ◦ (mut ◦ rec)λ , (2)

operating on an input population P (T ) according to

optES(P (T )) = sel(P (T ) t
(

tλ
i=1{mut(rec(P (T )))}

)

(3)

(here, t denotes the union operation on multisets). Equation (3) clarifies that
the population at generation T + 1 is obtained from P T by first applying a λ-
fold repetition of recombination and mutation, which results in an intermediate
population P ′ of size λ, and then applying the selection operator to the union
of P (T ) and P ′. Recall that the recombination operator generates only one
individual per application, which can then be mutated directly.

In the following, both the formal as well as the informal way of describing
the algorithmic components will be used as it seems appropriate.

2.2 The Structure of Individuals
For a given optimization problem

f : M ⊆ IRn → IR , f(~x) → min



6 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

an individual of the evolution strategy contains the candidate solution ~x ∈ IRn

as one part of its representation. Furthermore, there exist a variable amount
(depending on the type of strategy used) of additional information, so-called
strategy parameters, in the representation of individuals. These strategy pa-
rameters essentially encode the n-dimensional normal distribution which is to
be used for the variation of the solution.

More formally, an individual ~a = (~x, ~σ, ~α) consists of up to three compo-
nents ~x ∈ IRn (the solution), ~σ ∈ IRnσ (a set of standard deviations of the nor-
mal distribution), and α ∈ [−π, π]nα (a set of rotation angles representing the
covariances of the n-dimensional normal distribution), where nσ ∈ {1, . . . , n}
and nα ∈ {0, (2n−nσ) ·(nσ−1)/2}. The exact meaning of these components
is described in more detail in Sec. 2.3.

2.3 Mutation
The mutation in evolution strategies works by adding a normally distributed

random vector ~z ∼ N(~0,C) with expectation vector ~0 and covariance ma-
trix C−1, where the covariance matrix is described by the mutated strategy
parameters of the individual. Depending on the amount of strategy parame-
ters incorporated into the representation of an individual, the following main
variants of mutation and self-adaptation can be distinguished:

nσ = 1, nα = 0: The standard deviation for all object variables is
identical (σ), and all object variables are mutated by adding normally
distributed random numbers with

σ′ = σ · exp(τ0 · N(0, 1)) (4)
x′

i = xi + σ′ · Ni(0, 1) , (5)

where τ0 ∝ (
√

n)−1. Here, N(0, 1) denotes a value sampled from a
normally distributed random variable with expectation zero and variance
one. The notation Ni(0, 1) indicates the random variable to be sampled
anew for each setting of the index i.

nσ = n, nα = 0: All object variables have their own, individual standard
deviation σi, which determines the corresponding modification according
to

σ′
i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)) (6)

x′
i = xi + σ′

i · N(0, 1) , (7)

where τ ′ ∝ (
√

2n)−1 and τ ∝ (
√

2
√

n)−1.

nσ = n, nα = n · (n−1)/2: The vectors ~σ and ~α represent the complete
covariance matrix of the n-dimensional normal distribution, where the
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covariances are given by rotation angles αj describing the coordinate
rotations necessary to transform an uncorrelated mutation vector into a
correlated one. The details of this mechanism can be found in [1] (pp. 68–
71) or [11]. The mutation is performed according to

σ′
i = σi · exp(τ ′ · N(0, 1) + τ · Ni(0, 1)) (8)

α′
j = αj + β · Nj(0, 1) (9)

~x′ = ~x + N(~0,C(~σ′, ~α′)) (10)

where N(~0,C(~σ′, ~α′)) denotes the correlated mutation vector and β ≈
0.0873.

The amount of information included into the individuals by means of the self-
adaptation principle increases from the simple case of one standard deviation
up to the order of n2 additional parameters in case of correlated mutations,
which reflects an enormous degree of freedom for the internal models of the
individuals. This growing degree of freedom often enhances the global search
capabilities of the algorithm at the cost of the expense in computation time, and
it also reflects a shift from the precise adaptation of a few strategy parameters (as
in case of nσ = 1) to the exploitation of a large diversity of strategy parameters.

One of the main design parameters to be fixed for the practical application
of the evolution strategy concerns the choice of nσ and nα, i.e., the amount of
self-adaptable strategy parameters required for the problem.

2.4 Recombination
In evolution strategies recombination is incorporated into the main loop of

the algorithm as the first variation operator and generates a new intermediate
population of λ individuals by λ-fold application to the parent population, cre-
ating one individual per application from % (1 ≤ % ≤ µ) individuals. Normally,
% = 2 or % = µ (so-called global recombination) are chosen. The recombina-
tion types for object variables and strategy parameters in evolution strategies
often differ from each other, and typical examples are discrete recombina-
tion (random choices of single variables from parents, comparable to uniform
crossover in genetic algorithms) and intermediary recombination (arithmetic
averaging). A typical setting of the recombination consists in using discrete
recombination for object variables and global intermediary recombination for
strategy parameters. For further details on these operators, see [1].

When µ > 1 is chosen, the recombination operator needs also be specified
for a (µ,λ)-evolution strategy .
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2.5 Selection
Essentially, the evolution strategy offers two different variants for selecting

candidate solutions for the next iteration of the main loop of the algorithm:
(µ,λ)-selection and (µ+λ)-selection.

The notation (µ, λ) indicates that µ parents create λ > µ offspring by means
of recombination and mutation, and the best µ offspring individuals are deter-
ministically selected to replace the parents (in this case, Q = ∅ in Algorithm 1).
Notice that this mechanism allows that the best member of the population at
generation t + 1 might perform worse than the best individual at generation t,
i.e., the method is not elitist, thus allowing the strategy to accept temporary de-
teriorations that might help to leave the region of attraction of a local optimum
and reach a better optimum. Moreover, in combination with the self-adaptation
of strategy parameters, (µ,λ)-selection has demonstrated clear advantages over
its competitor, the (µ+λ) method.

In contrast, the (µ+λ)-strategy selects the µ survivors from the union of
parents and offspring, such that a monotonic course of evolution is guaranteed
(Q = P (t) in Algorithm 1).

For reasons related to the self-adaptation of strategy parameters, the (µ,λ)-
evolution strategy is typically preferred.

2.6 Termination Criterion
There are several options for the choice of the termination criterion, includ-

ing the measurement of some absolute or relative measure of the population
diversity (see e.g. [1], pp. 80–81), a predefined number of iterations of the main
loop of the algorithm, or a predefined amount of CPU time or real time for
execution of the algorithm.

3. Airfoil Design
3.1 Introduction

Airfoil design provides a wealth of multi-criteria optimization problems. The
layout of a wing heavily influences its efficiency regarding e.g. fuel consump-
tion, etc. Efficiency of an airfoil design can not be measured independently
of the anticipated use of the wing, since even the most efficient design must
still be able to produce enough lift at low speeds to allow a plane to take off.
Different flight conditions like starting and landing or cruising at high altitudes,
induce different conditions for optimality. This naturally leads to the formula-
tion of a multi-criteria optimization problem where each flight condition (flight
point) states its own objective function. The airfoil design problem considered
in this study and the resulting objective function are introduced in Sec. 3.2 and
3.3. Section 3.5 introduces basic features of the Strength Pareto Evolutionary
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Algorithm 2 (SPEA2) and the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) which for this study represent the state of the art in evolutionary
multi-criteria optimization.

3.2 The Design
One of the main characteristics of a wing design is its pressure profile, i.e.

the distribution of pressure over the chord. The inverse design problem under
study is to find the wing profile that produces a given pressure profile at given
flow conditions. The test problem at hand was proposed for the Aeroshape

(http://aeroshape.cira.it) project and consists of two target wing de-
signs, namely the standard NACA0012 wing at typical starting flow conditions
and the standard NACA4412 wing at typical cruise flow conditions. The flow
conditions for the two wings are given in Table 1; the target wing designs and
their respective pressure profiles are shown in Fig. 1.

Table 1. Flow conditions for high lift with the NACA4412 wing and for low drag with the
NACA0012 wing.

High Lift Low Drag

Target wing NACA0012 NACA4412
Mach number 0.2 0.77
Reynolds number 5.1 · 106 107

Angle of Attack 10.8◦ 1.0◦

cw 2.252 · 10−2 1.682 · 10−2

ca 1.252 0.5794

The optimization goal is the identification of a set of wing designs whose
pressure distributions provide a certain performance for the lift off situation
at the expense of cruise condition efficiency. This set is supposed to con-
tain designs very similar to the NACA0012 design on the one hand and the
NACA4412 design on the other hand as extreme solutions. Ultimately, an en-
gineer would select one design from this collection of wing profiles that fits
best to a given aeroplane concept where neither the standard NACA0012 nor
the standard NACA4412 would be an optimal choice.

The rational behind using the NACA0012 and NACA4412 designs is to
construct a test case that contains all major difficulties of fluid dynamics and
its simulation, but at the same time produces verifiable and comprehensive
results. In a real world application, the target pressure distribution may be
given independently from a standard airfoil.
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Figure 1. NACA0012 with pressure profile (left) and NACA4412 with pressure profile (right).

3.3 Objective Function
The pressure distribution p(s) at position s of the chord is computed by solv-

ing the two-dimensional Navier-Stokes Equations. Together with the pressure
p∞, the density ρ∞ and the speed ~v∞ of the surrounding stream the value of

cp(s) =
p(s) − p∞

ρ∞
2 · ~v2

∞

(11)

is calculated, so that the two objective functions to be minimized are the
cumulated squared differences between the actual pressure profile of the current
configuration and the target pressure profiles:

f1(~x) =

∫ 1

0

[

c~x
p(s) − cld

p (s)
]2

ds (12)

f2(~x) =

∫ 1

0

[

c~x
p(s) − chl

p (s)
]2

ds (13)

where s is normalized by the chord length (s ∈ [0, 1]), c~x
p is the pressure profile

of the current design, cld
p is the low-drag pressure profile of the NACA4412

wing and chl
p is the high-lift pressure profile of the NACA0012 wing.

Since a single evaluation of the objective function is costly the total number
of evaluations was restricted to 1000. Figure 2 give some indication of the
quality of the problem: For both objective functions the function values are
plotted against the first two design variable dimensions. It is quite clear from
Fig. 2 that any optimization algorithm may easily get trapped in local optima.



Evolution Strategies: Bioinspired Optimization for Engineering 11

Figure 2. Objective function landscape of f1 (left) and f2 (right), projected on the first 2
dimensions.

3.4 Single-Criteria Optimization
The first goal is to re-design one of the extreme solutions introduced in

Sec. 3.2. Here, we have chosen the NACA0012 wing for typical starting flow
conditions. Thus, we need only the objective function (12).

Starting with a standard implementation of an evolution strategy [2] differ-
ent parameter settings have been studied. Different numbers of parents and
offspring have been tested with standard evolution strategies using comma and
plus selection schemes. Varying the proportion of parents to offspring directly
influences the selection pressure of the algorithm and the goal of search. De-
creasing the proportion leads to a smoother selection pressure and thus to more
exploring the search space. On the other hand a larger proportion leads to a
larger selection pressure and more exploiting the search space.

Furthermore 1 and n step sizes for the mutation have been tried to have
one global step size or one step size in each direction of the search. Different
kinds of recombination have been performed, especially intermediate recombi-
nation on the strategy parameters in combination with intermediate or discrete
recombination on the object variables.

First results showed that the (5+20)-ES seems most promising for further
investigations. Recombination was applied to the object variables in a discrete
way and to the set of strategy parameters in an intermediate way.

Using derandomized mutation step size control [8] the results could be further
improved. This best ES variant outperformed the best values known so far in
90% of all tests.

The airfoil shape and pressure distribution of the best result achieved with
the derandomized step size control mutation is presented in Fig. 3. In the left
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Figure 3. Airfoil shape (left) and pressure distribution (right) found with the ES variant.

part of the figure the airfoil shape is shown and in the right part the pressure
can be seen.

A major difference in the airfoil shape between the results so far and the
ones presented here is hard to recognize. The experts in the field recognize
the advantage of the ES variant in the lower surface. This advantage is much
clearer visible in the pressure distribution. Here the pressure generated with
the ES variant is much more in coincidence with the given target than the ones
so far. This result is in deed 14 % better than the best known so far.

Another major difference is the ability to start the optimization process with
randomly chosen individuals, i.e. pressure distributions and airfoil shapes.
This fact will become very important when leaving the re-design testcase and
looking for really new airfoil designs. Here starting with already predefined
airfoils will narrow search to a specific search space area and maybe exclude
the best solutions.

3.5 Multi-Criteria Optimization
The main problem in evolutionary multi-criteria optimization lies in the se-

lection operator that chooses the parent individuals for the next reproduction
cycle. The single-criteria selection operators of (µ + λ) and (µ, λ) Evolution
Strategies rely on the total order of scalar fitness values. Since in general, there
is no such total order given for vector valued objective functions, it must be
derived by additional selection criteria. SPEA2 and NSGA-II both prefer non-
dominated individuals to dominated ones and they both try to establish evenly
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spread parent populations by preferring parents in sparsely populated regions
of the objective function space.

The SPEA2 operator accumulates information on dominance relationships
by summing so called strength values that are computed for an individual by
counting the number of individuals it dominates. To enable comparison of
individuals with identical strength count, a density value 0 ≤ ρ ≤ 1 based on a
k-nearest neighbor method is added that is low for sparsely populated regions
of the objective function space. Additionally, a special “exclude worst” method
based on smallest pairwise distances is applied, if a Pareto front must be reduced
to a given size. The details of the algorithm can be found in [6].

The NSGA-II operator uses the non-dominated sorting method to split a
population in disjunct Pareto fronts, such that in each front individuals do not
dominate each other. NSGA-II then adds new parent individuals front wise,
starting with the global Pareto front. If the addition of the next Pareto front
would yield more than the prescribed number of new parents, each individual
of the current front is assigned a density value based on the city block distance
of its closest neighbors. As with SPEA2, individuals from sparsely populated
regions of the objective function space are preferred. Details on the methods
used in NSGA-II can be found in [4, 5].

Since the computational cost of the CFD-Simulation does not allow numer-
ous experiments even for the two-dimensional models, we show representative
results of single runs from a number of experiments. We do not try to average
several runs in any way, because the small number of experiments that could
be conducted does not allow meaningful statistics. Additionally, from visual
inspection, the runs made did not significantly differ from each other.

The pareto-fronts displayed in Fig. 4, 5 and 6 contain a reference Pareto
front (denoted “Reference”) that is the common Pareto front of all optimization
experiments that were conducted for this study and results computed with a
multi-criteria genetic algorithm (MOGA) as described in [9]. The reference set
was included to show the quality of a single run optimization compared to an
aggregated pareto-set that needs much more fitness function evaluations and to
supply a benchmark line the individual algorithms have to approach.

Figure 4 demonstrates that SPEA2 and NSGA-II are closer to the reference
set than the MOGA. SPEA2 is slightly better in reconstructing the NACA4412
profile, while NSGA-II is slightly more successful for the NACA0012 profile.
In the compromise region there is hardly a difference between SPEA2 and
NSGA-II.

Figure 5 displays a rather surprising result: The SPEA2 selection operator
in combination with the pooling mutation [15] converges close to the reference
pareto-set in the compromise region, but fails to place good solutions at the
tails of the reference set. The NSGA-II selection operator, contrarily, has a
better spread of solutions when combined with pooling mutation, while failing
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Figure 4. Pareto front with derandomized mutation and NSGA-II- and SPEA2-Selection.
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Figure 5. Pareto front with pooling mutation and NSGA-II- and SPEA2-Selection.

to closely approach the reference pareto-set. But still, both Evolution Strategies
outperform the MOGA.

Figure 6 finally shows that both selection methods produce nicely spread
solutions when combined with Schwefel’s mutation [7] which are not as close
to the reference set as with the derandomized mutation. Once again, the pareto-
set produced by the MOGA is worse than the Evolution Strategies’ solutions.
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Figure 6. Pareto front with Schwefel’s mutation and NSGA-II- and SPEA2-Selection.

It is difficult to make serious judgements on the basis of the few data avail-
able. Comparing the results available from the experiments, the derandomiszd
mutation operator seems to work very well, but neither Schwefel’s mutation nor
the pooling mutation are clearly inferior. Clarification of the question which
mutation operator to choose will involve further tests with extended computa-
tional effort that was beyond the scope of this study.

The same statement holds for the choice of selection method. The results
with the pooling mutation as shown in Fig. 5, where the NSGA-II selection
provides better spread of solutions than the SPEA2 selection and the SPEA2
selection converges closer to the reference set than the NSGA-II selection,
should be considered with some suspicion, as there seems to be no obvious
reason for this behavior that could be attributed to the selection method. In fact
the effect was less obvious in the other experiments with pooling mutation. For
the airfoil design problem, as stated in this study, SPEA2 and NSGA-II perform
comparably well.

It can clearly be seen from the results, though, that using NSGA-II or SPEA2
in combination with an Evolution Strategy yields better performance than using
the MOGA as described in [9]. This result is supported by all experiments that
were made for the airfoil design problem.

4. Conclusions
As demonstrated by numerical experiments on scientific test functions (see

e.g., [13]), evolution strategies yield very good optima in case of nonlinear,
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high-dimensional global optimization problems. The self-adaptation of strategy
parameters (i.e., variances and covariances of the normally distributed mutation
operator) is an important and mandatory component of the algorithm to achieve
this quality as a global optimization method. Self-adaptation is clearly the most
distinguishing feature of evolution strategies, and has been increasingly studied
and accepted by the evolutionary computation community over the past decade.

In many practical applications to engineering optimization problems, evo-
lutionary algorithms have been widely neglected for a quite long period of
time, mostly because the number of function evaluations - i.e., simulator calls
- required seemed unacceptable to practitioners working with these simula-
tors. Given the fact that simulator runtimes can range from several minutes to
several hours, and the short project cycles in industry, this seems completely
understandable.

Evolution strategies with self-adaptation, however, can be used with very
small population sizes (e.g., a (1, 7)-strategy) and few generation cycles, such
that they can achieve the desired balance between minimization of resource
utilization (i.e., simulator calls) and finding an optimum as good as possible.
Indeed, the application to airfoil design problems as discussed in this paper,
with 103 simulator calls, by far is not representative of the extreme end of that
spectrum: At NuTech Solutions, we are currently using evolution strategy vari-
ants with as few as around 102 simulator calls for high-dimensional problems
(around 100 to 150 design parameters), and the results beat any of the optimizers
that have been used previously by clients of NuTech Solutions.

These variants of evolution strategies, being under constant further develop-
ment (both from an academic and a commercial point of view), exploit methods
such self-adaptation and meta-modelling and are clearly defining the state-of-
the-art in global optimization under tight resource constraints.
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Abstract In contemporary evolutionary algorithms a main aspect is the capability of adap-
tation. Especially evolution strategies exhibit of an ability that is called self-
adaptation. It is well-known that the selection operator has a great influence
on the obtainable results. Two options are used for the selection operator that
chooses the individuals to survive for the next generation. In the comma strategy
every individual can survive only the current generation. In the plus strategy an
individual could survive for infinity. In natural systems such a mechanism is un-
known. As a starting point, in this study we investigate the influence of different
settings for the maximal life span of the individuals on two test functions.

Keywords: Evolutionary algorithms, Maximal life span

1. Introduction
Evolutionary algorithms (EA) rely on the concept of a population of indi-

viduals representing potential solutions to a given optimization problem. They
mimic nature’s behavior by using the evolutionary operators mutation, recom-
bination and selection. An overview of self-adaptive evolution strategies (ES)
can be found in [2, 3, 5]. In contrast to the standard strategies Schwefel and
Rudolph have given a more generalized variant of evolution strategies [6]. The
so called (µ, κ, λ, ρ)-ES consists of two additional parameters ρ and κ. The
parameter ρ specifies the number of parents that are combined to form a new
offspring. The value of κ defines the maximal life span of a single individual.
By setting κ = 1 we get the well-known comma strategy. Setting κ = ∞ re-
sults in the plus strategy. Using a different value than one or infinity accords to
the natural paradigm in which the maximal life span is limited. The underlying
idea is that fitter individuals might have a longer period to bequest their genetic
material. But a possible super-individual can not dominate the population for

21
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the remaining evolutionary process. Thus, self-adaptation is not hampered for
too long.

Although a limited life span was introduced into ES in 1995, a complete study
of its influence on the obtainable results are not available. We take a first step
in this direction. We use an ES presented in [3] and enhanced by a maximal life
span κ as suggested in [6]. Keeping this in mind we speak of the (µ, κ, λ)-ES in
the rest of this paper. The number of object variables is n (problem dimension)
and the number of mutation step sizes is nσ = 1 (one strategy parameter). For
the experiments we set the number of individuals chosen for recombination
to ρ = 2. The selection scheme chooses the µ best individuals of the set of
parents and offspring if the individual’s age is less than the maximal life span.
Subsequently the age of the surviving individuals is incremented.

The remainder of this paper is organized as follows. In Sect. 2 a motivation
for the usage of different κ is given. Section 3 and 4 present some results on
two well-known test functions. Last, Sect. 5 offers concluding remarks.

2. Some Observations on Super-Individuals
Whereas for the plus strategy λ < µ is a valid value, for κ < ∞ we have to

choose λ ≥ µ. This is necessary because it may occur in one generation that
the maximal life span of all parental individuals is expired. In our study in all
experiments the population sizes are set to µ = 15 and λ = 100.

A short consideration of the theoretical background should show the po-
tential problem of the (µ,∞, λ)-ES. We assume that the current population
consists of an individual IS with a considerably high fitness but inappropriate
setting of the strategy parameters. This super-individual dominates the other
individuals in a way that the probability is very small that the other individuals
produce (with recombination and mutation) an offspring with a higher fitness.
In addition, we assume that the offspring generated by IS have a higher fitness
than other offspring. We now show that there exists a high probability that in
the next generation the whole population consists only of offspring from IS .
This circumstance may lead to a longer period of stagnation.

To estimate this probability we have to distinguish two cases. In case (a)
the only genetic operator used is the mutation operator. If we use an equal
probability for every parent to be the parent of the next offspring, every parent
would produce on mean λ/µ offspring. Using a (15,∞, 100)-ES nearly seven
offspring are generated by IS . Following our assumption regarding the high
fitness of the offspring of IS , all elements are selected for the next parental
generation. Without stating the detailed calculation, the probability that every
individual of the following generation is a direct offspring of IS or its children
is close to 1. This means that in a (15,∞, 100)-ES after two generations almost
every individual is an offspring of the super-individual IS .
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In case (b) we use the recombination operator. Here we distinguish between
two scenarios. In the first scenario we allow cloning which means that both
recombination partners are identical. To receive an impression of the belonging
probability that the whole next generation consists only of offspring from IS we
calculate the mean number of offspring of a single individual. This number is
identical for every individual, so it is for IS . For every offspring the probability
P1 that IS is at least one parent is

P1 = 1 −
(

µ − 1

µ

)ρ

. (1)

With ρ = 2 and a total number of λ offspring every individual is involved in
generating on average

N1 = λ ·
(

1 −
(

µ − 1

µ

)2
)

(2)

offspring. For the case of a (15,∞, 100)-ES this results in ≈ 12.9 offspring.
For the second scenario of case (b) we assume that the recombination operator

uses two different parents. The probability that IS is chosen as one parent for
a single offspring is

P2 = 1 −
(

µ − 1

µ
· µ − 2

µ − 1

)

=
2

µ
(3)

and the mean number of offspring in which IS is involved is

N2 = λ ·
(

2

µ

)

. (4)

With µ = 15, λ = 100 this equals≈ 13.3, where the mean number of generated
offspring is a little bit higher than in the case of possible cloning. The difference
between N2 and N1 follows the simple equation

N2 − N1 = λ ·
(

2

µ

)

− λ ·
(

1 −
(

µ − 1

µ

)2
)

=
λ

µ2
. (5)

To sum up, using the (15,∞, 100)-ES, in the next generation a huge part of the
population may consist of offspring of a super-individual IS .

In contrast to the calculations above we now assume that due to bad settings
of the strategy parameters the offspring generated by IS have such a minor
fitness that they are not selected for the next parental population. In this case
the number of generated offspring by IS is still the same. What changes is the
number offspring from which the next generation is selected. In case (b) this
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number is reduced to λ−N1 or λ−N2 respectively, depending on the chosen
recombination operator. It has already been shown that even slightly different
population sizes may lead to significant different results [4]. An assumption is,
that a limited life span may reduce this attribute. Hence, it would be helpful to
investigate the influence of a limited life span. This is done by the experiments
in the following two sections. For all experiments the number of reproduction
cycles is set to g = 1000. To reduce statistical fluctuations, for each strategy
we perform 31 independent single runs. In every run we collect the function
value of the best individual of the last reproduction cycle.

3. Life Span on the Sphere
For the first test series we conduct experiments on the well-known sphere

model

fsphere(x) =
n∑

i=1

x2
i . (6)

At first, we use a (15,∞, 100)-ES with nσ = 1 mutation step size on the 30-
dimensional sphere model. The initial population is spread around x

(0)
i = 106

and the mutation step size is set to σ(0) = 105. We are interested in the distri-
bution of the life span of every individual. We call an offspring an individual
if it is chosen as a parent for at least one reproduction cycle. Therefore, we
compute the frequency distribution of the life span of all individuals. The result
is depicted in Fig. 1. As most of the individuals (about 74%) died after one
reproduction cycle and no individual lived longer than eight reproduction cycles
it does not make any sense to fit a statistical distribution. Instead it should be
adequate to say that the median life span of all individuals is κ̃ = 1 and the
mean is only slightly higher (κ ≈ 1.3).

In the following paragraphs we investigate the effects of a limitation of the
life span to different values. To do this we use a (15, κ, 100)-ES with varying
κ. As above, we initialize the starting population far away from the optimum
and provide for equal test conditions.

An interesting question is how many of the g · λ offspring are selected to
become parents. In a comma strategy this fraction is maximal because in every
reproduction cycle we select µ individuals from the λ offspring. Thus, the
fraction is µ/λ or exactly 15%. Because in the (15,∞, 100)-ES most of the
individuals died after one reproduction cycle this fraction is near to the maximal
fraction (about 11%). Hence, for this function the influence of a limited life
span should have only a marginal effect on the results.

The distribution of the function values of a (15, 1, 100)-ES are depicted in
Fig. 2. On the sphere it is appropriate to compute the logarithm of these function
values and to plot them in a histogram. The histogram is not sufficient to reflect
the corresponding density. As a consequence we add a simple continuous
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Figure 1. Distribution of the individuals’ life span of a (15,∞, 100)-ES on the sphere. The
distribution is drawn from 31 independent single runs over 1000 reproduction cycles each.

estimation of the probability density function. At this point we do not want
to present a detailed introduction to statistical theory. Instead, we refer to
the relevant literature (e.g., [7, 8]). But it should be remarked that we used
a Gaussian kernel function. This kernel function serves the purpose for an
easy comparison even in the case when the underlying data are skewed and not
normally distributed.
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Figure 2. Distribution of the final function values of a (15, 1, 100)-ES on the 30-dimensional
sphere. 31 independent runs were performed. Additionally to the histogram, a continuous
estimation of the probability density distribution is plotted.

Plotting the density functions of different strategies in one figure leads to a
simple technique for comparing these strategies. For the experiments in this
study we concentrate on the values κ = 1, 2, 3, 5, 10,∞. The results for these
settings are shown in Fig. 3. Without performing a statistical test we could see
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that the density estimators show significant differences. In these experiments
a (15, 1, 100)-ES leads to the best results of the strategies tested. Furthermore,
with increasing κ the strategies lead to more worse results. The worst results
are reached with the plus strategy.
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Figure 3. Estimated probability density distribution of the final function values of a
(15, κ, 100)-ES after 1000 reproduction cycles each on the 30-dimensional sphere using 31
independent runs.

Restricting the life span should result in different frequencies of the life time
of the individuals. But a closer look at the belonging distribution shows that
they are similar to the plus strategy. For κ = 3 the frequency for age 3 is nearly
the same as the sum of the frequencies for ages 3, 4, 5, . . . of the plus strategy.
Moreover, the number of offspring which survived for at least one reproduction
cycle was always nearly identical.

4. Life Span on the Ackley Function
The Ackley function

fAckley(x) = −a · exp



−b ·

√
√
√
√

1

n

n∑

i=1

x2
i



− exp

(

1

n

n∑

i=1

cos (cxi)

)

+ a + e , (7)

a = 20, b = 0.2, c = 2π ,

is an often used function with a moderate multi-modal structure. As Bäck
pointed out, the Ackley function should cause only moderate complications to
an optimization algorithm [1].
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In our experiments we spread the initial population near a local optimum
(xi = 25). Additionally, we choose a non-optimal initialization of the mutation
step size (σ = 5). So, the ES must adapt the step sizes and then leave the
attractor of the local optimum. As it is often the case for multi-modal landscapes,
we assume that a plus strategy stagnates for some time in the attractor of the
local optimum until it could escape, whereas we hope that other variants with
1 ≤ κ < ∞ are able to perform better.

Figure 4 shows the estimated probability density distribution of the final
function values if n = 30. The differences between the strategies are only
marginal and all strategies were able to obtain an acceptable accuracy. The
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Figure 4. Estimated probability density distribution of the final function values of a
(15, κ, 100)-ES after 1000 reproduction cycles each on the 30-dimensional Ackley function
using 31 independent runs.

comparison of the single runs for example κ = 1 and κ = 3 shows that the
differences of the convergence rate are only small, too. Thus, although the
fraction of offspring which became parents in a (15,∞, 100)-ES is only 5%,
for this function there were no significant differences observed between the
strategies with κ ≤ 10.

To get some insight, we take a closer look at the distribution of life span.
In Fig. 5 (left) we see for a plus strategy that some individuals reached a life
span of κ = 30. This indicates that at this moment the adaptation mechanism
worked improper. But with an increasing number of reproduction cycles less
individuals survived for a longer time. And after 35 reproduction cycles the
life span of all individuals are less than four.
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In contrast to this, the right figure shows the distribution of life span for a
(15, 10, 100)-ES. Due to the limited life span the adaptation seems to work
better. This is indicated by the fact that the life span of most individuals is
less than three already after 25 reproduction cycles. At this time the mutation
step size σ has adapted to the problem and in every reproduction cycle some
children are generated that are transferred to the next parental population.
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Figure 5. Distribution of the age of the individuals of the population during the first 50
reproduction cycles of a single run of a (15,∞, 100)-ES (left) and a (15, 10, 100)-ES (right) on
the Ackley function (n = 30). Every circle marks at least one individual of the appropriate age.

For both functions used the application of a limited life span led not to better
results than a usual comma strategy. Therefore, we try a last experiment on the
Ackley function with n = 100. The results of the strategies with 1 < κ < ∞ are
lying between the results of the other two variants (Fig. 6). With an increasing
κ the results grows more and more worse. In this figure the results of the plus
strategy are missing because they are not comparable because many of the single
runs got stuck in an early local optimum with a very bad function value. For
the same problem, Fig. 7 shows the distribution of life span of the plus strategy.
Here, only 3.9% of the offspring survived for at least one reproduction cycle.

5. Conclusion
In real applications it could be observed that single individuals could dom-

inate a whole population inhibiting adaptation. For evolution strategies we
developed the underlying theory and showed that after one or two generations
the whole population could be filled with the offspring of one such a super-
individual.

We took a first step to study if the limitation of life span to 1 < κ < ∞ leads to
better results. For every function tested here, a comma strategy performed best.
For the 100-dimensional Ackley function the conducted experiments indicated
an advantage of 1 < κ < ∞ over κ = ∞. But in the other cases the plus
strategy yielded similar results. A deeper look showed, that on the functions
tested here, the adaptation mechanism worked appropriate, because most of
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Figure 6. Estimated probability density distribution of the final function values of a
(15, κ, 100)-ES after 1000 reproduction cycles each on the 100-dimensional Ackley function
using 31 independent runs.
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Figure 7. Distribution of the individuals’ life span of a (15,∞, 100)-ES on the 100-
dimensional Ackley function. The distribution is drawn from 31 independent single runs over
1000 reproduction cycles each.

the individuals were replaced at the latest after two reproduction cycles. A
limitation of life span promises to yield better results if many individuals reach
a high life span. Further studies must show if this is the case on harder problems.
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Abstract Population based evolutionary algorithms (EA) are frequently used to optimize
on multimodal functions. A common assumption is that during search several
sub-populations might coexist in different attraction regions of the search space.
Practical experience and takeover–time considerations suggest that this is not
true in general. We therefore analyze the stability of sub-populations within
a simplified EA on a two-attractor model, focussing on two extreme cases: (1)
Function values of both local minima are exactly the same and (2) function values
on the first attractor are always better than on the second. Realistic scenarios for
bimodal optimization are assumed to be located in between these two extremes,
such that upper and lower bounds for extinction times can be estimated, e. g. by
Markov chain analysis and empirical studies. The obtained results provide new
insights into the effect of (µ+, λ) selection on the stability of sub-populations and
the effect of genetic drift. Moreover, the effect of idealized niching on the same
scenarios is investigated, leading to an immense increase of the EA’s ability to
perform concurrent search.

Keywords: Evolutionary algorithms, Multimodal fitness landscape, Niching techniques, Ran-
dom genetic drift, Gambler’s ruin
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1. Introduction
EA are preferable tools for optimization on multimodal functions. It has

often been assumed that the strength of EA stems from the ability to search
concurrently in different high performance regions of the search space. Contrary
to this, experimental results on multimodal function optimization suggest that
EA using the panmictic (µ+, λ) selection tend to rapidly concentrate on a single
attractor, even if all optima have the same size and function values. It seems
impossible to maintain individuals in different regions at the same time, without
employing niching techniques.

In this paper we trace back the effect of extinction on neutral landscapes to
random genetic drift dynamics, which can be observed in a simplified scenario.
Though, dealing with an theoretical issue, the paper provides valuable insights
for the practitioner on how to design niching techniques, when searching on
multimodal landscapes.

The paper is structured as follows: First, we demonstrate the effect on a
simple test-case (2-sphere model) (Sect. 2). Second, we ascribe extinction to
random genetic drift dynamics that can be reproduced and analyzed with a
simple Markov model which is set up and analyzed in Sect. 3. Based on the
theoretical observation we motivate a design principle for niching techniques
and demonstrate its benefit on the test case (Sect. 4).

2. Population Dynamics on a Bimodal Test-Case
As an example, the extinction of sub-populations has been observed for

the minimization of a simple two-sphere problem f(x) = min((x1 − 1)2 +
x2

2, (x1 + 1)2 + x2
2) (cf. Fig. 1).

Algorithm 1 describes the (µ+, λ)-EA [2] that will be studied in this paper. Let
I define the individual space. Each individual a ∈ I consists of information on
its position in the search space and its objective function value. Furthermore, let
Pt ∈ I

µ, Qt ∈ I
λ and Mt ∈ I

ν denote multisets of individuals (or populations)
with ν = µ + λ for the (µ + λ) selection and ν = λ for the (µ, λ) selection.
Pt will be termed the parent populations, while Qt will be termed the offspring
population for t = 0, . . . , tmax.

The EA starts with initializing the population of parents Pt in the individual
space I. Then the following procedure is repeated while the generation counter
does not exceed a user defined maximum tmax: Generate a multiset of λ off-
spring by means of variation operators (usually recombination and mutation),
then select the best µ individuals out of Mt. Here Mt = Qt in case of (µ, λ)
selection and Mt = Qt ∪ Pt in case of (µ + λ) selection. Finally increase the
generation counter and jump to the beginning of the loop.

We make the convention that in case of equal objective function values for
Mt, sel(Mt) draws randomly k individuals out of the Mt individuals, without
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Algorithm 1: Basic EA

t← 0
Pt ← init() /* Initialize population Pt ∈ I

µ*/
while t < tmax do

Qt ← gen(Pt) /* Generate Qt ∈ I
λ by variation operators */

Mt ←
{

Qt for (µ, λ) selection
Qt ∪ Pt for (µ + λ) selection

Pt+1 ← sel(Mt) /* Select µ best individuals from Mt for Pt+1 */
t← t + 1

end while

choosing one of the individuals twice and without preferring offspring individ-
uals in case of (µ + λ) selection.

Figure 2 shows the average extinction time and probabilities for the (µ+λ)-
EA. It can be observed that the takeover probability of one sub-population grows
proportionally with its ratio in the initial population.

3. Markov Model for the Extinction Dynamics
Imagine an objective function (for minimization) with two large local op-

timal regions with equal or slightly different optimal function values. In be-
tween these plateaus there is a large barrier with extremely high function values
(Fig. 3), such that it is very improbable that an individual from one area crosses
the barrier by a single mutation. This is similar to the case that the optimiza-
tion has reached the bottom of two equal or similar local optima of a bimodal
function with flat bottoms.

In order to simulate the dynamics of the (µ+, λ)-EA on such a system, let us
define the following rules of the game:

For a population Pt at a time t let black(Pt) define the number of individuals
on the first attractor (we will call them black individuals). Accordingly, µ −
black(Pt) individuals are located on the second attractor (we call them white
individuals). Furthermore, let us assume that all individuals on an attractor have
the same function value. Individuals cannot move from one attractor to another
attractor or leave their attractor by means of mutation. Hence, the reduced
mutation operator simply results in a copy of the individual.

Assuming an initial population with a specified number of black individuals,
we are now interested in the dynamics of the simplified EA for the case that (1)
the function value for both plateaus is equal and (2) the function value for the
plateau that contains the black individuals is better than the function value on
the plateau that contains the white individuals. Markov chain analysis can be
a powerful tool for understanding simple models of evolution [3, 5]. Next, we
provide the reader with the derived Markov chain model.
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Figure 1. Two-sphere model: Crosses mark starting points for the EA.
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Figure 2. Extinction times (left) and probabilities (right) for a (µ + 7µ)-ES with Gaussian
mutation on the two sphere model (with 2 dimensions) averaged from 5000 runs.
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Figure 3. Schematic draw of the instantiations of the two-attractor model. The left figure
describes the case with equal function values in both attractor basins and the right figure describes
the case of better function values for the black individuals than that for the white individuals.

3.1 Deriving the Transition Probabilities
Let k denote the number of black individuals in the initial population. Then

we are interested in the probability pj(k) for j black individuals in the subse-
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quent population. This can be obtained by dividing the EA into two steps - the
generation of individuals and the selection of Pt+1. A possible generational
transition could be described as

Pt = {•, . . . , •
︸ ︷︷ ︸

k

, ◦, . . . , ◦
︸ ︷︷ ︸

µ−k

} −→
generate Qt = {•, . . . , •

︸ ︷︷ ︸

l

, ◦, . . . , ◦
︸ ︷︷ ︸

λ−l

} (1)

−→
replace Pt+1 = {•, . . . , •

︸ ︷︷ ︸

j

, ◦, . . . , ◦
︸ ︷︷ ︸

µ−j

} (2)

Then the transition matrix of the whole evolution step reads:

P := (pk,j)k∈{0,...,µ},j∈{0,...,µ} , (3)

with

pk,j =

λ∑

l=0

p
gen
l (k) · psel

j (l, k) . (4)

Here p
gen
l (k) describes the transition probabilities of the procedure gen(Pt)

p
gen
l (k) = Pr(black(Qt) = l|black(Pt) = k) (5)

and psel
j (l, k) describes the transition probabilities for the procedure sel(Mt)

psel
j (l, k) = Pr(black(Pt+1) = j|black(Pt) = k ∧ black(Qt) = l) . (6)

The transition probabilities p
gen
l (k) for the generate function are the same

for all selection schemes studied here:

p
gen
l (k) =

(
k

µ

)l

·
(

µ − k

µ

)λ−l

·
(

λ

l

)

. (7)

Table 1 shows the transition probabilities that are instantiated for different selec-
tion methods and assumptions about the function values on the two attractors.

3.2 Markov Chain Analysis
Now, we can apply Markov chain analysis [7] in order to analyze the dy-

namics of the system. Recall from probability theory, for t > 0 and any given
state vector pt we can calculate the probability distribution for the resulting
subsequent state j by means of pt+1 = P · pt . The limit value for pt as
t → ∞ can be obtained by means of the fundamental matrix:

The Markov process of the two-attractor model has absorbing boundaries k =
0 and k = µ. If one of the absorbing states has been reached the system remains
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Table 1. Selection probabilities psel
j (l, k) (I is the indicator function).

selection method equal function values black better than white

(µ + λ)
(k+l

j )·(µ+λ−k−l
µ−j )

(µ+λ
µ )

I(j = min(µ, k + l))

(µ, λ)

(
l
j

)

·
(

λ−l
µ−j

)

(
µ+λ

µ

) I(j = min(µ, l))

stable. The absorption probabilities and mean absorption times correspond to
the extinction probabilities and mean extinction times. Both can be derived
from the transition matrix P and the initial state k0. First, let us partition the
transition matrix as follows:

P =














1 0 . . . 0 . . . 0 0
a1,1 c1,1 . . . c1,j . . . c1,µ−1 a1,2

...
...

...
...

...
ak,1 ck,1 . . . ck,j . . . ck,µ−1 ak,2

...
...

...
...

...
aµ−1,1 cµ−1,1 . . . cµ−1,j . . . cµ−1,µ−1 aµ−1,2

0 0 . . . 0 . . . 0 1














. (8)

Now, the fundamental matrix T of the transition matrix P reads:

T := (I − C)−1 , (9)

and from Markov chain theory ([7], Chap. 3) an expression for the extinction
of black individuals , i. e. for reaching the absorbing state k = 0, can be derived
as

pE(k0) =

µ−1
∑

i=1

ai,1tk0,i, k0 = 1, . . . , µ − 1 (10)

It is also known that ti,j of T equals the mean number of iterations that the
system is in state i when starting in state j before absorption takes place. Thus

E(k0, µ) =

µ−1
∑

i=1

tk0,i, k0 = 1, . . . , µ − 1 (11)

is the mean absorption time, or - translated to our model - the average time
that two species in the evolutionary system can coexists when working with the
generational transition described by P and starting with k individuals.
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4. Analysis of Selection Mechanisms
Now, we can use the Markov chain techniques proposed in the previous

section to determine some characteristics of selection mechanisms on the two-
attractor model. We start with the case of equal fitness.
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Figure 4. Expected extinction times (EET) and probabilities (PE) obtained by Markov theory.
Upper left: EET (µ + 7µ)-EA, Upper right: PE (µ + 7µ)-EA, Lower left: EET (µ + 1)-EA,
Lower right: EET (µ + µ)-EA.

Figure 4 shows the mean EET and PE for some frequently used EA strategies.
The figure reveals that the extinction times increase linearly with a growing µ if
λ and k are set as a constant proportion of µ. Note, that the extinction times are
measured in generations. In the case of (µ+7µ) selection and µ = 40, k = 20
this means that one population dies out on average after 53 generations or about
15, 000 offspring. Contrary to this, for the (µ + 1) selection and the same
settings for µ and k only 550 offspring are generated until one population dies
out.

In addition to the mean extinction time we are interested in the probability
of extinction for one population. As a closer look at the underlying data of the
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upper right diagram in Fig. 4 reveals, the extinction probability could be quan-
tified by k

µ
. This is an astonishing simple formula and especially independent

from λ.
Investigating the model of equal function values gives fundamental insights

into the behavior of EA on a bimodal fitness landscape. But it is assumed
that a real EA will produce different offspring on a two-attractor landscape.
Therefore, we study the two sphere model depicted in Fig. 1 as a more realistic
case.

For this function, a Markov chain analysis can not be applied any more.
Hence, we obtain the results presented in Fig. 2 by a monte carlo simulation
with a real EA. In order to prevent an acceleration of the extinction process cause
by recombination, the EA shall only apply a variation operator that works with
the mutation operator only. The mutation operator adds a normal distributed
random variate to the object variables. The small value of the mutation step
size assures that no individual is produced that jumps from one attractor to the
other.

The results show that due to the stochastic mutation the extinction times
are smaller than in the former model. This is an expected result because this
scenario is lying in between the two models of equal and different function
values. In contrast to this, the probabilities of extinction are the same.

Our investigations show that a species can die out quickly even if it has
equal function values as the other species. To guarantee the survival of a fitter
species and to prevent the extinction of sub-populations located on equally
shaped attractors one could use several techniques. One of it is niching [4, 6, 8].
Some of the former experiments were repeated with a simple niching technique:
Attraction areas to which individuals belong are identified by some clustering
approach (cf. [9]) and we generate the same number of offspring individuals.
In contrast to many other niching techniques, the suggested selection process
is panmictic (alternative selection schemes are presented in [1, Sect. C2]). It
was observed that using this kind of simple niching, the sub-populations were
able to coexist for a very much longer time (Table 2), even for the more realistic
example of the 2-sphere function. Hence, the results in this paper affirm that
for optimization on multimodal landscapes niching is a preferable technique to
avoid the loss of information gained by sub-populations [9], even in the presence
of equality.

The results for some selected test cases are shown in Table 2. It contains the
mean extinction times as well as the extinction probabilities. The cases were
chosen because they reflect some frequently observed situations and provide
the reader with some borderline cases. The mean extinction time shows the
number of reproduction cycles both sub-populations survive. In contrast to this
pE measures the probability that the species with the black individuals die out.
Some remarks need to be spend on the results of the (16+112)-ES on the two-
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sphere model. Due to time limitations the runs were limited to 107 generations.
Until then, in only 15% of all runs one population died out. On average, a single
run lasts longer than 106 generations. In the case that one population died out,
the black sub-population was eliminated in 52%.

Table 2. Illustrative cases for extinction times and probabilities.

Strategy Model Niching k Simulation Method E(t) pE

(16,112) boolean - 1 Markov 2.0 7 ·10−4

(16,112) neutral - 1 Markov 6.7 0.94
(16,112) neutral x 1 Markov 1.1 ·105 0.5
(16,112) boolean x 1 Markov 1.0 0
(4,28) neutral x 1 Markov 10.2 0.5
(50+1) boolean - 1 Markov 224.0 0
(16,112) two-sphere x 1 Experiment 9.8 ·104 0.48
(16+112) two-sphere x 1 Experiment > 106 0.52

5. Conclusions
By means of this paper a better understanding of the extinction process on

multimodal landscapes has been achieved. In detail our investigations give
evidence for the following conjectures:

For (µ+, 7µ)-EA and the equal fitness model the extinction time grows
linearly with µ. Thus, even in the best-case scenario the co-existence of
populations will not occur for a long time. This result can be interpreted
also in a way that mating restrictions alone will not suffice to prevent
sub-populations from extinction. This is because in the studies on the
simplified model, the recombination has been ommitted and thus it cannot
accelerate the extinction of species.

For different function values and comma selection it was observed that
better individuals survive with probability near 1. Hence, the effect of
random genetic drift unlikely biases the direction of evolution, if fitness
values are clearly different.

The extinction time for a (µ + 1)-EA are long even in the case of equal
function values. However, if we regard the number of function evalua-
tions as a criterion for the extinction time, proportions change and the
mean extinction time for the (µ + 1)-EA is significant smaller than that
for, e.g., the (µ + 7µ)-EA.

The extinction time is increased substantially by using the suggested
niching technique.
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In this paper only the bimodal case has been considered. However, we con-
jecture that similar results can be obtained for landscapes with more than two
attractors. Future research will have to clarify this point. Furthermore, the
effect of the recombination operator deserves further attention.
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Abstract Programmable Parameter Control for Evolutionary Algorithms (PPCEA), a domain-
specific scripting language, solves the problems of control parameter settings in
a programmable fashion. It keeps the evolutionary algorithm simple and lifts the
problems of control parameter settings into a higher abstraction layer by using
metaprogramming. From our experiments, PPCEA outperforms the trial-and-
error approach and performs the adaptable, reusable and controllable solutions
of control parameter settings for evolutionary algorithms in parameter tuning,
deterministic, and adaptive aspects.

Keywords: Evolutionary algorithms, Parameter tuning, Parameter control, Domain-specific
scripting language

1. Introduction
It has long been acknowledged that the parameters that control an Evolution-

ary Algorithm (EA) such as the population size, the probability of crossover,
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etc., have significant impacts on EA’s performance. Therefore, the designer of
an EA has a problem with deciding what control parameter settings are likely
to produce the best results. Choosing the right parameter values is a time-
consuming and tedious task. Researchers can use experience from previous
similar application scenarios or follow guidelines described in [10, 16] for par-
ticular numeric optimization problems. Most often, for new problems previous
experience is not available nor are the above mentioned guidelines applica-
ble. This leads researchers to choose the trial-and-error approach, spending a
considerable amount of effort on this task. To make the problem even harder,
different values of parameters might be optimal at different stages of the evolu-
tionary process. For example, in the early stages the larger population is needed
than in the later stages when fine tuning of sub-optimal solutions is done.

More recently, researchers recognized that specific problems require specific
values of control parameters and that a general near-optimal control parame-
ter setting is not appropriate. The problem is well known to the researchers
working on EAs [5] and has not been solved sufficiently yet. Various EAs
which differentiate substantially from standard EAs have been proposed (e.g.,
GAVaPS - genetic algorithm with varying population size [1], 1/5 success rule
[2] in evolution strategies) to partially solve this problem. All these new ideas
and approaches may be incorporated in one’s own EA. However, in this case an
EA becomes extraordinarily complex and needs to be adapted whenever we de-
cide to implement different strategies for control parameter settings (e.g., from
deterministic to adaptive scheme) or whenever a new method is incorporated
into the existing algorithm.

In this paper, a novel solution to this problem is presented. We keep EA
simple as before and lift the problem of control parameter settings into a higher
abstraction layer. A domain-specific scripting language (DSSL) called Pro-
grammable Parameter Control for Evolutionary Algorithms (PPCEA ) has been
implemented to address these needs, where control parameters are set in a pro-
grammable fashion with small programs which interact with the original EA.

The paper is organized as follows. Section 2 describes the related work. In
Sect. 3, we introduce PPCEA. Section 4 shows the examples and experimental
results. Finally, Sect. 5 addresses the conclusion.

2. Related Work
There have been a variety of studies [5, 6, 7] on determining the best control

parameter values to use for EAs. The main problem is to find control parameters,
which optimally balance exploration and exploitation. Recommendations on
control parameters for a particular set of problems can be found in [10, 16].

In [5] an overview of this problem has been given, where the authors distin-
guish between parameter tuning and parameter control. In parameter tuning,
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the values of control parameters are set before the run of the EA (e.g., Matlab
approach [4]), and in parameter control, values are changed during the run. It
was argued also that parameter tuning is less appropriate and parameter control
is preferred. One of the problems in parameter tuning of the trial-and-error
approach is that one control parameter is usually tuned at a time. This leads
to sub-optimal values since control parameters interact in a complex way. Fur-
thermore, methods for parameter control have been classified into deterministic,
adaptive, and self-adaptive categories [5]: the deterministic category adjusts pa-
rameters by deterministic rules; the adaptive category utilizes the feedback of
the evolutionary process to control the direction and magnitude of parameters;
the self-adaptive category encodes parameters into chromosomes and undergoes
mutation and recombination.

Another approach is to consider the search for the best values of control pa-
rameters of an EA as an optimization problem itself which can be solved by an-
other EA, leading to a meta-evolutionary approach. Several meta-evolutionary
approaches have already been proposed. In [7] the meta-evolutionary approach
is used to determine population size, crossover probability, mutation rate, gener-
ation gap, scaling window, and selection strategy. In [6] the meta-evolutionary
approach is used to determine a large set of 20 components of genetic algo-
rithms for the traveling-salesman problem (TSP). In [12] the meta-evolutionary
approach in searching for the best combination of crossover operators for TSP
is also described. One of the major shortcomings of the meta-evolutionary
approach is too large processing time.

Interesting work is presented in [8] where a parameter-less genetic algorithm
is presented. The objective of their work is to provide robust and simple genetic
algorithms (GAs) where users are relieved from control parameter settings de-
spite the fact that peak performance can not be achieved. In [8] only selection
rate, crossover probability and population size are taken into account. This is
achieved by setting the selection rate (s) and crossover probability (pc) to the
predefined values (s = 4, pc = 0.5) to avoid very high or very low selection
pressure. In some sense, this approach is similar to the De Jong work [10] ex-
cept that settings are not based on experiments, yet on sound theoretical work
on schema theorem. The population size parameter is simply eliminated by
iteratively running the GAs with different population size, doubling the popu-
lation size each time the population converges or by establishing a race among
populations of various sizes. However, the authors leave integration of muta-
tion probability into their framework as future work. Another problem with
their approach is that specific problems most often require specific parameter
settings.
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3. PPCEA

In order to solve control parameter settings of EAs in programmable fashion,
we have constructed an interpreter for PPCEA following the techniques of [13].
Figure 1 shows the framework of PPCEA. JLex [3] is a lexical analyzer generator
for Java, and CUP (Constructor of Useful Parsers) [9] is the parser generator
for Java. The cooperation of both JLex and CUP defines the grammar of PPCEA

syntactically and semantically. This grammar consists of both EAs’ special-
ized statements and common linguistic elements of programming languages.
In addition, CUP helps to define how PPCEA’s interpreter executes/interpretes
the source code of PPCEA at runtime. Initializing from the bottom of the parse
tree of PPCEA’s source code, CUP traces up to check the syntax and execute
the semantics. As CUP meets EAs’ statements (e.g., call EA), the interpreter
processes the EA operations. As CUP encounters linguistic elements common
to all programming languages (e.g., if-then-else statement), the interpreter exe-
cutes the behaviors of these elements. Consequently, the users can acquire the
results of control parameter settings of an EA by writing a PPCEA source code
regarding desired control parameters. The typical scenario for choosing con-
trol parameters is as follows. From parameter tuning, intervals where control
parameters produce best results are identified. In the selected intervals, control
parameters are then adjusted using appropriate deterministic or adaptive rules
expressed in a programmable fashion. Each run of the PPCEA program produces
also diagrams that assist users in control parameter settings.

Figure 1. The framework of design and implementation of PPCEA.

PPCEA is in between the system programming language and scripting lan-
guage [15]. PPCEA is plain, abstract and weakly-typed. Like many other script-
ing languages (e.g., shell script for UNIX), PPCEA includes simple expressions,
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control structures, extended functionality and runtime type checking. How-
ever, PPCEA uniquely focuses on the domain of EAs. The approach of writing
a PPCEA source code for the interpreter, called metaprogramming, facilitates
EAs to hide the implementation details and lift the adaptation of the control
parameter settings up to the DSSL level. The major advantage of employing
the metaprogramming approach to assess control parameter settings is that EA
parameters can be evaluated dynamically by PPCEA’s interpreter at runtime. For
example, users are able to write if-then-else or while-loop statements to control
the parameters at the DSSL level before or during the evaluation process.

In addition, PPCEA provides the configuration mechanism for a fitness func-
tion and parameter assignments. The fitness function in general is embedded
into the evaluation statement of PPCEA. We use the file processing method to
insert the fitness function into an EA. Therefore, users can easily alter the fit-
ness function externally. On the other hand, the configuration mechanism for
parameter assignments is equivalent to the predefined identifiers of PPCEA. The
configuration mechanism and implementation of DSSL encapsulate the source
code of EAs safely and reduce the trial-and-error approach efficiently.

Table 1. Initial values of parameters in the following examples.

Parameter Value Parameter Value Parameter Value

Maxgen 500 Popsize 50 Pmutation 0.1
Pxover 0.7 Epoch 10 t 0

4. Examples
We had applied the PPCEA approach to solve a routing problem [11] suc-

cessfully. The routing problem determined the best route of a Mass Transit
System from a set of roads. The best solution was decided by a fitness function
within a limited budget. The fitness function was the sum of multiplication of
weight and attribute (e.g., road length and construction cost) parameters. The
PPCEA approach found the best route, which satisfied the constraint, from the
roads, and appropriate control parameters. For simplicity, we provide a simpler
algebraic fitness function. All examples are tested on the problem of the fitness
function in [14],

f(x, y) = 0.5 +
sin2

√

x2 + y2 − 0.5

(1 + 0.001 · (x2 + y2))2
(1)

where −100 ≤ x, and y ≤ 100. The initial values of required parameters are
in Table 1. However, Epoch is Maxgen in the Example 1, and Pxover is
0 in Examples 2 and 3. In the following examples, Pxover and Pmutation
are the probability rates of crossover and mutation, respectively; Epoch is
the counter variable that an EA is executed Epoch-times without initialization
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of population; Ratio is the successful mutation ratio for 1/5 success rule [2];
Best and Average parameters are the maximum and average fitness values,
respectively. For the sake of brevity, we omit the source code of the initialization
of these parameters in the following examples.

4.1 Parameter Tuning
Let us start with a simple example where the best probability of crossover

and mutation are searched in the predefined range. Values of parameters
(Pmutation and Pxover) are not changed during the run of EA. This exam-
ple corresponds to several and tedious runs of basic EAs. Figure 2 (parameter
tuning) shows which parameters produce best results.

Example 1:

while Pxover ≤ 0.9 do
Pmutation := 0.1
while Pmutation ≤ 0.2 do

init /* initialize population */
call EA /* run EA for one epoch */
writeresult
Pmutation := Pmutation + 0.01

end while
Pxover := Pxover + 0.05

end while

4.2 Deterministic Control of Mutation Step
Deterministic parameter control employs certain deterministic rule to param-

eters. The example shows that the mutation step size is controlled determinis-
tically by Pm(t) = 1 − 0.9(t/T ), where t is current generation number and T
is maximum generation number.

Example 2:

init
while t ≤Maxgen do

Pmutation := 1− 0.9(t/Maxgen)
call EA /* run EA for one epoch */
writeresult
t := t + Epoch

end while
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Figure 2. Experimental results of examples: Sect. 4.1, Sect. 4.2, Sect. 4.3, and Sect. 4.4.
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4.3 Adaptive Control of Mutation Step
In adaptive control, the feedback from the evolutionary process controls the

values of parameters. An example of simple adaptive control is 1/5 success rule
[2] where the ratio of successful mutations to all mutations should be 1/5. If the
ratio is greater (lower) then the mutation step should be increased (decreased).
The example shows that PPCEA lifts the 1/5 success rule up to the DSSL level.
Pmutation is controlled adaptively according to the successful mutation ratio.

Example 3:

init
while t ≤Maxgen do

call EA
writeresult
if Ratio > 0.2 then

Pmutation := 1.2Pmutation
else

Pmutation := 0.8Pmutation
end if
t := t + Epoch

end while

Self adaptation of the mutation step is also possible. In this case the mutation
step size is encoded into the chromosome and as such goes through evolution.
Therefore self adaptation is not at the level of PPCEA, but at the level of basic
EA. However, the meta-evolutionary approach can be expressed with PPCEA.

4.4 Evolutionary Algorithm with Varying Population Size
In [14, 17], an EA with varying population size is described where the concept

of the chromosome age has been introduced. The similar effect can be achieved
with the following program in PPCEA. The example shows that Popsize is
determined by the relationship of the best and averaged results of an EA. We
eliminate the worst chromosomes by sorting if the new Popsize is less than the
current one. Yet new members will be generated randomly if the new Popsize
is larger than the present one. A more sophisticated formula for Popsize can
be programmed exploiting best and average fitness values as well.

Figure 2 shows the experimental results for all examples. Each figure in-
cludes average or best values of the fitness function. Necessary parameters
such as Pmutation, Pxover, and Popsize also appear in the figures to assist
users with deciding appropriate control parameter settings. From Fig. 2, users
can easily acquire the best control parameter setting by analyzing the diagrams.
For Example 1, there are various combinations of Pxover and Pmutation to
obtain the best fitness value. Example 2 exhibits that the best averaged fitness
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Example 4:

init
while t ≤Maxgen do

call EA
writeresult
if Best < Average ∗Maxgen/(t + 1) then

Popsize := 1.05Popsize
else

Popsize := 0.95Popsize
end if
t := t + Epoch

end while

value is obtained when Pmutation is 0.23 at 430th generation. For Example
3, EA computes the highest averaged fitness value where Pmutation and gen-
eration are about 0.05 and 130, respectively. Example 4 reveals that diverse
population sizes affect the best fitness value at varied stages.

The main advantage of our approach is that the problem of control parameter
settings is lifted to the higher abstraction layer while keeping an EA simple as
before. All control parameters are treated uniformly (e.g. the probability of
crossover, population size, epoch), hence achieving a good flexibility of the
proposed approach.

5. Conclusion
PPCEAapplies the advantages of domain-specific languages and scripting lan-

guages to solve the long-lasting control parameter setting problems. A domain-
specific language provides the abstract and repeatable features, since a simple
EA evaluation statement (call EA) covers obligatory selection, recombination
and evaluation processes. On the other hand, a scripting language endows EAs
with adaptable and controllable characteristics. Therefore, the joint features of
PPCEA empower the usage and performance of EAs. PPCEA not only outper-
forms the trial-and-error approach, but also performs the adaptable, reusable
and controllable solutions of control parameter settings for EAs in parameter
tuning, deterministic, and adaptive aspects.
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Abstract Since the mid-fifties evolutionary algorithms (EAs) have been used in different
optimization problems. In the last years their use was extended to the demand-
ing field of multi-objective optimization. For this expansion, EAs themselves
had to evolve to more complex forms. The question is whether an algorithm
that is adapted to work well with multiple-objectives is still capable to handle
single-objective optimization problems. In this paper we present a new EA for
multi-objective optimization called MOGA-II. We test it on noisy single-objective
problems and compare its performance with two algorithms for single-objective
optimization. The results show that MOGA-II is a robust algorithm that can
efficiently solve a palette of different optimization problems.

Keywords: MOGA-II, Genetic algorithms, Optimization, Noisy functions

1. Introduction
Evolutionary Algorithms (EAs) are widely used in several optimization prob-

lems that are too complex to be solved by traditional methods such as linear
programming or gradient based algorithms. Their main advantage over tradi-
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tional methods is robustness, which enables efficient optimization of different
functions, including noisy ones. Being population-based, EAs can be easily
parallelized and can construct multiple optimal solutions in a single run. The
latter property is especially welcome in multimodal and multi-objective opti-
mization.

Multi-objective Optimization Problems (MOPs) are more complex than Sin-
gle-objective Optimization Problems (SOPs) because they involve optimization
of several (usually conflicting) objectives. This yields not a single optimal
solution but a set of equally important optima, called the Pareto front. In
multi-objective optimization it is important to guide the search process toward
the Pareto front and at the same time maintain adequate population variety to
capture as many diverse optimal solutions as possible.

In recent years, EAs have been adjusted in numerous approaches to handle
MOPs. Among many algorithms, the NSGA-II of Deb et al. [1] and SPEA2 of
Zitzler et al. [10] are the most popular. One of the new EAs for multi-objective
optimization is MOGA-II described by Poles in [6], which uses a directional
crossover operator for fast convergence and a smart multisearch elitism for
uniform spread of solutions. MOGA-II has proved to be very efficient in solving
MOPs [7] and in this paper it is tested for robustness. We are raising the question:
“Can an EA that was constructed to solve MOPs handle also (noisy) SOPs?”
For this purpose we test MOGA-II on five benchmark problems and compare its
results with the ones obtained by differential evolution (DE) [8] and a standard
EA for single-objective optimization.

The rest of the paper is organized as follows: a detailed description of
MOGA-II is presented in Sect. 2 followed by the specification of the exper-
iments in Sect. 3. Section 4 is devoted to the presentation of the experimental
results that are further discussed in Sect. 5. The paper ends with a conclusion
in Sect. 6.

2. MOGA-II
MOGA-II is an improved version of MOGA (Multi-Objective Genetic Al-

gorithm) by Poloni [5] and is not to be confused with MOGA by Fonseca and
Fleming [2] with which it shares only the same acronym. MOGA-II uses a
smart multisearch elitism for robustness and directional crossover for fast con-
vergence. Its efficiency is ruled by its operators (classical crossover, directional
crossover, mutation and selection) and by the use of elitism. In this paper only
the features of MOGA-II that relate to its use in single-objective optimization
are explained.
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2.1 Encoding
Encoding in MOGA-II is done as in classical genetic algorithms [3]. Each

variable is represented as a binary string where the length of the string depends
on the base (the number of allowed values for the variable). For example, if only
integer values in the interval [0, 10] are to be allowed (11 possible values), the
base is set to 11. Thus the length of the string is equal to 4 and the variable can
take values from [0000] to [1011]. In order to simulate a continuous variable,
the base must be set to an appropriate high number.

2.2 Elitism
Elitism is very important in multi-objective optimization because it helps

preserving the individuals that are closest to the Pareto front and the ones that
have the best dispersion. When optimizing a single objective, the elitism em-
bedded in MOGA-II reduces to copying the solution with the best fitness into
the next generation.

2.3 Reproduction
MOGA-II uses four different operators for reproduction (one-point crossover,

directional crossover, mutation and selection). At each step of the reproduction
process, one of the four operators is chosen (with regard to the predefined op-
erator probabilities) and applied to the current individual. Algorithm 1 shows
the reproduction of MOGA in pseudo code.

Algorithm 1: Pseudo code of the reproduction used in MOGA-II

with (individual Indi ∈ generation G) do
choose reproduction operator
if (operator is one-point crossover) then

j ← TournamentSelection, where j 6= i
NewIndi ← OnePointCrossover(Indi, Indj)

else if (operator is directional crossover) then
j ← RandomWalk(i)
k ← RandomWalk(i), where k 6= j 6= i
NewIndi ← DirectionalCrossover(Indi, Indj , Indk)

else if (operator is mutation) then
NewIndi ←Mutation(Indi)

else if (operator is selection) then
NewIndi ← Indi

end if
end with
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2.3.1 One-Point Crossover. One-point crossover is the most classical
operator for reproduction. Two parents are chosen and some portion of the
genetic material (the design variables) is exchanged between the parent variables
vectors (see Fig. 1). The point of the crossing site is randomly chosen and the
binary strings are cut at that point. The two head pieces are then swapped and
rejoined with the two tail pieces. From the resulting individuals, usually called
children, one is randomly selected to be the new individual.

100101 1101

010011 0010

100101 0010

010011 1101

Figure 1. One-point crossover.

In MOGA-II, one-point crossover starts by taking the current individual
Indi as the first parent. The second parent Indj is chosen by means of a multi-
objective tournament selection on a randomly selected population subset: this
operator returns the first non-dominated solution in the subset.

2.3.2 Directional Crossover. Directional crossover is slightly differ-
ent and assumes that a direction of improvement can be detected comparing
the fitness values of two reference individuals. In [9] a novel operator called
evolutionary direction crossover was introduced and it was shown that even in
the case of a complex multimodal function this operator outperforms classical
crossover.

The direction of improvement is evaluated by comparing the fitness of the
individual Indi from generation t with the fitness of its parents belonging to
generation t − 1. The new individual is then created by moving in a randomly
weighted direction that lies within the ones individuated by the given individual
and his parents (see Fig. 2). A similar concept can be however applied on

�

�

�

�

Indi

Indj

Indk

NewIndi

Figure 2. Directional crossover between individuals Indi, Indj and Indk.
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the basis of directions not necessarily linked to the evolution but detected by
selecting two other individuals Indj and Indk in the same generation (like
shown in Algorithm 1).

Algorithm 2: Random walk from the i-th individual

Input: index i of the starting individual
S ← ∅
m← b√popSizec;
for all (N steps) do

k ← b4 · rand() + 1c
if (k == 1) then

i← i + 1
end if
if (k == 2) then

i← i− 1
end if
if (k == 3) then

i← i−m
end if
if (k == 4) then

i← i + m
end if
if (i < 1) then

i← i + popSize
end if
if (i > popSize) then

i← i− popSize
end if
S ← S ∪ Indi

end for
Output: j such that f(Indj) = minInd∈S f(Ind)

The selection of individuals Indj and Indk can be done using any available
selection schema. In MOGA-II local tournament with random steps in a toroidal
grid is used. First of all, the individual subject to reproduction is chosen as the
starting point. Other individuals met in a random walk of assigned number of
steps from that starting point are then marked as possible candidates for the first
“parent” Indj . The list of all possible candidates for the second “parent” Indk

is selected in the same way in a successive (and generally different) random
walk from the same starting point. When the set of candidates is generated, the
candidate with the best fitness is chosen.

The number of steps N in the random walk remains fixed during the entire
optimization run and is proportional to the population size. Algorithm 2 shows
the random walk with individual Indi chosen as a starting point. The function
rand() generates values in the interval [0, 1) with a uniform distribution.
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Directional crossover has demonstrated to help the algorithm convergence
for a wide range of numerical problems.

2.3.3 Mutation. Mutation is an operator that ensures diversity from one
generation to the next. Using plain words we can say that mutation guarantees
the algorithm robustness. In MOGA-II it is possible to define the value of the
so-called DNA String Mutation Ratio. This value gives the percentage of the
binary string that is perturbed by the mutation operator.

10 01 0 1 110 1 10 10 0 0 110 0

Figure 3. Mutation example with DNA string mutation ratio set to 40%.

3. Experiments
In our experiments we tested the performance of MOGA-II on five numerical

single-optimization problems with and without noise. The used numerical
benchmark problems are described in Table 1. In all problems the function is
to be minimized.

To preserve consistency with the results in [4] we set up the following ex-
periments. Each test function fi was optimized with and without noise. The
noise was introduced as

f∗
i (x) = fi(x) + N(0, 1)

where the N(0, 1) is the normal (or Gaussian) distribution with mean 0 and
variance 1. The experiments on the noisy functions were run with 5 different
number of resamples: s = 1, 5, 20, 50 and 100. This means that a solution
was evaluated s times and the true value of fi was estimated by the mean of
the samples. In all runs the number of function evaluations was kept constant
to provide a fair performance comparison and was calculated as

numEval = popSize × numIt × s − numUnchanged

where popSize is the population size, numIt is the number of iterations, s
is the number of resamples and numUnchanged is the number of unchanged
individuals during the run. The latter refers to candidate solutions that were
evaluated previously in the same run, which we did not re-evaluate if they
remained unchanged, such as for example members of the elite.

Each experiment was repeated 3 times. We used numEval = 100, 000
for low dimensional functions f1 and f2 and 400, 000 for the 50 dimensional
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Table 1. Benchmark problems.

name Schaffer F6
dimensions 2

definition f1(x) = 0.5 +
sin2(

√

x2
1
+x2

2
)−0.5

(1+0.001(x2
1
+x2

2
))2

constraints xi ∈ [−100, 100]
optimum x

∗ = (0, 0), f1(x∗) = 0

name Sphere
dimensions 5
definition f2(x) =

∑5
i=1 x2

i

constraints xi ∈ [−100, 100]
optimum x

∗ = (0, 0, 0, 0, 0), f2(x∗) = 0

name Griewank
dimensions 50

definition f3(x) = 1 + 1
4000

·
∑50

i=1(xi − 100)2 −
∏50

i=1 cos
(

xi−100√
i

)

constraints xi ∈ [−600, 600]
optimum x

∗ = (100, . . . , 100), f3(x∗) = 0

name Rastrigin F1
dimensions 50
definition f4(x) = 500 +

∑50
i=1(x2

i − 10 · cos (2πxi))
constraints xi ∈ [−5.12, 5.12]
optimum x

∗ = (0, . . . , 0), f4(x∗) = 0

name Rosenbrock
dimensions 50
definition f5(x) =

∑49
i=1

(
100(xi+1 − x2

i )2 + (xi − 1)2
)

constraints xi ∈ [−50, 50]
optimum x

∗ = (1, . . . , 1), f5(x∗) = 0

Table 2. The values of population size and number of iterations for each experiment. The
number of unchanged individuals is different in every run, therefore the number of iterations is
calculated as numEval/(popSize× s). The non-noisy versions of the functions had the same
values for popSize and numIt as the respective noisy ones with s = 1.

functions s 1 5 20 50 100

f∗
1 , f∗

2 popSize 50 50 50 50 25
numIt 2000 400 100 40 40

f∗
3 , f∗

4 , f∗
5 popSize 100 100 100 100 100

numIt 4000 800 200 80 40

functions f3, f4 and f5. The values of popSize and numIt for each experiment
are gathered in Table 2.

Table 3 shows the parameter setting for MOGA-II. The parameters were not
tuned to any benchmark problem – we used the default values of the algorithm,
which demonstrate to perform well in most real-world problems. MOGA-II
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encodes its variables as binary strings and therefore needs a discretized space.
In this experiments, the base for the encoding was set in such way, that the
discretization was 10−6. In the used benchmark problems, the bases have
been set respectively to 200, 000, 001 for f1 and f2, 1, 200, 000, 001 for f3,
10, 240, 001 for f4 and 100, 000, 001 for f5. As said in the previous section,
such high bases permit to simulate suitably continuous variables.

Table 3. Parameter settings for MOGA-II.

probability of directional crossover 50%
probability of classical crossover 35%
probability of selection 5%
probability of mutation 10%

DNA string mutation ratio 5%

4. Results
The results reported in this section refer to the “true” (non-noisy) evaluation

of solutions. We compare the results of MOGA-II with the ones obtained by
differential evolution and a standard EA that were published in [4] (see Table 4).
The comparison is not completely fair. As said in the previous section, the
experiments with MOGA-II were repeated 3 times while the results of DE
and EA from Table 4 are the outcome of 30 runs. Moreover, with the high
dimensional functions f3, f4 and f5 MOGA-II was given 400,000 evaluations
while DE and EA continued until 500,000 evaluations were reached. The
reason for this inconsistence is the lack of time we had at our disposal. But it is
important to emphasize that this comparison works in favour of DE and EA and
not MOGA-II. Time limitations were due to the fact that MOGA-II is embedded
into a commercial optimization environment called modeFRONTIER [11]; this
Java software contains an advanced post-processing analysis tool, well suited
for engineering issues, where the bottleneck is given by the external solvers.
But in our case the main problem was handling such a big designs database, and
this cannot be quickly done in a non-compiled programming language such as
Java.

In Fig. 4 the charts represent the performance of MOGA-II on noisy bench-
mark problems. Note that there was not enough room to include also the graphs
for non-noisy evaluations. Anyhow, with non-noisy functions the optimum was
always reached very quickly.
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Table 4. Mean and standard deviation of the final results for the benchmark problems (see
Table 1). The results of the algorithms DE and EA are taken from [4].

MOGA-II DE EA
Function mean st. dev. mean st. dev. mean st. dev.

f1 0 0 0 0 3 · 10−17 0
f∗
1 (s = 1) 0.04285 0.03488 0.48998 0.00582 0.25829 0.03045

f∗
1 (s = 5) 0.03533 0.04419 0.40360 0.03030 0.12859 0.01678

f∗
1 (s = 20) 0.01054 0.00120 0.16597 0.02753 0.06730 0.01066

f∗
1 (s = 50) 0.01012 0.00049 0.12729 0.01829 0.04769 0.00757

f∗
1 (s = 100) 0.01927 0.01655 0.09795 0.01203 0.06277 0.00743

f2 0 0 10−152 0 7 · 10−20 0
f∗
2 (s = 1) 0.01067 0.00581 0.25249 0.02603 0.04078 0.00543

f∗
2 (s = 5) 0.01077 0.00188 0.13315 0.01266 0.02690 0.00363

f∗
2 (s = 20) 0.00757 0.00903 0.07364 0.00811 0.02205 0.00290

f∗
2 (s = 50) 0.00398 0.00238 0.07004 0.00686 0.01765 0.00233

f∗
2 (s = 100) 0.04436 0.04290 0.08165 0.00800 0.03929 0.00396

f3 2 · 10−12 2 · 10−12 0 0 0.00624 0.00138
f∗
3 (s = 1) 3.29905 0.40864 3.31514 0.07388 1.14598 0.00307

f∗
3 (s = 5) 2.40897 0.25458 2.42183 0.03616 1.10223 0.00342

f∗
3 (s = 20) 1.78540 0.35279 2.67093 0.03895 1.44349 0.01381

f∗
3 (s = 50) 3.78713 0.75639 46.8197 0.96449 3.69626 0.13127

f∗
3 (s = 100) 14.5960 1.25293 233.802 6.25840 18.0858 0.99646

f4 0.49748 0.70354 0 0 32.6679 1.94017
f∗
4 (s = 1) 28.8315 2.33133 2.35249 0.06062 30.7511 1.32780

f∗
4 (s = 5) 21.6573 2.68711 14.0355 0.47935 31.4725 2.02356

f∗
4 (s = 20) 45.2687 4.17703 167.628 2.12569 39.1777 2.11529

f∗
4 (s = 50) 104.415 19.7481 314.762 2.88650 74.8577 2.69437

f∗
4 (s = 100) 177.847 13.7495 438.036 3.67504 147.800 2.93208

f5 40.6641 50.5749 35.3176 0.27444 79.8180 10.4477
f∗
5 (s = 1) 56.5750 39.8582 47.6188 0.15811 118.940 13.2322

f∗
5 (s = 5) 160.737 56.7030 47.0404 0.13932 341.788 49.6738

f∗
5 (s = 20) 1601.84 1081.10 7917.46 352.851 1859.06 261.844

f∗
5 (s = 50) 1.3 · 105 93260.1 1.7 · 107 903677 35477.7 4656.17

f∗
5 (s = 100) 1.2 · 106 4.3 · 105 3.0 · 108 1.0 · 107 257488 19371.2

5. Discussion
The results in the non-noisy cases are obviously better than the noisy exper-

iments: the noise plays always the role of annoyance factor. As concerns the
noisy cases, considering the different values s = 1, 5, 20, 50, and 100 for the
resampling (and consequently the differences in the number of iterations and/or
population size, in order to preserve the total number of evaluated designs), we
can expect two different effects to come into play, for “low” and “high” values
of s, respectively. Towards the low end, say s = 1, the noise gain in importance,
so we could expect the results to deteriorate. But also towards the high end, i.e.
s = 100, the results are expected to be worse, since the request for evaluating
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Figure 4. MOGA-II performance on noisy benchmark problems (see Table 1 for function
definitions).

the same candidate solution many times, in order to reduce the noise effect,
implies that we have to limit consequently the number of iterations, stopping
prematurely the optimization process. This is the case for the low-dimensional
noisy Schaffer F6 (2D) function (f1) and Sphere (5D) function (f2), but also for
the high-dimensional Griewank (50D) function (f3): the best results are found
for s = 20 or s = 50, as a compromise between the low and high ends.

On the contrary, for the Rosenbrock (50D) function (f5), the results get
better monotonically as s decreases, showing no deterioration due to a stronger



MOGA-II Performance on Noisy Optimization Problems 61

noise effect. For Rastrigin F1 (50D) function (f4) the behaviour is similar,
but there is still a residual “low end effect”, which settles the best compromise
result in s = 5. In these two cases, as outlined by Krink et al. [4], the main
problem resides in the difficulty of the function, and not in the noise effect:
the performance of any EA is affected by the intrinsic critical aspects of the
function, well before the noise effect can come into play, in terms of fitness
contribution. This can be also seen considering the results for the non-noisy
cases: the results achieved for f4 and especially for f5 are sensibly far from the
optimal value 0.

The comparison of MOGA-II results with those of DE and the generic EA
presented in [4], shows the good performance of MOGA-II (see Table 4). For
both low-dimensional noisy functions f1 and f2 , MOGA-II performs better
than DE and EA, for all values of s.

As concerns f3, where EA is better than DE, for low s, i.e. s = 1 and s = 5,
MOGA-II is comparable to DE, while for high s, i.e. s = 20, 50, and 100 it is
comparable to the good results of EA. With the f4 function, for low s (i.e. s = 1,
5), where DE performs better than EA, MOGA-II results are better than EA but
worse than DE; for high s (i.e. s = 20, 50, and 100), where EA is better than
DE, the MOGA-II results are roughly comparable to those of EA. Finally, as
concerns f5, for low s DE performs better than EA, and conversely for high s EA
is better than DE, as in the previous case. The results of MOGA-II are roughly
situated in an intermediate position between the results of DE and EA, but the
large standard deviations prevent us from a detailed comparative analysis. Such
large standard deviations could be indicative of a difficult problem, but can also
be due to the low number of repetitions. Unfortunately, as said in the previous
section, we could repeat the experiments only 3 times, for intrinsic limitations.

It should be noted that in general MOGA-II converges to the optimal solution
faster than DE, in terms of number of function evaluations: this is an important
point in case of realistic applications, where the evaluation time for a single
design can be very long.

6. Conclusion
In this paper, we have presented MOGA-II, a new evolutionary algorithm

for multi-objective optimization, and tested it on single-objective optimization
problems (with and without noise). Although compared to two very success-
ful algorithms (differential evolution and a standard evolutionary algorithm),
MOGA-II sometimes performed better and never worse than both algorithms,
which were constructed for single-objective optimization.

The current results motivate further work in testing MOGA-II, especially to
see its performance on real-world problems. We can conclude that MOGA-II
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is a competent algorithm that is robust and efficient enough to handle different
optimization problems, including noisy ones.
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Abstract We propose a new algorithm based on the Ant Colony Optimization (ACO)
meta-heuristic for the Multidimensional Knapsack Problem, the goal of which
is to find a subset of objects that maximizes a given objective function while
satisfying some resource constraints. We show that our new algorithm obtains
better results than two other ACO algorithms on most instances.

Keywords: Ant colony optimization, Multidimensional knapsack problem

1. Introduction
The Multidimensional Knapsack Problem (MKP) is a NP-hard problem

which has many practical applications, such as processor allocation in dis-
tributed systems, cargo loading, or capital budgeting. The goal of the MKP is
to find a subset of objects that maximizes the total profit while satisfying some

63



64 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

resource constraints. More formally, a MKP is stated as follows:

maximize
∑n

j=1 pj · xj

subject to
∑n

j=1 rij · xj ≤ bi, ∀i ∈ 1..m

xj ∈ {0, 1}, ∀j ∈ 1..n

where rij is the consumption of resource i for object j, bi is the available
quantity of resource i, pj is the profit associated with object j, and xj is the
decision variable associated with object j and is set to 1 (resp. 0) if j is selected
(resp. not selected).

In this paper, we describe a new algorithm for solving MKPs. This algorithm
is based on Ant Colony Optimization (ACO) [4, 6, 5], a stochastic metaheuristic
that has been applied to solve many combinatorial optimization problems such
as traveling salesman problems [3], quadratic assignment problems [9], or ve-
hicule routing problems [1]. The basic idea of ACO is to model the problem to
solve as the search for a minimum cost path in a graph, and to use artificial ants
to search for good paths. The behavior of artificial ants is inspired from real
ants: they lay pheromone trails on components of the graph and they choose
their path with respect to probabilities that depend on pheromone trails that
have been previously laid; these pheromone trails progressively decrease by
evaporation. Intuitively, this indirect stigmergetic communication mean aims
at giving information about the quality of path components in order to attract
ants, in the following iterations, towards the corresponding areas of the search
space.

To solve MKPs with ACO, the key point is to decide which components of
the constructed solutions should be rewarded, and how to exploit these rewards
when constructing new solutions. A solution of a MKP is a set of selected
objects S = {o1, . . . , ok} (we shall say that an object oi is selected if the
corresponding decision variable xoi

has been set to 1). Given such a solution
S = {o1, . . . , ok}, one can consider three different ways of laying pheromone
trails:

A first possibility is to lay pheromone trails on each object selected in S.
In this case, the idea is to increase the desirability of each object of S so
that, when constructing a new solution, these objects will be more likely
to be selected;

A second possibility is to lay pheromone trails on each couple (oi, oi+1)
of successively selected objects of S. In this case, the idea is to increase
the desirability of choosing object oi+1 when the last selected object is
oi.

A third possibility is to lay pheromone on all pairs (oi, oj) of different
objects of S. In this case, the idea is to increase the desirability of
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choosing together two objects of S so that, when constructing a new
solution S ′, the objects of S will be more likely to be selected if S ′

already contains some objects of S. More precisely, the more S ′ will
contain objects of S, the more the other objects of S will be attractive.

To solve MKP with ACO, Leguizamon and Michalewizc [8] have proposed
an algorithm based on the first possibility, whereas Fidanova [7] has proposed
another algorithm based on the second possibility. In this paper, we propose
a new ACO algorithm for solving MKPs that is based on the third possibility.
Our intuition is that this strategy should attract ants in a more precise way as
the desirability of an object depends on the objects that already belong to the
partial solution under construction.

2. Ant-Knapsack Description
We define the construction graph, on which ants lay pheromone trails, as a

complete graph that associates a node to each object of the MKP. The quantity
of pheromone laying on an edge (oi, oj) is denoted by τ(oi, oj). Intuitively,
this quantity represents the learnt desirability of selecting together objects oi

and oj .

Algorithm 1: Ant-knapsack

Initialize pheromone trails to τmax

repeat
for each ant k in 1..nbAnts do

/* construct a solution Sk as follows: */
Randomly choose a first object o1 ∈ 1..n
Sk ← {o1}
Candidates ← {oi ∈ 1..n/oi can be selected without violating resource constraints}
while Candidates 6= ∅ do

Choose an object oi∈Candidates with probability pSk
(oi)

Sk ← Sk ∪ {oi}
remove from Candidates every object that violates some resource constraints

end while
end for
Update pheromone trails w.r.t. {S1, . . . ,SnbAnts}
if a pheromone trail is lower than τmin then

set it to τmin

end if
if a pheromone trail is greater than τmax then

set it to τmax

end if
until maximum number of cycles reached or optimal solution found

The proposed ACO algorithm for solving MKPs is described by Algorithm 1
and more particularly follows the MAX −MIN Ant System [10] : we ex-
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plicitly impose lower and upper bounds τmin and τmax on pheromone trails
(with 0 < τmin < τmax), and pheromone trails are set to τmax at the beginning
of the search.

At each cycle of this algorithm, every ant constructs a solution. It first
randomly chooses an initial object, and then iteratively adds objects that are
chosen within a set Candidates that contains all the objects that can be selected
without violating resource constraints. Once each ant has constructed a solution,
pheromone trails are updated. The algorithm stops either when an ant has found
an optimal solution (when the optimal bound is known), or when a maximum
number of cycles has been performed.

2.1 Definition of Transition Probabilities
At each step of the construction of a solution, an ant k randomly selects the

next object oi within the set Candidates with respect to a probability pSk
(oi).

This probability is defined proportionally to a pheromone factor and a heuristic
factor, i.e.,

pSk
(oi) =

[τSk
(oi)]

α · [ηSk
(oi)]

β

∑

oj∈Candidates
[τSk

(oj)]α · [ηSk
(oj)]β

where τSk
(oi) is the pheromone factor of oi, ηSk

(oi) is its heuristic factor, and
α and β are two parameters that determine the relative importance of these two
factors.

The pheromone factor τSk
(oi) depends on the quantity of pheromone laid

on edges connecting the objects that already are in the partial solution Sk and
the candidate vertex oi, i.e.,

τSk
(oi) =

∑

oj∈Sk

τ(oi, oj)

Note that this pheromone factor can be computed in an incremental way: once
the first object oi has been randomly chosen, for each candidate object oj , the
pheromone factor τSk

(oj) is initialized to τ(oi, oj); then, each time a new object
ol is added to the solution Sk, for each candidate object oj , the pheromone factor
τSk

(oj) is incremented by τ(ol, oj).
The heuristic factor ηSk

(oi) also depends on the whole set Sk of selected
objects. Let cSk

(i) =
∑

g∈Sk
rig be the consumed quantity of the resource i

when the ant k has selected the set of objects Sk. And let dSk
(i) = bi − cSk

(i)
be the remaining capacity of the resource i. We define the following ratio:

hSk
(j) =

m∑

i=1

rij

dSk
(i)
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which represents the tightness of the object j on the constraints i relatively to
the constructed solution Sk. Thus, the lower this ratio is, the more the object is
profitable.

We integrate the profit of the object in this ratio to obtain a pseudo-utility
factor. We can now define the heuristic factor formula as follows:

ηSk
(j) =

pj

hSk
(j)

2.2 Pheromone Updating
Once each ant has constructed a solution, pheromone trails laying on the

construction graph edges are updated according to the ACO meta-heuristic.
First, all amounts are decreased in order to simulate evaporation. This is done by
multiplying the quantity of pheromone laying on each edge of the construction
graph by a pheromone persistence rate (1 − ρ) such that 0 ≤ ρ ≤ 1.

Then, the best ant of the cycle deposits pheromone. More precisely, let Sk ∈
{S1, . . . ,SnbAnts} be the best solution (with maximal profit) constructed during
the cycle, and Sbest be the best solution built since the beginning of the run. The
quantity of pheromone laid by ant k is inversely proportional to the gap of profit
between Sk and Sbest, i.e., it is equal to 1/(1 + profit(Sbest) − profit(Sk)).
This quantity of pheromone is added on each edge connecting two different
vertices of Sk.

3. Parameters Setting
When solving a combinatorial optimization problem with a heuristic ap-

proach such as evolutionary computation or ACO, one usually has to find a
compromise between two dual goals. On one hand, one has to intensify the
search around the most “promising” areas, that are usually close to the best
solutions found so far. On the other hand, one has to diversify the search
and favor exploration in order to discover new, and hopefully more successful,
areas of the search space. The behavior of ants with respect to this intensi-
fication/diversification duality can be influenced by modifying parameter val-
ues. In particular, diversification can be emphasized either by decreasing the
value of the pheromone factor weight α —so that ants become less sensitive to
pheromone trails— or by decreasing the value of the pheromone evaporation
rate ρ —so that pheromone evaporates more slowly. When increasing the ex-
ploratory ability of ants in this way, one usually finds better solutions, but as a
counterpart it takes longer time to find them.

This is illustrated in Fig. 1 on a MKP instance with 100 objects and 5 resource
constraints. When emphasizing pheromone guidance, by choosing values such
as α = 2 and ρ = 0.02, Ant-knapsack quickly finds good solutions but it may
fail in finding the optimal (or the best) solution. On the contrary, when choosing
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Figure 1. Influence of α and ρ on solution quality: each curve plots the evolution of the profit
of the best solution when the number of cycles increases, for a given setting of α and ρ. The
other parameters have been set to β = 5, nbAnts = 30, τmin = 0.01, and τmax = 6.

values for α and ρ that emphasize exploration, such as α = 1 and ρ = 0.01,
ants find better solutions, but they need more cycles to converge towards these
solutions. A good compromise between solution quality and computation time
is reached when α is set to 1 and ρ to 0.01.

For all experiments reported below, we have set α to 1, β to 5, ρ to 0.01, the
number of ants nbAnts to 30, and the pheromone bounds τmin and τmax to 0.01
and 6. Finally, we limited the number of cycles to 2000.

4. Experiments and Results
The Ant-knapsack has been tested on benchmarks of MKP from OR-Library

(available at http://mscmga.ms.ic.ac.uk/). We compare the results of
Ant-knapsack with the two ACO algorithms of Leguizamon and Michalewicz
[8] and Fidanova [7], and the genetic algorithm of Chu and Beasly [2].

Table 1 displays the results for 30 instances with 100 objects and 5 con-
straints (n = 100 and m =5). On these instances, Ant-knapsack clearly out-
performs Fidanova’s algorithm. It also obtains better results than the algorithm
of Leguizamon and Michalewicz: the best solutions found are always larger or
equal, and the average solutions found are larger for 7 instances, and smaller
for 3 instances. Ant-knapsack finds the best known results of Chu and Beasley
for 26 instances over the 30 tested instances.
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Table 1. Results on 5.100 instances. For each instance, the table reports the best solutions
found by Chu and Beasley as reported in [2](C. & B.), the best and average solutions found
by Leguizamon and Michalewicz as reported in [8](L. & M.), and the best solutions found by
Fidanova as reported in [7]. It then reports results obtained by Ant-knapsack: best and average
solutions over 50 runs, followed by standard deviation in brackets, and the average number of
cycles needed to find the best solution (C*).

N◦ C. & B. L. & M. Fidanova Ant-knapsack
Best Best Avg Best Best Avg (sdv) C*

00 24381 24381 24331 23984 24381 24342 (29.3) 522
01 24274 24274 24245 24145 24274 24247 (38.5) 469
02 23551 23551 23527 23523 23551 23529 (8.0) 483
03 23534 23527 23463 22874 23534 23462 (32.6) 500
04 23991 23991 23949 23751 23991 23946 (31.8) 589
05 24613 24613 24563 24601 24613 24587 (31.3) 535
06 25591 25591 25504 25293 25591 25512 (43.8) 480
07 23410 23410 23361 23204 23410 23371 (30.3) 509
08 24216 24204 24173 23762 24216 24172 (32.9) 571
09 24411 24411 24326 24255 24411 24356 (44.3) 588
10 42757 42705 42757 42704 (14.3) 537
11 42545 42445 42510 42456 (15.8) 577
12 41968 41581 41967 41934 (22.3) 635
13 45090 44911 45071 45056 (24.0) 627
14 42218 42025 42218 42194 (33.2) 512
15 42927 42671 42927 42911 (33.3) 484
16 42009 41776 42009 41977 (45.2) 458
17 45020 44671 45010 44971 (32.5) 490
18 43441 43122 43441 43356 (38.5) 514
19 44554 44471 44554 44506 (25.2) 517
20 59822 59798 59822 59821 (3.2) 261
21 62081 61821 62081 62010 (47.1) 387
22 59802 59694 59802 59759 (21.7) 450
23 60479 60479 60479 60428 (21.8) 368
24 61091 60954 61091 61072 (20.0) 298
25 58959 58695 58959 58945 (14.5) 356
26 61538 61406 61538 61514 (24.0) 407
27 61520 61520 61520 61492 (25.6) 396
28 59453 59121 59453 59436 (40.5) 395
29 59965 59864 59965 59958 (8.4) 393

Table 2 displays the results for 30 instances with 100 objects and 10 con-
straints (n = 100 and m = 10). On these instances, Ant-knapsack also obtains
better results than the algorithm of Leguizamon and Michalewicz: the best solu-
tions found are larger or equal for 9 instances over 10, and the average solutions
found are larger for 8 instances, and smaller for 2 instances. Ant-knapsack finds
for this set also the best known results of Chu and Beasley for 25 instances over
30.

We also tested Ant-knapsack on larger MKP instances with 500 objects and
5 constraints (Table 3). The best known results for this set are obtained by
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Table 2. Results on 10.100 instances. For each instance, the table reports the best solutions
found by Chu and Beasley as reported in [2](C. & B.), and by Leguizamon and Michalewicz
as reported in [8](L. & M.). It then reports results obtained by Ant-knapsack: best and average
solutions over 50 runs, followed by standard deviation in brackets, and the average number of
cycles needed to find the best solution (C*).

N◦ C. & B. L. & M. Ant-knapsack
Best Best Avg Best Avg (sdv) C*

00 23064 23057 22996 23064 23016 (42.2) 538
01 22801 22801 22672 22801 22714 (67.2) 575
02 22131 22131 21980 22131 22034 (66.9) 598
03 22772 22772 22631 22717 22634 (60.6) 700
04 22751 22654 22578 22654 22547 (66.3) 640
05 22777 22652 22565 22716 22602 (63.3) 645
06 21875 21875 21758 21875 21777 (44.9) 552
07 22635 22551 22519 22551 22453 (89.2) 586
08 22511 22418 22292 22511 22351 (69.4) 534
09 22702 22702 22588 22702 22591 (88.5) 588
10 41395 41395 41329 (48.5) 501
11 42344 42344 42214 (49.5) 559
12 42401 42401 42300 (58.1) 584
13 45624 45624 45461 (73.6) 562
14 41884 41884 41739 (57.3) 536
15 42995 42995 42909 (76.3) 525
16 43559 43553 43464 (71.7) 597
17 42970 42970 42903 (47.7) 439
18 42212 42212 42146 (48.0) 598
19 41207 41207 41067 (89.7) 548
20 57375 57375 57318 (59.5) 330
21 58978 58978 58889 (40.2) 504
22 58391 58391 58333 (29.5) 513
23 61966 61966 61885 (42.4) 427
24 60803 60803 60798 (5.0) 316
25 61437 61437 61293 (52.7) 502
26 56377 56377 56324 (35.7) 453
27 59391 59391 59339 (53.3) 445
28 60205 60205 60146 (62.6) 360
29 60633 60633 60605 (36.1) 360

Vasquez and Hao [11]. They proposed an hybrid algorithm that combines tabu
search and linear programming. On these difficult instances, we find worse
results than those of Vasquez and Hao.

5. Conclusion
In this paper, we propose an ACO algorithm for the multidimensional knap-

sack problem. This algorithm differs from many ACO algorithms in the fact
that pheromone trails are laid not only on the edges of the visited paths, but on
all edges connecting any pair of nodes belonging to the solution. In addition,
when adding a node to the solution under construction, the probability of choos-
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Table 3. Results on 5.500 instances. For each instance, the table reports the best solutions
found by Vasquez and Hao as reported in [11](V. & H.). It then reports results obtained by Ant-
knapsack: best and average solutions over 50 runs, followed by standard deviation in brackets,
and the average number of cycles needed to find the best solution (C*).

N◦ V. & H. Ant-knapsack
Best Best Avg (sdv) C*

00 120134 119893 119658 (135.8) 1625
01 117864 117604 117423 (130.4) 120
02 121112 120846 120622 (121.4) 1600
03 120804 120534 120279 (152.3) 124
04 122319 122126 121829 (135.2) 191

ing a node not only depends on the pheromone trail between the last visited
node and the candidate node but on the trails laying on all edges connecting the
candidate node and all visited nodes in the solution. The proposed algorithm
finds most of the best known results for the tested MKP benchmarks. This
algorithm improves also many results found by other ACO algorithms.
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Abstract We present a multiple ant-colony algorithm (MACA) for the graph bisection prob-
lem. The aim of this paper is to compare the performance of the MACA with
results on the benchmark graphs from Graph partitioning Archive at the Uni-
versity of Greenwich. Experimental results show that the MACA is comparable
with the state-of-the-art graph bisection algorithms.
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1. Introduction
Let G = (V, E) be an undirected and unweighted graph with |V | = n.

Generalizing the standard definition for odd n, we define:

A bisection is a partition (D1, D2) of V with |D1| = dn
2 e.

The bisection width ω is defined as the minimum number of edges be-
tween domains D1 and D2 among all possible bisections (D1, D2).

MinBisection is the NP -hard problem of finding a bisection with a
minimum bisection width ω.

The graph bisection is an elementary and important problem in graph theory
and have many real world applications, such as parallel scientific computing
and VLSI design.

73
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For example, in scientific computing, it is common to use parallel computers
to perform sparse matrix-vector multiplication. Typically each processor owns
some fraction of the rows of the matrix, and is responsible for computing only
those components of the result corresponding to rows it owns. In order to
compute the result, however, it must have a valid entry in any component of
the vector for which there is a nonzero entry in the corresponding column of
the matrix in any row it owns. Thus the amount of communication which is
necessary to perform a matrix-vector multiplication in parallel depends on how
effectively the rows of the matrix are distributed to the processors. If there are
two processors, it is desirable to split the number of rows that each processor
owns roughly in half (for load balancing), and to assign rows so that the number
of nonzero matrix entries aij with i owned by one processor and j owned by
the other is minimized (to minimize communication). If there are more than
two processors, one typically uses graph bisection recursively until a good
assignment of rows to processors is found.

Another application of graph bisection is found in VLSI placement. In
designing VLSI layouts, the divide-and-conquer approach is often utilized.
Typically, the circuit is split in half by removing wires connect the halves.
Each half is recursively laid out and then the wires connecting the two halves
are put back. The quality of the final layout depends greatly on the number of
wires that are removed. The problem of minimizing the number of wires that
go between the two halves is equivalent to the graph bisection problem if one
consider the components to be the vertices in a graph and the wires to be edges.
By producing a bisection of the graph with a minimal cut size, we minimize
the number of wires between the two halves.

Since the space of feasible solutions for the MinBisection problem is pro-
hibitively large we are forced to recourse to heuristic approaches, which reduce
or bound the space to be searched. A promising alternative is to use stochastic
heuristics, some of which are based on various fundamental principles observed
in nature. Recently, a number of studies have shown that such techniques have
great potential for solving the MinBisection problem. Examples include
simulated annealing [5], genetic algorithms [2, 6, 11], and ant-colony algo-
rithms [3, 8, 10].

2. Multiple Ant Colony Approach
The basic idea of the multiple ant-colony algorithm MACA is very simple

[7]. We have two or more colonies of ants that are competing for food. In our
case food are the vertices of the graph.

First we map the graph onto the grid, which represents the ants’ habitat (a
place where the ants can move). There are many possibilities as to how a graph
can be mapped, but, for our example, we will consider a random mapping.
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Ants are placed into their nest locus from where they start their foraging and
gathering of food.

Algorithm 1: MACA

initialize();
while ending condition not satisfied do

for all ants of colony do
for all colonies do

if carrying food then
if in nest locus then

drop food()
else

move to nest()
end if

else if food here then
pick up food()

else if food ahead then
move forward()

else if in nest locus then
move to away pheromone()

else if help signal then
move to help()

else
follow strongest forward pheromone()

end if
end for

end for
for all grid cells do

evaporate pheromone()
end for

end while
End pseudo-code.

The ants on the grid move in three possible directions (forward, left and right).
The decision in which direction an ant will move is defined by the probability
of movement. A cumulative probability distribution is used to decide which
direction is chosen. When an ant tries to move off the grid, it is forced to move
left or right with equal probability. When an ant finds food it tries to pick it
up. At first it checks if the quantity of the temporarily gathered food in its
nest is not on the limit (the capacity of storage is limited due to the problem
constraints). If the limit is not reached, then the weight of the food is calculated
from the number of cut edges created by assigning the selected vertex to the
partition associated with the nest of the current ant, otherwise the ant moves in
a randomly selected direction. If the weight of the food is too heavy for one ant
to pick it up (and not too heavy for a few ants to lift it up) then an ant sends a
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help signal within the radius of a few cells. So if ants are in the neighborhood,
they will help this ant to carry the food to the nest locus. On the way back
to the nest locus an ant deposits pheromones on the trail that it is making, so
the other ants can follow its trail and gather more food from that, or a nearby,
cell. When an ant reaches the nest locus it drops the food in the first possible
place around the nest (in a clockwise direction). After an ant drops its food it
starts a new round of foraging. Of course ants can also gather food from other
nests. When an ant tries to pick up a food from the other nests it a performs
the same procedure as if it was gathering for food, except when the food is to
heavy to pick it up, it does not send a help signal but moves on. With this, we
significantly improve our temporary solution.

3. Multilevel Optimization
An effective way to speed up and globally improve any partitioning method is

the use of multilevel techniques [1]. The basic idea is to group vertices together
to form clusters that define a new graph. This procedure is applied until the graph
size becomes small enough. Each step is followed by a successive refinement
of the graph.

The implementation of these ideas consists of two parts: graph contraction
and partition expansion. In graph contraction a coarser graphG`+1(V`+1, E`+1)
is created from G`(V`, E`) by finding the largest independent subset of graph
edges and then collapsing them. Each selected edge is collapsed and the vertices
u1, u2 ∈ V` that are at either end of it are merged into a new vertex u ∈ V`+1

with weight |v| = |u1|+ |u2|. Edges that have not been collapsed are inherited
by the new graph G`+1, and the edges that become duplicated are merged and
their weight is summed. Because of inheritance the total weight of the graph
remains the same and the total edge weight is reduced by an amount equal to the
weight of the collapsed edges, which has no impact on the graph imbalance or
the edge-cut. In the second part, graph expansion with partitioning, an already
optimized partition of graph G` is expanded. The optimized partition must be
interpolated onto its parent graph G`−1. Because of the simplicity of coarsen-
ing in the first part, the interpolation itself is very trivial. So, if vertex v ∈ V`

belongs to subdomain Di, then after refinement the matched pair u1, u2 ∈ V`−1

that represents v will also be in Di. The graph is expanded to its original size
and a partitioning algorithm is run on every level ` of the expansion.

Due to large graphs and an increased number of levels, the number of vertices
in a single cell increases rapidly. For this reason we suggested and applied a
bucket sort procedure that accelerates and improves the algorithm’s convergence
by choosing the most “promising” vertex from the cell. The basic idea of the
bucket sort procedure is that all the vertices of a given gain g are put together in
a “bucket” ranked g. The problem of finding a vertex with the maximum gain is
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then reduced to finding the non-empty bucket with the highest rank, and picking
a vertex from it. If a chosen vertex migrates from one subdomain to another,
then only its gain and the gains of all its neighbors have to be recalculated and put
back into appropriate buckets. In our implementation each bucket is represented
by a double-linked list of vertices. Because of the multilevel process, it often
happens that the potential gain values are dispersed over a wide range. For this
reason we introduced a 2-3 tree, and so eliminated large and sparse arrays of
pointers. The non-empty buckets are stored in the 2-3 tree, so each leaf in the
tree represents a bucket. For even faster searching we made one 2-3 tree for
each colony on every cell that has vertices on it. With this we speeded up the
search, as well as the add and delete operations.

4. Performance Evaluation
The MACA was implemented in Borland r© DelphiTM. The experiments

were made on a computer with an AMD AthlonTMXP 1800+ processor run-
ning the Microsoft r© Windows r© XP operating system. The implementation
also includes a visualization tool to assist the user in selecting the appropriate
parameters of the algorithm (see Fig. 1).

The benchmark graphs used in our experiment were taken from the Graph
Partitioning Archive and are described in Table 1.

Table 1. Benchmark suite from the Graph Partitioning Archive at the University of Greenwich.∗

Graph Number of nodes Number of edges

add20 2 395 7 462
data 2 851 15 093
3elt 4 720 13 722
uk 4 824 6 837
add32 4 960 9 462
bcsstk33 8 738 291 583
whitaker3 9 800 28 989
crack 10 240 30 380
wing nodal 10 937 75 488
fe 4elt2 11 143 32 818
4elt 15 606 45 878
fe sphere 16 386 49 152
cti 16 840 48 232
cs4 22 499 43 858

∗http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/

The results of our experiment are shown in Table 2. It is clear that the
MACA performed very well. Notice that our MACA is superior to the classical
k-METIS and Chaco algorithms [8]. The MACA also returned some solutions
that are better than currently available solutions (Table 2). Furthermore, the
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MACA is even comparable to the combined evolutionary/multilevel scheme
used in the JOSTLE Evolutionary algorithm [11], which is currently the most
promising partitioning algorithm.

Table 2. The best bisections found to date.∗

Bisection width ω

Graph Produced with MACA The best known Algorithm

add20 603 612 MQI
data 199 191 mpM4.0
3elt 90 90 JE
uk 20 20 mpM4.0
add32 11 11 Ch2.0
bcsstk33 10 224 10 172 mpM4.0
whitaker3 127 127 JE
crack 184 184 JE
wing nodal 1 709 1 707 JE
fe 4elt2 130 130 MRSB
4elt 139 139 JE
fe sphere 402 386 JE
cti 334 334 JE
cs4 391 372 JE

∗Graph Partitioning Archive (Summer 2004)

MQI – Max-flow Quotient-cut Improvement, a bisection algorithm from Lang and Rao, which uses
many multiple tries and improves an initial partition provided by METIS [9]

mpM4.0 – Multiple runs of a randomized version of p-Metis; results provided by Lang and Rao.

JE – JOSTLE Evolutionary - combined evolutionary/multilevel scheme [11]

Ch2.0 – CHACO - multilevel Kernighan-Lin (recursive bisection); version 2.0 (October 1995) [4]

MRSB – Barnard and Simon’s Multilevel Recursive Spectral Bisection [1]

5. Conclusions
This paper introduce the graph bisection problem as well as the ant-colony

optimization technique. A multilevel multiple ant-colony algorithm (MACA)
was developed for solving graph bisection problem. The results achieved were
close to the best known results for the set of benchmark graphs.

There is a wide range of possibilities to be considered in the future. One of
the most appealing is a merger of the MACA with some other method through
daemon actions and parallel implementation of the MACA. This could make
the algorithm even more competitive when compared with other heuristics al-
gorithms.
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a)

b)

Figure 1. Bisection of the graph crack with the MACA: a) after 16 steps (ω = 973); b) final
solution (ω = 185).
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Abstract We deal with the optimization of process parameters in industrial continuous
casting of steel. The process requires fine-tuning of numerous parameters with
respect to the metallurgical cooling criteria to achieve the highest possible quality
of the cast steel. We tackle the problem with various optimization methods:
local optimization, conjugate gradient, downhill simplex and several types of
evolutionary algorithms. They search the parameter space and evaluate candidate
settings using a numerical simulator of the process and a cost function defined
over the metallurgical criteria. We analyze the performance of the methods with
respect to effectiveness and efficiency, and compare the optimized parameter
settings with the manual setting used previously at the steel plant. The best
results are achieved by local optimization and conjugate gradient what suggests
that the applied cost function is not complex.

Keywords: Continuous casting of steel, Process simulator, Numerical optimization meth-
ods, Local optimization, Conjugate gradient, Downhill simplex, Evolutionary
algorithms, Differential evolution, Comparative study

1. Introduction
Continuous casting of steel is broadly used at modern steel plants to produce

steel semi-manufactures. The quality of the cast steel is subject to many process
parameters, such as the casting temperature and speed, coolant temperatures and
flows, etc. The number of possible parameter settings grows exponentially with
the number of parameters considered. Consecutively, finding the parameter
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setting that will result in high-quality steel is a demanding task. Because of
high cost and safety risks, the optimization cannot be carried out on a real caster
and we therefore use a numerical simulator of the casting process. However, the
evaluation of solutions on the simulator is a time-consuming process. For this
reason, we need to find the best parameter setting in as few process simulations
as possible. In other words, we search for an optimization method that is
effective and efficient.

Over the last years, several advanced computer techniques have been used
in attempts to enhance the process performance and product properties in con-
tinuous casting of steel. Cheung and Garcia [3] combined a numerical model
of the process with a heuristic search technique to find parameter values that
reduce the proportion of defects in steel production. Filipič and Šarler [4] op-
timized 14 process parameters of an industrial steel casting machine with an
automated software environment consisting of a numerical process simulator
and evolutionary algorithm (EA). Chakraborti and coworkers [1] found genetic
algorithms to be the most suitable technique for optimizing the settings of the
continuous casting mold. In a follow-up study [2] based on heat transfer mod-
eling, they used genetic algorithms to determine the maximum casting speed.

An important question in tuning the casting process parameters is which
optimization algorithm to use. In this paper, we extend the collection of applied
methods from generational EA and steady-state EA, to differential evolution
and other optimization methods (local optimization, conjugate gradient and
downhill simplex). By investigating a variety of approaches, we hope to enhance
the knowledge on suitability of the optimization methods for this problem.

In Sect. 2 we outline the process of continuous casting of steel, present the
simulation-based optimization procedure, and give an example of the optimiza-
tion problem. The applied methods are described in Sect. 3. The numerical
experiments and results are presented in Sect. 4 and discussed in Sect. 5. The
paper concludes with a summary of the work done and directions for further
investigation.

2. Optimization of Continuous Casting of Steel
2.1 The Process

The process of continuous casting of steel (schematically shown in Fig. 1) is
a complex metallurgical process where molten steel is cooled and shaped into
semi-manufactures of desired dimensions. The main components of the casting
system are the ladle, tundish, mold and cooling subsystems. The ladle is used
to transfer batches of molten steel from a steel-making furnace into the tundish.
The tundish holds steel while casting is carried out. It ensures the continuity
of steel flow into the mold. The mold is the heart of the casting system. It
extracts heat from the molten steel and initiates the formation of a solid shell on
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Figure 1. Schematic view of the continuous casting of steel.

the slab coming out of the mold. The mold oscillates to prevent the steel from
sticking to the copper-alloy plates of the mold. Heat extraction is performed by
coolant flowing through channels built in the mold. This represents the primary
cooling subsystem of the caster. The heat extraction and solidification continue
as the slab, led by support rolls, passes through the caster. Along the moving
slab water sprays are located which form the secondary cooling subsystem.
Cooling in this region results in complete solidification and the solidified slab
is finally cut into pieces of the ordered length.

2.2 Simulation-Based Optimization Procedure
To tune the process parameters in continuous casting of steel, we have imple-

mented an optimization environment consisting of the process simulator [12], a
cost function and various optimization algorithms. Initially, given the process
parameter values, the simulator computes the temperature field in the slab and
extracts the metallurgical criteria of critical importance for the steel quality.
Afterwards, the cost function value is calculated from the obtained criteria.
The cost value is used by the applied optimization algorithm to generate new
parameter setting and send it to the simulator. This represents one step in the
simulation-based optimization procedure that operates in this manner until the
stopping criterion is met.

In this study, five of the metallurgical criteria ci provided by the simulator [12]
are considered: maximum cooling and reheating rates on the slab surface in the
secondary cooling zone, maximum surface temperature in the slab unbending
point, and maximum negative and positive temperature deviations on the slab
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surface. They are taken into account in the cost function f as

f =
5∑

i=1

ci − cmin
i

cmax
i − cmin

i

, (1)

where cmin
i and cmax

i are the lower and upper bounds for the i-th criterion. The
bounds have been determined empirically. The criteria are defined in such a way
that a lower value indicates a more satisfied criterion. Thus the optimization
task is to find a parameter setting that will result in the minimum value of the
cost function f .

As the evaluation of parameter settings with the simulator is time-consuming,
a database of the evaluated solutions is maintained. When a solution is to be
evaluated, the optimization algorithm first checks for the presence of the solution
in the database and activates the simulator only if the solution has not yet been
evaluated.

2.3 An Example of the Optimization Problem
Let us consider an example of the optimization problem, where 12 spray

coolant flows in the secondary cooling zone are subject to optimization. Table
1 shows the parameter search space for this problem. The total number of
possible parameter settings equals to 512 ≈ 2.4 · 108. The task is to find the
parameter setting x∗ = (x1, . . . , x12) that minimizes the cost function f .

Table 1. An example of the optimization problem: the search space.

Coolant flow Min. value Max. value Discretization step Number of
number [l/min] [l/min] [l/min] values

1 120 160 10 5
2 65 85 5 5
3 200 280 20 5
4 190 270 20 5
5 160 240 20 5
6 150 230 20 5
7 120 160 10 5
8 140 180 10 5
9 120 160 10 5

10 120 160 10 5
11 130 170 10 5
12 120 160 10 5

3. Optimization Methods
For the optimization of continuous casting of steel, six optimization methods

were tested. They include single-point iterative procedures and population-



In Search for an Efficient Parameter Tuning Method for Steel Casting 87

based algorithms, gradient and evolutionary methods, as well as stochastic
and deterministic approaches. All methods use real vector representation of
candidate solutions x = (x1, . . . , xn), where n is the number of parameters to
be optimized. The search space is discretized. The stopping criterion is the
predefined number of the examined solutions. The methods are described in
the following subsections.

3.1 Local Optimization
Local optimization (LO) is a simple optimization method that searches for

an optimum by examining the neighborhood of the current solution. The points
x = (x1, . . . , xn) and y = (y1, . . . , yn) are defined to be neighbors if, according
to the given discretization, they differ by one step in exactly one dimension:

xk = yk ± dk for an arbitrary k ∈ {1, . . . , n}, and xi = yi for all i 6= k. (2)

Therefore, every point of the n-dimensional search space (except for the border
points) has 2n neighbors. The LO procedure is presented in more detail in
Algorithm 1.

Algorithm 1: Local optimization (LO)

randomly select an initial solution x
initiate direction d := 0
while stopping criterion not met do

for i := 1 to num neighbors do
if d = 0 then

randomly select neighbor y from the neighborhood of x
else

get neighbor in the given direction y := x + d
end if
if y is better than x then

remember direction d := y − x
replace solution x := y
break

else
reset direction d := 0

end if
end for
if stuck in a local optimum then

randomly select a new solution x
end if

end while
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3.2 Conjugate Gradient
The conjugate gradient method (CG) is used for minimizing functions f ,

for which the gradients f ′ and f ′′ can be computed. The method consists of
iterative steps in which the search of the space is made in conjugate directions.

Two vectors (or directions) di and dj are conjugate with regard to the sym-
metric positive definite matrix A if

dT
i A dj = 0. (3)

In an n-dimensional space, there are n conjugate directions. In CG the direc-
tions are conjugate with regard to the Hessian matrix f ′′ (that can be approx-
imated by its diagonal). The CG method is outlined in Algorithm 2. Further
details on the method can be found in [11].

Algorithm 2: Conjugate Gradient (CG)

randomly select a starting point x(0)

calculate the preconditioner M (the diagonal of the Hessian matrix f ′′)
compute the first search direction as d(0) = −M−1f ′(x(0))
while stopping criterion not met do

for i := 0 to n− 1 do
with the Newton-Raphson method find α(i) that minimizes f(x(i) + α(i)d(i))
the next point is x(i+1) = x(i) + α(i)d(i)

the next search direction is d(i+1) = −M−1f ′(x(i+1)) + β(i+1)d(i)

(the coefficient β(i+1) is calculated with the Polak-Ribiere method)
end for
restart from the best point found in the direction d(0) = −M−1f ′(x(n))

end while
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Figure 2. Simplex at the beginning of a step and possible outcomes for a step of DS [8].
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3.3 Downhill Simplex
The downhill simplex method (DS), also named the Nelder-Mead method

after its authors [7], searches for a minimum of an n-dimensional function
by making use of a simplex. A simplex is a geometrical figure consisting, in
n dimensions, of n + 1 vertices and all their interconnecting line segments,
polygonal faces, etc.

DS starts with a randomly chosen simplex and takes a series of steps (reflec-
tions, expansions and contractions) which transform the simplex and move it
towards the minimum. At every step the point of the simplex with the highest
function value (phigh – “highest point”) is transformed into a lower point (see
Fig. 2 and Algorithm 3).

Algorithm 3: Downhill Simplex (DS)

randomly choose the vertices of an initial simplex
while stopping criterion not met do

if simplex too small then
construct a new simplex with plow and n random points

end if
reflect phigh through the opposite face of the simplex (Fig. 2(a))
if prefl is lower than plow then

expand the simplex in the same direction (Fig. 2(b))
if pexp is lower than prefl then

replace phigh with pexp

else
replace phigh with prefl

end if
else if prefl is lower than phigh then

replace phigh with prefl

else
contract the simplex (Fig. 2(c))
if pcont is lower than phigh then

replace phigh with pcont

else
contract the simplex around plow (Fig. 2(d))

end if
end if

end while

3.4 Generational Evolutionary Algorithm
The generational evolutionary algorithm (GEA) is an optimization method

that imitates the principles of Darwinian theory of evolution. By applying
selection, crossover and mutation to a population of solutions, it creates better
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and better offspring populations (Algorithm 4). This method was originally
studied in [6] and made popular by [5].

Algorithm 4: Generational Evolutionary Algorithm (GEA)

fill up the initial population pop with random solutions
while stopping criterion not met do

create an empty population new pop
repeat

select two parents from pop
create two offspring by crossing the parents
mutate the offspring
add the offspring into the new population new pop

until new pop full
copy new pop into pop

end while

3.5 Steady-State Evolutionary Algorithm
The steady-state evolutionary algorithm (SSEA) is similar to GEA, with the

exception of maintaining a single population of solutions. Like in GEA, at
every step two offspring are created by applying the evolutionary operators.
But instead of filling a new population, the offspring replace the worst two
individuals in the current population (Algorithm 5).

Algorithm 5: Steady-State Evolutionary Algorithm (SSEA)

fill up the population pop with random solutions
while stopping criterion not met do

select two parents from pop
create two offspring by crossing the parents
mutate the offspring
replace the two worst individuals in pop with the offspring

end while

3.6 Differential Evolution
Differential evolution (DE) is a population-based algorithm for optimizing

functions on totally ordered spaces. It was developed by Price and Storn [9]
as a variant of an evolutionary algorithm. The basic idea of DE is outlined in
Algorithm 6.
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Algorithm 6: Differential Evolution (DE)

evaluate the initial population P of random solutions
while stopping criterion not met do

for i := 1 to pop size do
randomly select three different individuals I1, I2, I3 ∈ P
generate the candidate solution as C := I1+ weight·(I2 − I3)
alter the candidate by binomial crossover with the i-th individual
evaluate the candidate
if the candidate is better than the i-th individual then

replace in P the i-th individual with the candidate
end if

end for
end while

4. Numerical Experiments and Results
The optimization methodology was experimentally applied to continuous

casting of the construction steel AC-0113 at the Acroni steel plant in Jesenice,
Slovenia. The computation was performed for a slab with the cross-section
of 1.03 m × 0.20 m. Out of more than 20 influential process parameters, 12
spray coolant flows in the secondary cooling zone were subject to optimization
(see Sect. 2.3). The task was to check whether the manual coolant flow setting
used at the plant could be improved and which optimization method is the most
suitable for this problem. The calculations were run on a 1.8 GHz Pentium IV
computer where the execution time to evaluate a solution through numerical
simulation was 2.5 minutes.

All applied methods used real vector representation of candidate solutions.
Every method was run 5 times and in each run 400 solutions were evaluated
(calculated with the simulator or read from the database). LO had no addi-
tional parameters. CG was implemented as shown in Algorithm 2, i.e. with
preconditioning, Newton-Raphson and Polak-Ribiere methods. DS used re-
flection factor 1, contraction factor 0.5 and expansion factor 2. The evolution-
ary methods (GEA, SSEA and DE) operated on populations of 20 individuals.
Both GEA and SSEA used tournament selection with the size of tournament 2,
crossover probability 0.8 and mutation probability 0.05. DE applied the strat-
egy DE/rand/1/bin [10] with crossover probability 0.5 and multiplication factor
0.5.

The results of the applied optimization methods are presented statistically in
Table 2, while Fig. 3 shows the improvement of the best solution cost during
the optimization process. The plots represent averages over five algorithm runs
and are compared with the cost of the manual setting. They are divided into
two graphs to enable a better view of the results.
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Figure 3. Performance of the optimization methods averaged over five runs.

Table 2. Results of the applied optimization methods in terms of cost given by Eq. (1).

Method Name Best Average Worst St. dev.

Generational EA 1.8638 1.8892 1.9137 0.0192
Downhill Simplex 1.8598 1.8775 1.8879 0.0137
Differential Evolution 1.8641 1.8741 1.8935 0.0116
Steady-state EA 1.8587 1.8622 1.8654 0.0028
Conjugate Gradient 1.8587 1.8612 1.8645 0.0027
Local Optimization 1.8587 1.8587 1.8587 0

All methods significantly improve the performance of the manual setting. LO
outperforms all other methods by always reaching the best solution in less than
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300 evaluations. The second best method is CG that makes a huge improvement
in its first step (for one step the method needs 25 evaluations). SSEA is the best
evolutionary method. The other methods (DE, GEA and DS) performed a little
worse.

5. Discussion
The analysis of the solutions shows that the best result (cost value 1.8587)

is always reached in the same point of the search space. This fact and superior
performance of LO and CG over other methods indicate that the optimized func-
tion is probably unimodal. Although this outcome was not expected, it can be
explained through the underlying physics. The 12 spray coolant flows subject
to optimization are namely highly independent and in either monotonic or uni-
modal relationshis with the metallurgical criteria. Consequently, the resulting
12-dimensional cost function is also not very complex.

Although not as successful as LO, the applied evolutionary methods produce
good results too, but they need more evaluations to converge (this is especially
true for DE). They serve as a good comparison to LO and CG, since they are
more robust and achieve good results also on more complex functions.

Our findings could be applied to similar optimization tasks in material pro-
cessing. The physics behind such problems usually makes the search space
simpler than expected. It is therefore a good idea to try methods like LO or CG
in addition to EAs.

6. Conclusion
In the presented study, we have compared the performance of different op-

timization methods on process parameter tuning in continuous casting of steel.
We have used an automatic optimization procedure based on a process simula-
tor, compound cost function and various numerical optimization methods. All
applied methods considerably improved the manual setting of process param-
eters. The best results were achieved by local optimization and the conjugate
gradient method. These findings suggest that the cost function is of low com-
plexity, most probably unimodal. However, our results are founded on certain
assumptions, including the parameter intervals and discretization of the search
space. With a finer discretization, the applied methods would probably perform
differently. Testing the methods on different discretizations remains a task for
further investigation. In addition, the improved coolant flow settings need to
be practically evaluated at the plant.
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Abstract Blade casting is the a costly process in gas turbine manufacturing. This makes a
reduction of the production costs by optimization very interesting for the industry.
Today, high accuracy computer simulation codes are available for the casting
process. This makes it possible to optimize this process by means of automatically
scheduled computer experiments. This paper reports on recent studies on the
optimization of the control parameters of the casting process, thereby comparing
different objective and constraint functions.

Difficulties, like a large number of restrictions, time consuming computer
experiments (evaluations), non-linear input-output mappings, and the need for
flexible parallelisation schemes are faced when choosing the appropriate optimi-
sation tool. As a robust parallel optimization technique evolutionary strategies
(ES) have been suggested for such problems. However, these strategies typically
need many function evaluations. Thus, metamodel-assisted ES are proposed that
make extensive use of fast approximate evaluations obtained by means of Kriging
surrogate models.

Keywords: Bridgeman Casting, Directional Solidification, Kriging Models, Numerical Op-
timisation, Constraint Handling, Evolution Strategy

1. Introduction
The highest gas turbine efficiency is achieved today with single-crystal (SX)

or directionally solidified (DS) blading material, commonly cast in a Bridg-

95
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man furnace (Fig. 1). The Bridgman process is controlled by time dependent
parameters (withdrawal speed, heater temperatures), which are ideal for the
application of numerical optimization [7, 3]. In addition, the blade casting is
the most expensive process during the manufacturing of a turbine. This makes
a reduction of the production costs by optimization very interesting for the
industry.

Figure 1. Schematic describtion of a Bridgman furnace used for directional solidification.

The hybrid FE/CV simulation program CASTS (Computer Aided Solidifi-
cation TechnologieS) [6], under development at ACCESS e.V. since the late
eighties, is used to predict numerically the transient temperature response dur-
ing the Bridgman casting process. CASTS calculates transient temperature
distributions in mold, core and alloy, taking into account both latent heat re-
lease as a function of fraction solid, and heat transfer resistance at material
interfaces. The main output of the present release is the temperature and heat
flux field. Based on this data, temperature gradients and defect maps can be
calculated for each set of input process parameters, which are the basis for the
evaluation of the turbine blade.

From the data obtained after a successful simulation for a suggested process
schedule, various constraint values and an objective function value can be ex-
tracted. The following list gives an informal description of the optimization
criteria:

The process time should be minimized;
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Figure 2. Data-flow in the metamodel-assisted optimization.

A sufficiently low probability of local freckle formation, which is gov-
erned, in a first approximation, by the cooling rate at the liquidus isotherm
has to be achieved;

The degree of curvature of the solidification front has to be in a predefined
range;

The ratio G/v (temperature gradient over solidification speed) must be
greater than a critical value ( 600 Ks/cm2), describing the transition from
columnar dendritic growth to an equiaxed grain structure.

In order to apply numerical optimization strategies, this problem has to be
formulated as a black-box optimisation problem with implicit constraints:

min f(y(x)), (1)
s.t. g1(y(x)) ≤ 0, . . . , gng(y(x)) ≤ 0

Here, f : R
m → R denotes the objective function (i.e. the process time)

and g1 : R
m → R, . . . , gng : R

m → R denote implicit constraint functions
(attributed to the measured local defects). The vector valued function y : R

n →
R

m denotes the response function, which contains all criteria of interest that
can be obtained by the (costly) evaluation of a given input vector x ∈ S with
S denoting the search space (typically a subset of R

n). It is assumed that the
evaluation of y is very (time) expensive in comparison to the evaluation of f
or g1, . . . , gng .

The choice of the mapping between the output of the simulator y(x) and
the constraint function values and objective functions deserves a great deal of
attention for this problem class. This is mainly because we deal with local
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constraints. This means that for each point on the discretised surface of the
turbine blade, we get a record of constraint criteria (the freckles probability,
G/v ratio and degree of curvature). These values have to be summarised to a
few constraint functions, which can be handled by the numerical optimization
strategy. Besides the performance assessment of the optimisation strategy the
choice of the constraint functions will be an important issue in this paper.

Once the objective and constraint criteria have been formulated in the stan-
dard form, numerical optimisation strategies can be applied to search for op-
timized input variables due to the objectives and constraints. The non-linear
nature of this problem and the high dimensional search space demands for ro-
bust optimisation techniques [4]. Evolution strategies (ES) proved to be very
effective in such scenarios and have been choosen here. In order to decrease the
number of time consuming evaluations, statistical interpolation techniques that
approximate responses based on data from previously evaluated points have
been applied (cf. Fig. 2). Within the metamodel-assisted evolution strategy
(MAES) these approximations are used in order to pre-screen solution candi-
dates. It is well known that this kind of pre-screening makes ES much more
effective in the presence of time-consuming evaluations. In order to decide,
whether to evaluate a point precisely or by means of approximation, error esti-
mations for the approximation are used. The Kriging method has been chosen,
because it allows for such an error estimation. The Kriging method is based on
statistics. It allows to specify confidence margins for each prediction, which
can be used to formulate pre-screening criteria.

The rest of the paper is organized as follows: After a brief introduction
to metamodelling with Kriging (Sect. 2), in Sect. 3 the MAES optimization
tool is introduced. Then in Sect. 4 different formulations of the objective and
constraint functions for the gas turbine blade casting problem are specified and
discussed. Results are reported in Sect. 5 and finally we summarize and state
questions for future research.

2. Kriging Models
Given a database of precise evaluationsy(1) = f(x(1)), . . . ,y(m) = f(x(m))

that have been obtained from costly computer experiments, we may ask for a
tool that can utilise this data in order to predict results at new points. This
tool should (1) be considerably faster than the precise evaluation and (2) give a
continuous interpolation of the multivariate response function y for irregulary
distributed input data X.

Kriging metamodels can be used for this purpose: They provide exact inter-
polations of black-box functions after they have been trained with the known
results X,y. Beside a prediction ŷ(x) of the true response, they also provide
an error estimate for the prediction of ŝ(x).
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Figure 3. Understanding interpolation with Kriging for a problem with an 1D input vector
and 1D response: With three training patterns x(i), i = 1, . . . , 3, the thick line corresponds to
the approximate response ŷ = f̂(x). The two thin lines confine the confidence interval of the
response. The former is equal to the expected value of the random variable F at a new point x.

Taking a Bayesian stance, the output of Kriging, as used in this paper, is the
conditional Gaussian distribution with mean ŷ(x) and standard deviation ŝ(x)
describing the likelihood for the true realisation of the function value at site x

given the prior information X,y and an assumption of the correlation structure
of the input-output mapping. The assumption that is made in Kriging is that the
measured response is part of a sample path of a Gaussian process correlated in
the input space via a distance-based correlation function. Figure 3 visualises
this for the simple case of 1D input and 1D output vectors.

Kriging is a standard tool for metamodelling and statistical interpolation.
The Kriging tool used in this paper has been proposed by Sacks et al. [9]
for metamodelling purposes. A detailed description can be found in the given
reference.

3. Metamodel-Assisted Optimization Tools
A simple strategy for metamodel assisted optimisation is to initialise the

metamodel by a design of experiments (DoE) and then use a numerical op-
timisation strategy to find the optimum of the metamodel [5]. This is done
in an iterative way in the Kriging Monte Carlo Strategy (KMCS). However,
first tests reported for the Bridgeman process [3] indicated that this strategy
suffers from premature convergence. Within the same study it turned out that
the metamodel-assisted derandomized evolution strategy (MA-DES) is a very
promising strategy for this problem class.

The MA-DES features the selection scheme of a (1, λ)-ES [1]. In order to
achieve an accelerated adaptation of step-sizes, the strategy has been equipped
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with the derandomized self-adaptation of step-sizes as suggested by Ostermeier
et al. [8].The main idea in the (1 + ν < λ)-MA-DES is not to evaluate all λ
generated solution candidates (individuals) by means of precise evaluations, but
to consider only the ν most promising solutions with regard to a pre-screening
criterion based on approximate evaluations with the metamodel. Thus, the
number of precise evaluations per iteration reduces from λ to ν � λ. For the
given problem class ν = 4 and λ = 20 turned out to be good settings. A
detailed description of the MA-DES can be found in a previous publication by
the authors [3].

In order to avoid premature convergence, lower confidence bounds (cf.
Fig. 3) have been calculated for all optimisation criteria, including constraints
(cf. Sect. 4): ŷi,lb(x) = ŷi(x) − ωŝi(x), i = 1, . . . , ng + 1. Here ω denotes
a confidence factor (here: ω = 2.0) and ŷi(x) and ŝi(x)are mean values and
standard deviations specifying the response approximations at point x.

4. Objective Function Formulation
The freckle probability, the curvature of the solidification front and the G/v

ratio (cf. Sect. 1) are evaluated by counting the number of “bad” nodes, i.e.
nodes with freckle probability, the curvature of the solidification front is above
20◦ or the G/v ratio is below 600 Ks/cm2. The criteria can be tuned by changing
the limits (0,20◦,600 Ks/cm2).

A great advantage of this criteria formulation is that these three criteria can
now be easily combined due to their similar definition by the number of “bad”
nodes. Figure 4 shows in the three left plots the nodes with too high curvature,
too low G/v ratio or freckle tendency for the optimal withdrawal profile found
by the MA-DES.

The individual criteria can be combined into one plot by giving nodes with
freckle tendency a white color, nodes with to high curvature a lavender color
and those with to low G/v ratio an orange color, while all “good” nodes are blue
(right plot in Fig. 4). Beside the usefulness for numerical optimization such a
combined visualization of different casting quality criteria can be helpful for
any casting result evaluation.

For the optimization of an industrial turbine blade, those nodes that do not
fulfill the criteria mentioned above, were weighted by their volume. A volume
can be assigned to the node by the CASTS control volume approach. An addi-
tional factor was introduced to normalize the three criteria. This normalization
reflects that a few nodes with freckles are equally bad as several nodes with a
too high G/v value and many nodes with a wrong curvature. Figure 5 shows
the influence of the weighting and normalization of the criteria.

Finally the process time has to be integrated into the objective function for-
mulation. Here the first goal was to achieve a blade with no bad nodes with a
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Figure 4. Solidification front for a gas turbine blade. The surface of the turbine blade is
colored from blue to white with increasing curvature, G/v ratio or freckle tendency. The right
plot shows the combination of these 3 criteria. Nodes with freckle tendency have a white color,
nodes with to high curvature a lavender color and those with to low G/v ratio are orange, while
all “good” nodes remain blue.

Figure 5. Improved optimization criteria by a weighting of nodes by the assigned control
volume and an additional criteria weighting factor.

process time below an acceptable time. Only when all bad nodes are removed
the optimization should try to reduce the process time to a minimum. Therefore,
the objective function was defined as follows:

f =







weight of bad nodes + process time if weight > 0 and time < 10000
weight of bad nodes + 10000 if weight > 0 and time < 10000s
process time in [s] if weight = 0

(2)

As long as the process time is above the acceptable time and bad nodes
exist, the weighted sum of the freckle, G/v and curvature criteria are added to
the process time to give the objective value. If the process time is below the
acceptable time, the weighted sum plus a constant value of the acceptable time
in seconds is used as objective function. This makes the optimization focus on
the improvement of the blade quality by reducing the number of bad nodes. If
a high quality blade with no bad nodes is achieved the optimization can again
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try to reduce the process time. There for the process time in seconds becomes
the objective function, when all bad nodes are removed.

5. Results on the Industrial Test-Case
Before applying the metamodel based ES to an industrial gas turbine balde

the two metamodel based strategies were compared with the standard downhill
simplex algorithm [10] and the derandomised evolution strategy (DES) for
the optimization of a simplified blade geometry [3]. The MA-DES variants
clearly outperform the conventional DES and the downhill simplex algorithm.
The iterative Kriging finds a rather good solution in the first sampling but no
further improvements can be found by the reduction of the sampling range
in the following iterations. The MA-DES was applied to the optimization
of an industrial turbine blade, the cluster of 3 SX blades mentioned above.
An acceptable process time of 10000 seconds was used in the optimization.
Figure 6 summarizes the result of the optimization of cluster of SX blades. The
withdrawal profile was discretised using 6 velocity values at the withdrawal
positions: 6 cm, 20 cm, 28 cm, 36 cm, 44 cm and 60 cm. The left upper plot
shows the convergence of the MA-DES. The dotted red line gives the result of
each simulation, while the full red line shows the objective value of the best
solution so far. After a significant improvement within the first 12 simulations
the optimization could not yield further improvements after 40 simulations and
the process was stopped. A withdrawal profile which yields no bad nodes could
not be obtained within 45 simulations. For the main improvements found, the
blades with the marked bad nodes are plotted below the convergence plot (the
color of the frame of the plots gives the position on the convergence curve). The
improvements found in the objective function can obviously not be visualized
by simply marking the bad nodes on the surface of the blade. For comparison
the turbine blade was also optimized by a downhill simplex (DS) algorithm.
The DS starts with a rather good solution but finds no further improvements.

The right plot of Fig. 6 shows the resulting withdrawal profiles. Starting from
an initial guess the MA-DES finds the main form of the withdrawal profile with
20 simulations. The withdrawal velocity should be small around 3 mm/min at
the beginning of the process. The velocity can be increased to 6 mm/min in the
range of the blade itself. For the solidification of the thick basis of the blade
slow velocities around 3 mm/min are again necessary. For the last centimeter
of the process, the increased velocity leads to a significant reduction of the total
process time. Compared to a withdrawal profile designed by a casting engineer,
the numerically optimized withdrawal profile leads to a higher quality of the
blade within a shorter process time.
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Figure 6. Result of the optimization of an industrial turbine blade.

6. Summary and Outlook
The MA-DES was successfully used to optimize the withdrawal profile of

the Bridgman process for casting industrial turbine blades. The results for a
simplified test case show that it outperforms classical methods with respect to
the results obtained with the same number of precise evaluations. The MA-DES
was finally applied to a industrial turbine blade. The result of the optimization
is a withdrawal profile which leads to a higher quality of the turbine blade and a
shorter process time compared to a withdrawal profile designed by hand. How-
ever, an withdrawal profile which yields a blade with no bad nodes could not be
found. It is very likely change that blades with no bad nodes can be achieved, by
solely variegating the withdrawal profile. For the future the objective function
definition has to be further adjusted to the needs of the casting engineers. A
discretization of the withdrawal profile with more than 6 velocities would be
desirable. Moreover, multi-objective optimisation algorithms could be utilized
for detecting trade-offs among criteria [2].
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école d’été de Modélisation numérique en thermique, C8 1-42, Porquerolles, 1998.

[7] G. Laschet, M. Schallmo, and N. Hofmann. Optimization tools for Bridgman casting pro-
cess. In B. Thomas and C. Beckermann (eds.): Proc. 7th Conf, on Casting, Welding and
advanced Solidification, TMS editions, San Diego, 1998, pp. 1095–1102.

[8] A. Ostermeier, A. Gawelczyk, and N. Hansen. Step-size adaptation based on non-local use
of selection information. In Davidor et al. (eds.): Parallel Problem Solving from Nature -
PPSN III, Lecture Notes in Computer Science, 866:189–198, 1994.

[9] J. Sacks, W.J. Welch, W.J. Mitchell, and H.-P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4:409–435, 2000.

[10] H.-P. Schwefel. Evolution and Optimum Seeking, Wiley, NY, 1995.



ELECTRICAL ENGINEERING DESIGN WITH AN
EVOLUTIONARY APPROACH

Gregor Papa
Computer Systems Department
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Jožef Stefan Institute, Ljubljana, Slovenia
jurij.silc@ijs.si

Abstract This paper presents two engineering design problems, both of which were solved
by evolutionary algorithms. The evolutionary approach is used in universal
electro-motor geometry optimization and integrated circuits area/time optimiza-
tion. In the first case we improve the efficiency of a universal motor; where the
goal is to find a new set of independent geometrical parameters for the rotor and
the stator with the aim of reducing the motor’s power losses, which occur in the
iron and the copper. In the second case we improve some parts of the high-level
synthesis process of integrated circuits by considering the concurrency of opera-
tion scheduling and resource allocation constraints to ensure a globally optimal
solution in a reasonable time.

Keywords: Engineering design, Electro-motor, Integrated circuit, Evolutionary optimization

1. Introduction
Evolutionary techniques are used in various search methods for a range of

different optimization areas. Their undetermined approach gives them an ad-
vantage when it comes to multi-criteria problems and problems with more local
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optima [8]. For this reason we adopted an artificial approach to the solving
of our design problems using a genetic algorithm (GA) [2, 7]. The GA, as a
frequent implementation of evolutionary techniques, is an optimization method
based on the mechanism of evolution and natural genetics. This algorithm has
already proved to be very efficient in a wide range of different optimization pro-
cedures where the exact equations are not available or some non-linearities are
present [4]. In spite of its simplicity, the GA has proved to be an efficient method
for solving various optimization and classification problems, in areas ranging
from economics and game-theory to control-system design [3, 5, 9, 11, 12].

This paper presents two engineering design problems, both of which were
solved with evolutionary algorithms. The evolutionary approach is used in
universal electro-motor geometry optimization (UM design), and integrated
circuits area/time optimization (IC design).

2. Problems in Engineering Design
2.1 Universal Motor Design

Many common home appliances, such as vacuum cleaners and mixers, as
well as power tools, such as drills and saws, are generally powered by a universal
motor (UM) [16]. This type of motor has many advantages that make the UM
such a popular choice for home appliances and power tools: a large output
power in relation to its small size, high starting and running torque, variable
speed that can be regulated in a simple way, and low manufacturing costs.

Home appliances and power tools need as low an energy consumption, i.e.,
input power, as possible, while still satisfying the needs of the user by providing
sufficient output power. The ratio of the output power to the input power defines
the efficiency of the motor, which can be improved by reducing some of the
main power losses in the motor, i.e., those that originate in the iron and the
copper. This can be done by optimizing the geometry of both the rotor and the
stator (see Fig. 1). Because of the high magnetic saturation of the iron in a UM
the problem is a highly non-linear one.

The rotor-and-stator unit of a UM is constructed by stacking the rotor/stator
iron laminations. The shape and the profile of the rotor/stator lamination are
described by several two-dimensional geometrical parameters. There are two
types of parameter: the invariable and the variable. Invariable parameters
are fixed; they cannot be altered, either for technical reasons or because of the
physical constraints of the motor. Variable parameters are those that do not have
predefined optimum values. Some of these variable parameters are mutually
independent and without any constraints. In our case we optimize 12 mutually
independent variable parameters.

The efficiency of a UM is defined as the ratio of the output power Pout to
the input power Pinp, and it depends on various power losses, which include:
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Figure 1. Geometrical parameters of the stator and rotor of a UM.

copper losses PCu, iron losses PFe, brush losses Pb, ventilation losses Pv, and
friction losses Pf . When considering all the mentioned losses and the output
power, the overall efficiency η of a UM can be defined as

η =
Pout

Pinp
=

Pout

Pout + PCu + PFe + Pb + Pv + Pf
.

2.2 Design of Integrated Circuits
High-level synthesis [6] is an automatic design process that transforms the

initial behavioral description of the circuit (especially ASICs) into the final
specification of the RTL. The process consists of the following: compilation,
transformation, scheduling, allocation and binding. Of these, the operation
scheduling and the resource allocation are the most important tasks of the high-
level synthesis because they are at the core of the design and crucially influence
both the design and the final layout (see Fig. 2).

Figure 2. Time/area optimized layout of an IC.
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Due to the interdependence of these two tasks, the solution of one task
depends on an estimation of the solution of the other task, which is not solved
yet. The scheduling of the operation into different control steps therefore affects
the allocation of operations to different units. The interaction of these two
tasks presents formidable obstacles to the goal of optimization [1]. There are,
however, some approaches to concurrent solving, but their solutions, to some
extent, are less than optimal [10].

3. The Genetic Algorithm in UM and IC Design
When reducing the main power losses in a UM design by optimizing the

geometry of the rotor/stator lamination we have to deal with a complex search
space and its non-linear behavior. In IC design we apply the concurrency
of interdependent tasks with their opponent constraints. Because traditional
search-and-optimization methods have proved to be inefficient at finding the
solution under such conditions, we decided to apply a GA. This heuristic method
requires only a little information to provide a robust, yet flexible, search in a
wide and complex search space.

3.1 UM Design Procedure
Conventional motor design can be upgraded with a genetic algorithm. The

advantages of this approach are that: there is no need for an experienced engi-
neer to be present during the whole process, except at the beginning to decide
on the initial design, and there is no need to know the mechanical and physical
details of the problem. The problem can be solved without any knowledge
of the problem, we only need some finite-element program to evaluate each
solution.

3.1.1 Experimental Results. The proposed evolutionary design ap-
proach is evaluated by estimating the actual improvement in the efficiency of
an initial UM that is designed using the conventional and evolutionary design
approaches.

We optimized the UM twice. The first one (Opt 1) was full optimization,
where all parameters were optimized, while in the second case (Opt 2) we fixed
the outer boundaries of the UM to get the design with the same amount of
material and therefore the same initial material costs.

We made prototypes of both the optimized and the costs-optimized motors
and measured the real power losses and the efficiencies of the motors. These
values are shown in Table 1. The results are only slightly different from those
calculated with a finite-element program. The main reason for this difference
can be explained by the non-exact calculation of the iron losses, due to a variation
in the material’s properties.
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Table 1. UM evaluation results.

Analytical calculation Prototype calculation
Feature Initial Opt 1 Opt 2 Initial Opt 1 Opt 2

Pinp [W] 1 044 970 982 1 050 990 1 000
Pout [W] 731 731 731 730 730 730
∆P = Pinp − Pout [W] 313 239 251 320 260 270
η = Pout

Pinp
[%] 70.0 75.8 74.8 69.5 73.7 73.0

∆P improvement [W] 74 62 60 50
η improvement [%] 5.8 4.8 4.2 3.5

3.2 IC Design Procedure
The promising results of different evaluations [5, 11, 12] led us to the Evolu-

tionary Concurrent Scheduling and Allocation (ECSA) design approach [10].
This approach considers scheduling and allocation constraints, allows a short
design time and can find globally optimal solutions. The input description of
the circuit is transformed into two basic (initial) schedules, obtained with the
ASAP and ALAP algorithms. The functional units used in the first case are
those that are the fastest for each operation, and in the second case are those
that are the slowest for each operation. These two schedules present some kind
of boundary solutions, since all the other solutions are executed in between the
time limits defined by these two schedules. In other words, no other solution
can be faster or slower, irrespective of the combinations of used units.

Each solution has to be properly encoded, i.e., each operation’s start time and
functional unit have to exist in the chromosome. The initial population is built
upon the two initial solutions, which are multiplied to form the population with
the so-called boundary solutions. The optimal solution has to be somewhere
in-between the boundaries, therefore genetic operators (crossover, mutation,
variation) transform those encoded solutions. With the transformations their
start times and allocated functional units are changed. The appropriateness of
the proposed approach is tested by a computer implementation of the ECSA
algorithm, which is used with test-bench ICs.

In addition to simple GA operators also the independent GA approach [10]
was used. There is no need to preset some working parameters, e.g., the number
of generations, the population size, and the probabilities of crossover, mutation
and variation. These parameters are set automatically during the optimization
phase, depending on the progress and the speed of the optimization.

Setup. If the chromosome that represents a solution is large, then the
population size also has to be large enough to ensure that many different
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chromosomes will be involved in a search. The population size therefore
depends on the size of the chromosome or the complexity of the problem.

Crossover. Considering four candidates-two parents and their two offspring-
only the first and the third, rated according to their fitness, pass to the next
generation. This forces at least one of the offspring to be passed to the
next generation in addition to the best candidate. Otherwise the offspring
have only a small influence on new generations, since the crossing of two
good parents probably produces offspring that are not so good. They
might, however, be good after a few more transformations.

Mutation. Chromosomes with low fitness are mostly exposed to muta-
tion. Each position in the chromosome string is mutated if that position
of the chromosome is of the same value in the majority of chromosomes
in the population. This is the way to change the bad characteristics in
"poorly fitted" chromosomes and to redirect the search to another direc-
tion. In the case of "well-fitted" chromosomes, values are mutated if
they differ from the majority of values in other good chromosomes at the
same position. This ensures faster convergence in the final stages of the
optimization.

Variation. The interchange of the values of two positions, as described
for the basic operators, is performed if the frequency of the value in that
position in the population of one position is high and the frequency of
another bit is low.

3.2.1 Experimental Results. The ICs used for the evaluation are chosen
on the basis of their appearance in the literature and similar studies. They differ
in terms of size and the number of operation types. The ECSA algorithm is
evaluated by a comparison with nearly optimal [15] force-directed scheduling
(FDS) [14]. FDS tries to optimally schedule the DFG considering a uniform
distribution the operations of the same type over the available control steps.

Tables 2 and 3 show the results of the following evaluations: FDS with
fast units, FDS with slow units, and ECSA with basic and independent genetic
operators. There are two types of DFGs for each circuit. The first, or plain, is
an ordinary data-flow graph with nodes that represent operations, as described
in similar studies (Table 2); and the second, or improved [10], considers the
input variables (start registers) via some additional nodes to ensure a more
accurate estimation of the registers and the buses needed to implement the
circuit (Table 3).

Differential equation: Because of the small circuit size there is no improve-
ment in the solutions obtained with the ECSA algorithm (either basic or inde-
pendent) when considering an ordinary DFG-all the solutions are of a larger
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Table 2. The evaluation results of the ECSA algorithm with different test-bench ICs.

Algorithm Size [gates] Registers Buses Delay [steps] Runtime [s]

Differential equation

FDS-fast 23 249 17 6 6 0.01
FDS-slow 7 173 18 6 20 0.01
ECSA-basic 23 914 18 8 6 0.11
ECSA-independent 23 914 17 6 6 0.09

Fifth-order elliptic filter

FDS-fast 23 883 26 8 17 0.02
FDS-slow 10 970 30 6 78 0.03
ECSA-basic 18 962 29 4 21 3.80
ECSA-independent 31 844 30 8 17 1.60

Bandpass filter

FDS-fast 31 179 34 10 10 0.01
FDS-slow 10 600 35 8 44 0.04
ECSA-basic 23 883 33 8 11 1.70
ECSA-independent 34 219 33 8 10 1.30

Least-mean-square filter

FDS-fast 45 771 68 12 13 0.40
FDS-slow 13 270 72 8 70 2.79
ECSA-basic 42 123 67 10 14 6.30
ECSA-independent 89 889 69 30 15 8.05

size. But when we consider the start registers (input variables) there are some
ECSA solutions with a slightly larger size and a smaller number of buses.

Fifth-order elliptic filter: The evolutionary method with a basic approach
finds a smaller circuit with a smaller number of buses and a slightly longer
execution time for the ordinary DFG, whereas the independent approach could
not find any improved solution. When dealing with the improved DFG, both
approaches (basic and independent) find considerably smaller circuits with a
slight increase in the execution time, while the independent approach also finds
the solution with a substantial decrease in the required number of registers and
buses.

Bandpass filter: Both ECSA methods find, when dealing with the ordinary
DFG, the solutions with a smaller number of registers and buses; the basic
approach also finds the smaller circuit, but with a slightly longer execution time.
When dealing with the improved DFG, both approaches find the solutions with
the same circuit size and execution time as the comparable FDS solution, but
the required number of registers and buses is considerably smaller for the ECSA
solutions.
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Table 3. The evaluation results of the ECSA algorithm with different test-bench ICs.

Algorithm Size [gates] Registers Buses Delay [steps] Runtime [s]

Differential equation with start registers

FDS-fast 23 249 10 9 6 0.01
FDS-slow 7 173 11 9 20 0.01
ECSA-basic 31 210 10 7 6 0.15
ECSA-independent 23 914 10 7 6 0.35

Fifth-order elliptic filter with start registers

FDS-fast 23 883 21 16 17 0.02
FDS-slow 10 970 25 16 78 0.04
ECSA-basic 18 962 24 16 19 4.80
ECSA-independent 15 922 18 9 21 3.40

Bandpass filter with start registers

FDS-fast 31 179 25 23 10 0.02
FDS-slow 10 600 26 23 44 0.04
ECSA-basic 31 179 23 19 10 2.40
ECSA-independent 31 179 23 19 10 2.90

Least-mean-square filter with start registers

FDS-fast 45 771 33 29 13 0.48
FDS-slow 13 270 37 27 70 3.52
ECSA-basic 45 220 32 25 13 9.20
ECSA-independent 63 517 33 25 13 12.30

Least-mean-square filter: At the expense of a small increase in the delay, the
basic ECSA is able to decrease the size and lower the number of registers and
buses of the ordinary DFG; but the independent ECSA is not able to improve
any parameter. When dealing with the improved DFG, the basic ECSA is able
to keep the initial delay, to decrease the circuit size and to lower the number of
required registers and buses. The independent ECSA is only able to decrease
the number of buses while increasing the circuit size.

There are slightly longer runtimes when the ECSA algorithm is used. But
considering the speed (a few seconds) and the evaluation presented in [13],
where the runtimes for larger circuits increase enormously (exponentially) when
the FDS algorithm is used, we can conclude that small and large circuits can be
designed and optimized with the use of the proposed evolution-based algorithm,
which exhibits a linear increase in the design time with an increase in circuit
size.

4. Conclusions
In the UM optimization we used an evolutionary approach to improve the

efficiency of an electro-motor. The goal of our optimization was to find the new
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set of independent geometrical parameters of the rotor and the stator with the
aim of reducing the motor’s power losses, which occur in the iron and the cop-
per. The approach proves to be a simple and efficient search-and-optimization
method for solving this day-to-day design problem in industry. It outperforms,
by a significant improvement of the motor’s efficiency, a conventional design
procedure that was used previously. By using the GA we are able to reduce the
iron and the copper losses of an initial UM by at least 20%, and increasing the
GA running time or setting its parameters more appropriately could improve
on this result.

In the IC area/time optimization we used an evolutionary approach to some
parts of IC design. The work was focused on ASICs that need an even more
sophisticated design due to their specific use. Optimally scheduled operations
are not necessarily optimally allocated to functional units. To ensure optimum
allocation we need to consider some allocation criteria while the scheduling
is being done. The evolutionary approach considers scheduling and allocation
constraints and ensures a globally optimal solution in a reasonable time. To
evaluate our method we built an algorithm and implemented it with a computer.
It is used with a group of test-bench ICs. These circuits are chosen because
the same types were used in similar studies. The results of the evaluation of a
computer-implemented algorithm show that the evolutionary methods are able
to find a solution that is more appropriate in terms of all the considered and
important objectives than is the case when working with classical deterministic
methods.
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[13] G. Papa, J. Šilc, and R. Wyrzykowski. Scheduling algorithms based on genetic approach. In
Proceedings of the 4th Conference on Neural Networks and Their Application, Zakopane,
Poland, 1999, pp. 469–474.

[14] P.G. Paulin and J.P. Knight. Force-directed scheduling in automatic data path synthesis. In
Proceedings of the 24th ACM/IEEE Design Automation Conference, Miami, USA, 1987,
pp. 195–202.

[15] P.G. Paulin and J.P. Knight. Scheduling and binding algorithms for high-level synthesis.
In Proceedings of the 26th ACM/IEEE Design Automation Conference, Las Vegas, USA,
1989, pp. 1–6.

[16] P.C. Sen. Principles of Electric Machines and Power Electronics. John Wiley & Sons,
1996.



TEST PATTERN GENERATOR STRUCTURE
DESIGN BY GENETIC ALGORITHM

Tomasz Garbolino
Institute of Electronics
Silesian University of Technology, Gliwice, Poland
tomasz.garbolino@polsl.pl

Gregor Papa
Computer Systems Department
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Abstract A new type of a deterministic test pattern generator (TPG) called DTI-MFSR is
presented in the paper. It is based on a feedback shift register composed of D-
and T-type flip flops and inverters. Moreover, it is equipped with a non-linear
combinational function that can invert, using XOR gates connected to the inputs of
the flip-flops, any bit in any pattern generated by the register. Thus, any arbitrary
test sequence can be produced at the outputs of the new TPG. The optimization
algorithm, which for the given deterministic test set minimizes the area overhead
of the DTI-MFSR generating this set of vectors, is also proposed in the paper. The
optimization is based on genetic algorithm (GA). The initial structure of the TPG
is encoded and multiplied with some variations to form the initial population. The
search for the optimal structure of the TPG is performed by selection, crossover,
and mutation operators, while each solution is evaluated by the external evaluation
tool. Quality of the proposed TPG is proven by experimental results obtained
using ISCAS benchmarks.
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1. Introduction
There are different techniques of combinational circuit testing. In general,

the outputs of the testing structure are connected to the inputs of the circuit under
test (CUT) to simulate possible combinations of input signals and therefore to
test the behavior of the circuit. The exhaustive or pseudoexhaustive test provides
100% fault coverage but testing time is prohibitively long in the case of large
circuits. On the other hand, the pseudorandom testing requires much shorter
time for test application but it doesn’t achieve full fault coverage. The method
that combines advantages of the above techniques is deterministic testing. It
provides 100% fault coverage in very short time. Moreover, energy and average
power consumption during deterministic test are much lower than in the case
of previously mentioned methods. The last feature is particularly important in
battery-supplied and low-power systems. The drawback of deterministic testing
is large area overhead of test pattern generator (TPG) that is necessary to produce
vectors provided by automatic TPG tool. In order to decrease complexity of
TPG, built-in self test (BIST) designers usually try to embed deterministic
test patterns into the vector sequence generated by some linear register. Such
embedding can be done either by re-seeding a TPG or modifying its feedback
function [17]. These both techniques may be used in parallel, too [11]. In some
other approaches, binary counters [14], or folding counters [2, 10] are used
to reproduce deterministic test patterns. There are also solutions that modify
or transform a vector sequence produced by a LFSR (Linear Feedback Shift
Register) is such a way that it contains deterministic test patterns [1, 6, 21].

In the last decade a new linear shift register composed of T-type flip-flops
in addition to D-type ones gained growing popularity [12, 13, 17]. It posses
good properties as both pseudo-random [7, 8] and weighted [17] test pattern
generator. Such type of linear registers is also attractive due to its low area
overhead and high operating speed [7, 8], particularly if the specially designed
T-type flip-flop is used [9].

In the paper an idea of deterministic TPG based on feedback shift register that
is composed of D- and T-type flip-flops and inverters is developed. Its structure
has a form of ring. The vector sequence produced by this TPG is modified in
some clock cycles in such way that it contains deterministic test patterns only.
Modification is done by nonlinear combinational function that controls, using
XOR gates connected to the inputs of flip-flops, inverting of some bits of the
contents of the register. Because the number of deterministic test patterns that
are produced by the proposed TPG, say n-bit long, is only a small fraction of all
possible n-bit vectors, the modification function does not introduce large area
overhead. Proposed TPG operates in test-per-clock scheme thus it generates
deterministic test patterns one after another in consecutive clock cycles.
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The content of the remaining part of the paper is organized as follows. The
new type of TPG called DTI-MFSR is introduced in Sect. 2. Section 3 discusses
the optimization procedure for the new register, while Sect. 4 describes the
evaluation tool. Experimental results are presented in Sect. 5 and we conclude
in Sect. 6.

2. TPG Structure
The overall schematic of one of the proposed structures of TPG is presented

in Fig. 1a. The register, which is called henceforth DTI-MFSR (Modified
Feedback Shift Register composed of D- and T-type flip-flops and Inverters),
takes form of a ring of connected D- and/or T-type flip-flops. Some or all of
the flip-flops may have inverters at their data inputs. The value of the next state
of each flip-flop can be inverted by the XOR gate, which is controlled from
the output of the modifying function. Thus, in every clock cycle the content of
the register can be modified in the way that we obtain one of the deterministic
test patterns at the outputs of the DTI-MFSR. The exemplar structure of 3-bit
DTI-MFSR is shown in Fig. 1b.

Figure 1. DTI-MFSR: a) overal schematic; b) example of three-bit register.

The main goal of design process of the DTI-MFSR is to find the order of
deterministic test patterns, to select the type of each flip-flop, and to determine
the flip-flops with inverted inputs in such a way that leads to minimal or quasi-
minimal structure of a modifying function. The way of designing such register
is shown using following example.

Let us assume that we want to design 3-bit DTI-MFSR that produces at its
outputs the following set S of four vectors: V1=100, V2=111, V3=001, V4=110.
At the beginning, for each ordered pair of test vectors Vi, Vj from the set S,
where i, j = 1, 2, 3, 4 and i 6= j, we determine configuration of each m-th
stage Fm of DTI-MFSR, where m = 0, 1, 2, that is able to produce this pair in
two consecutive clock cycles. Some of these configurations are shown in the
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form of the table of possible configurations (TPC) in Fig. 2. Symbols used in
the figure have following meaning:

D . . . D-type flip-flop;

T . . . T-type flip-flop;

D . . . D-type flip-flop with inverted input;

T . . . T-type flip-flop with inverted input;

where inverting of the flip-flop input is done by the XOR gate which one input
is set to value 1 by modification function. They denote four possible configu-
rations of each stage of the DTI-MFSR. Whether certain bit transition on m-th
position of the pair Vi, Vj can be realized by the given stage one can deter-
mine according the following equations, which describe previous to next state
transitions of D and T flip-flops:

D : Qm = qm−1 D : Qm = qm−1

T : Qm = qm ⊕ qm−1 T : Qm = qm ⊕ qm−1

Figure 2. Some tables of possible configurations.

For example, according to the TPC1,2 in Fig. 2, the ordered pair of vec-
tors V1, V2 can be produced by the DTI-MFSR which stages are configured as
follows:
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stage F0 . . . D or T ;

stage F1 . . . D or T ;

stage F2 . . . D or T .

Configuration of DTI-MFSR that produces given sequence of vectors from
the set S can be found on the basis of intersection of TPCs corresponding
to the ordered pair of vectors that the sequence is composed of. For example,
sequence of vectors V1, V2, V3, V4 is composed of three ordered pairs of vectors:
{V1, V2}, {V2, V3}, {V3, V4}. TPCs for these pairs are shown in Fig. 2. The
stage configurations that belong to particular intersections TPC1,2

⋂
TPC2,3,

TPC2,3
⋂

TPC3,4 and TPC1,2
⋂

TPC2,3
⋂

TPC3,4 are dashes by different
graphical patterns. There is no common configuration for stage F1 for all three
TPCs. Thus, the configuration of this stage needs to be changed during the
generation of the test sequence. The structure of the DTI-MFSR that produces
the considered test sequence is shown in Fig. 1b. The modification function for
this circuit contains one NOR gate, which detects vector V3 in the test sequence
and changes configuration of stage F1 from T to T during vector transition V3

to V4. Moreover, this function has constant value 0 for stage F0 and constant
value 1 for stage F2. Owing this fact, two XOR gates are reduced to the wire in
the stage F0 and inverter (active low input of the flip-flop) in stage F2. The order
of the vectors in the considered test sequence has been chosen arbitrarily. Thus,
one can expect that some other order may lead to the cheaper modification
function. The same applies to the order of bits in test vectors. Finding the
optimal or nearly optimal structure of DTI-MFSR is the subject of the next
section.

3. Genetic Algorithm
Traditional search and optimization methods are slow in finding the solution

in a complex problem’s search space. For this reason, we decided to apply the
GA to find the optimal structure of the TPG. The GA is based on a heuristic
method, which requires little information to search effectively in a large search
space.

The GA codes parameters of the problem’s search space as finite-length
strings over some finite alphabet. It works with a coding of the parameter set,
not the parameters themselves. The algorithm employs an initial population
of strings, which evolve to the next generation by probabilistic transition rules
such as selection, crossover and mutation. The objective function evaluates
the quality (fitness) of solutions coded as strings. This information is used
to perform an effective search for better solutions. There is no need of other
auxiliary knowledge. The GA tends to take advantage of the fittest solutions
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by giving them greater weight, and concentrating the search in the regions of
the search space with likely improvement.

The GA is different from the traditional techniques because of its intrinsic
parallelism (in evaluation function, selections) that allows working from a broad
database of solutions in the search space simultaneously, climbing many peaks
in parallel. Thus, the risk of converging to a local optimum is low. The random
decisions made in the GA can be modeled using Markov chain analysis to
show that each finite GA will always converge to its global optimum region
[15]. In spite of its simplicity, the GA has proved to be an efficient method for
solving various optimization and classification problems, in areas ranging from
economics and game theory to control system design [16, 18, 19, 20].

3.1 Encoding
Parameters of the problem’s search space were coded as integer values. We

used three different chromosomes to concurrently optimize the structure of the
TPG, the order of test vectors, and the order of test bit streams in the test
sequence, which determines the order of columns in a test patterns set. The
presentation of the first chromosome, which encodes the structure of n-bit TPG,
looks like

C1 = t1i1t2i2 . . . tnin,

where tj (j = 1, 2, . . . , n) represents the type of the flip-flop (either D or T )
and ij (j = 1, 2, . . . , n) represents the presence of the inverter on the output of
the j-th flip-fop.

The presentations of the second and third chromosome, which encodes the
order of test vectors in test sequence, and the order of test bit streams in the test
sequence, look like

C2 = o1o2 . . . om,

where m is the number of test vectors and oj (j = 1, 2, . . . , m) is the ordered
number of the test vector from the vector list

C3 = o1o2 . . . ok,

where k is the number of flip-flops in the structure and oj (j = 1, 2, . . . , k) is
the ordered number of test bit streams in the test sequence.

3.2 Initial Population
The structure of the initial TPG was used to form a starting chromosome,

which was reproduced (n − 1)-times to generate an initial population of n-
strings. To ensure versatile population one quarter of the population is the
same as the initial chromosome; one quarter with mirrored numbers in the
chromosome (the last one on the first place, . . . , the first one on the last place);
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one quarter with mirrored D/T flip-flop type positions; and one quarter with
mirrored positions of inverter presence.

The second and the third population (formed by the second and the third
chromosome, respectively) consists of n/2-times reproduction of the initial
chromosome and the second half of the population is made with mirrored order
of test vectors and test bit streams, respectively.

3.3 Genetic Operators
To evolve the best solution candidate, the GA employed the genetic operators

of selection, crossover and mutation for manipulating the strings in a population.
The GA used these operators to combine the strings of the population in different
arrangements, seeking a string that maximizes the objective function. This
combination of strings resulted in a new population.

The first genetic operator used by the GA for creating a new generation
was selection. To create two offspring two strings had to be selected from the
current population as parents. Most fit strings were selected for reproduction.
We had applied the elitism strategy, where a randomly selected number of least-
fit members of the current population were interchanged with the equal number
of the best-ranked strings.

Crossover proceeded in two steps. First, strings were mated randomly, using
a given probability pc to pair off the couples. Second, mated string couples
crossed over, using a random probability to select the two-point crossing sites.
An integer positions k and m were selected between 1 and the string length
less one [1, l − 1]. Swapping all characteristic values between the positions
k+1 and m inclusively created two new strings. For example, considering two
strings with k = 1 and m = 4:

D 1 D 0 T 0 T 0 D 1 > D 1 T 1 D 1 T 0 D 1
D 0 T 1 D 1 T 0 D 1 > D 0 D 0 T 0 T 0 D 1

Moreover, we might use a constant probability pr to select a case, in which
only the values of inverters were swapped:

D 1 D 0 T 0 T 0 D 1 > D 1 D 1 T 1 T 0 D 1
D 0 T 1 D 1 T 0 D 1 > D 0 T 0 D 0 T 0 D 1

The crossover in case of test vectors order and test bit streams order was
performed with the interchange of positions that store the ordered numbers
within the range [2, 4]

3 7 2 6 1 5 4 8 > 2 7 4 6 1 5 3 8
8 1 2 6 4 5 3 7 > 8 1 3 6 2 5 4 7

Mutation was a process by which strings resulting from selection and crossover
were perturbed. It served to create random diversity in the population. Each
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string was subjected to the mutation operator. Mutation was performed on
characteristic-by-characteristic basis, each characteristic mutating with a prob-
ability pm. However, since a high mutation rate resulted in a random walk
through the GA search space, pm had to be chosen to be somewhat low. Three
different types of mutation were present:

D/T change, where only flip-flop types were changed

D 1 D 0 T 0 T 0 D 1 > D 1 T 0 D 0 T 0 D 1

inverter change, where inverter presences were changed

D 1 D 0 T 0 T 0 D 1 > D 0 D 0 T 1 T 0 D 1

order change, where pattern orders and test bit streams order were changed

3 7 4 6 1 5 2 8 > 3 7 1 6 4 5 2 8

There was also a possibility of annealing the mutation rate, where pm was
a variable mutation probability. It was decreasing linearly with each new pop-
ulation. Namely, we assumed that each new population generally was more
fit than the previous one. Such an approach was used to overcome a possible
disruptive effect of mutation, and to speed up the convergence of the GA to the
optimal solution in the final stages of the optimization.

3.4 Fitness Evaluation
Following selection, reproduction, crossover, and mutation, the new popula-

tion was ready to be evaluated. Therefore, each new string (solution candidate)
created by the GA was evaluated by the external evaluation tool (see Sect. 4).

3.5 Termination Criteria
The GA operated repetitively, with an idea that, on average, solutions of

the population defining the current generation had to be as good (or better) at
maximizing the fitness function as those of the previous generation. When a
certain number of populations had been generated and evaluated, the system
was assumed to be in a non-converging state. The fittest member within all
generations was taken to be the solution of the design problem.

4. Evaluation Tool
Operation of the jth cell of the DTI-MFSR register during one clock cycle

can be expressed by the following equation:

Qj = tjqj ⊕ qj−1 ⊕ ij ⊕ fj
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Q1 = t1q1 ⊕ qn ⊕ i1 ⊕ f1

where qj−1 is the current state of the cell number j−1, qj is the current state of
the jth cell, Qj is the next state of the jth cell, tj is the coefficient determining
type of the flip-flop in the jth cell (0 . . . D flip-flop, 1 . . . T flip-flop), ij is the
coefficient determining whether there is a negation at the input of the flip-flop
in the jth cell (0 . . . no negation, 1 . . . there is negation), and fj is the value of
the jth output of the modifying function.

Thus, the value of the jth output of the modifying function is:

fj = tjqj ⊕ qj−1 ⊕ ij ⊕ Qj

f1 = t1q1 ⊕ qn ⊕ i1 ⊕ Q1

On the basis of these equations one can derive values of the outputs of the
modifying function for each vector but last in the test sequence. In that way ON-
set and OFF-set of the modifying function are defined. They are further mini-
mized and the cost of the function is estimated. We use ESPRESSO software
[5] for boolean minimization of the modifying function and its approximate
cost evaluation.

5. Results
The evaluation process for our optimization procedure was the following:

preparation of the initial structure;

evolutionary optimization of the structure, with the use of evaluation tool;

the implementation of the optimal solution in HDL (hardware description
language), and its synthesizing.

Table 1 presents the results of the evaluation (area estimation) of our optimiza-
tion process with the following ISCAS test-benchmark combinatorial circuits:

c432 . . . 27-channel interrupt controller;

c499 . . . 32-bit SEC circuit;

c880 . . . 8-bit ALU;

c6288 . . . 16×16 multiplier.

The used test sets were transformed by compatible input reduction procedure
[3], so test pattern width and number of test patterns are presented in second
and third column, respectively, for each benchmark. The other columns of the
table presents the number of gates needed for the implementation of the TPG
structure (numbers are produced by the Synopsys synthesis tool using 0.35µm
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technology). The fourth column (Initial TPG) presents the results of the initial
structures, while the fifth column (TPG) presents the results of the optimized
structures.

We decided to use deterministic TPG having a form of ROM memory as a
reference solution to compare with, since ROM based deterministic TPG is a
classic type of deterministic TPG [4]. The memory sizes are estimated on the
basis of data provided on the web for CMOS 0.35 µm technology [22]. Again
results are presented in the form of equivalent gates (sixth column - ROM).

Table 1. Results (in equivalent gates) of TPG structure optimization for the ISCAS benchmarks.

Test pattern width Number of test patterns Initial TPG TPG ROM

c432 36 27 340.6 335.6 517.8
c499 41 52 649.8 620.6 1135.7
c880 60 16 503.6 477.6 511.4
c6288 11 12 84.4 71.4 70.3

As presented in Table 1, our evolutionary TPG structure optimization ap-
proach mostly makes better results as it is in the case of ROM memory based
TPG.

6. Conclusions
A new type of a deterministic TPG called DTI-MFSR is presented in the

paper. It is based on a feedback shift register composed of D- and T-type flip-
flops and inverters. It is also equipped with a non-linear combinational function
that can invert, using XOR gates connected to the inputs of the flip-flops, any
bit in any pattern generated by the register. Thus, any arbitrary test sequence
can be produced at the outputs of the new TPG. The optimization algorithm,
which for the given deterministic test set minimizes the area overhead of the
DTI-MFSR generating this set of vectors, is also proposed in the paper. The
optimization is based on genetic algorithm. The initial structure of the TPG is
encoded and multiplied with some variations to form the initial population. The
search for the optimal structure of the TPG is performed by selection, crossover,
and mutation operators, while each solution is evaluated by the evaluation tool.
The results show that our evolutionary TPG structure optimization approach
makes better results as we get if we consider the initial structures of TPGs.
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Abstract The paper describes an evolutionary computation approach to solving real-world
scheduling problems on a group of production lines in a car factory. The cost
of schedules is determined by the quality of energy consumption management
over peak demand periods, and the task is to minimize the energy costs by appro-
priate scheduling of process interruptions. Systematic tests of the evolutionary
scheduling system on problems faced daily at the plant confirm the system is
capable of finding near-optimal schedules in a reasonable period of time.

Keywords: Evolutionary algorithm, Production scheduling, Energy consumption manage-
ment, Automobile industry

1. Introduction
Scheduling is concerned with allocating activities to resources over time in

such a way that given objectives are optimized, while temporal constraints and
resource limitations are satisfied. Problems of this type appear in manufac-
turing, timetabling, vehicle routing, design of computer operating systems and
other domains. Because of its great practical importance, scheduling has per-
manently attracted research interests. Following the attempts in the fields of
Operations Research and Artificial Intelligence with limited success in practice,
Evolutionary Computation [1] has recently offered means of generating near-
optimal schedules for complex problems at reasonable computational costs [3].
A number of applications of evolutionary algorithms in scheduling have been
reported [2, 6, 10]. However, there are still challenging issues to be considered
in the development of evolutionary scheduling systems. Above all, real-world
problems should be dealt with and realistic criteria for schedule optimization
taken into account [5].

Using evolutionary computation techniques, we deal with a class of real-
world problems with schedule cost related to resource management. Our previ-
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ous application oriented studies include scheduling of operations in a production
unit of a textile factory, where the objective was to ensure optimal energy con-
sumption [7], and scheduling activities in ship repair in order to balance the
work load for workers of various trades [8]. In this paper we describe pro-
duction scheduling on a group of production lines of an automobile factory.
The objective is to schedule interruptions of the running processes in such a
manner that energy consumption over the peak demand periods is minimized.
In addition, the schedules are subject to time and resource constraints that have
to be strictly satisfied.

Design of an evolutionary scheduling system for this problem and the initial
practical results were presented in [9], while here the focus is on an improved
version of the system and its evaluation. The paper explains the scheduling
problem and the schedule cost that is related to energy consumption, describes
the employed scheduling system, provides the results of its evaluation on real
problem instances, and discusses them in view of regular exploitation at the
plant.

2. The Scheduling Problem
Production systems relying on intense energy consumption, such as steel

plants and other heavy industries, are faced with peak demand periods. These
are the time periods over which their power demand exceeds a given limitation
and the excess has to be paid at a higher rate. This measure is imposed by the
energy supplier to minimize the total energy consumption over critical periods.
There are several ways of reducing the peak power demand: activation of inter-
nal energy sources, interruption of energy-intensive processes, and appropriate
production scheduling.

The focus of energy consumption management in the considered factory is
in the car-body production unit. The unit consists of six lines of hydraulic
presses that perform cutting and shaping. A line in operation is regarded as an
individual work process. Power demands of the processes vary from 20kW to
370kW. The unit operates according to a daily production plan that specifies
which of the lines are in operation and what is their work time. Power demand
of the unit equals to the sum of power demands of the running processes. Other
energy consumers at the plant contribute to the so called background power
demand, Pb. The total power demand of the plant, P , consists of the demand
of the pressing unit and the background demand. To asses the energy costs, the
total demand is related to the prescribed limitation Pmax, also called the target
load. Figure 1 shows an example of daily profiles for background demand, total
power demand and target load.

The efforts to reduce the target load excess are concentrated on line produc-
tion in the pressing unit, since it is an intense energy consumer and also more
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Figure 1. Power profiles: background demand Pb, total power demand P , and target load
Pmax

suitable for scheduling than background processes. Two approaches are com-
bined in the unit: process interrupting and scheduling. Process interruptions are
either intended as breaks for the staff or can be spent to change machine tools
and perform maintenance on the lines. The idea is to schedule these activities
in such a way that the daily production plan is realized, while the contribution
of the unit to the target load excess is minimized.

To balance between the conflicting requirements of plan fulfilment and re-
duction of the target load excess, the following constraints have been imposed
on schedules:

duration of process interruptions, T0,

minimum period of time between two interruptions of a process, T ,

maximum number of processes that can be interrupted simultaneously,
M .

Taking into account these constraints, process interruptions have to be sched-
uled so as to minimize the target load excess contributed by the production lines.

2.1 Schedule Cost
The schedule cost to be minimized is formally defined as follows. Let

Pi(t), i = 1, . . . , N , denote the power demands of the operating production
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lines in the pressing unit. The total power demand of the plant is

P (t) =
N∑

i=1

Pi(t) + Pb(t) (1)

where Pb(t) represents the background demand. Then the contribution of the
considered processes to the target load excess at time t is

Pexc(t) =







∑N
i=1 Pi(t); Pb(t) ≥ Pmax(t)

P (t) − Pmax(t); Pb(t) < Pmax(t) &

P (t) > Pmax(t)

0; otherwise

(2)

and the energy consumption resulting from the target load excess equals to

Wexc =

∫

t

Pexc(t) dt. (3)

Wexc represents the cost of interruption schedules which is to be minimized.
It is to be noted, however, that power demands are in practice sampled using
certain time interval ∆t and integral (3) is approximated by

∑

t

Pexc(t) ∆t. (4)

3. The Evolutionary Scheduling System
The scheduling system generates daily schedules of process interruptions

and calculates the expected reduction of the target load excess. It accepts the
following input information:

estimates of power demand profiles for the processes to be executed,

an estimate of the background demand profile,

the target load profile, and

constraints to be considered in schedule construction.

The power demand estimates are based on data recorded over previous days
and on production plan for the current day. As the production does not change
rapidly, the estimates are rather accurate and make it possible to generate real-
istic production schedules.

The scheduling algorithm is designed to solve problem instances with ar-
bitrary power demand profiles and can operate at various time discretizations.
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The core of the algorithm is a (µ + λ) evolution strategy [13]. It iteratively
improves the schedules through the following sequence of steps:

Step 0: Generate an initial population of µ schedules by randomly assigning
starting times to process interruptions.

Step 1: Generate λ descendants from µ parents by applying local transforma-
tions to schedules.

Step 2: Select µ best solutions out of µ + λ available, and make them parents
for the next generation.

Step 3: If maximum number of generations is reached, exit, otherwise go to
Step 1.

The best schedule found during this search process is returned as a suboptimal
solution to the problem. Both, inserting the interruptions into a schedule at the
initialization step and local schedule transformations are performed in such a
way that constraints imposed on schedules remain satisfied. This is achieved
by maintaining a direct representation of schedules within the algorithm and
checking the constraints. Schedules are represented as two-dimensional arrays
with the number of rows equal to the number of running processes, and columns
to time intervals considered during scheduling. Each element of the array holds
a value denoting the process status at the corresponding time interval. The
status can be: interrupted, which means the process is interrupted, interruption
possible, which means the process is running and it is possible to interrupt it,
or interruption not possible, which means the process is running but cannot be
interrupted due to the constraints.

Schedule transformations are carried out on random basis and include:

inserting an interruption into a schedule,

deleting an interruption from a schedule,

shifting an interruption within a schedule.

Insertion of an interruption consists of finding a random time slot in the
schedule with interruption possible, changing its status to interrupted and up-
dating the status of the slots affected through constraint values T and M to
interruption not possible. Deletion of an interruption includes random selec-
tion of an interrupted slot, changing its status to interrupt possible, and updating
the status of the slots that are no more effected through constraint values T and
M to interruption possible. Shifting of an interruption consists of its deletion
at the current time slot and insertion at another time slot.
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4. Evaluation of the Scheduling System
4.1 Initial Tests on Real Problem Instances

The scheduling system was initially tested on a set of problem instances based
on real data recorded at the plant. The data were used as input to optimize daily
schedules for the production lines. The constraints for schedule construction
were set as follows. Duration of process interruptions, T0, was 30 minutes. Each
process had to run continuously for at least four hours between two interruptions
(T = 240 min), and at most three process interruptions were permitted to take
place simultaneously (M = 3). Time step used during search for assigning
starting times to interruptions was 5 minutes.

The scheduling algorithm was run for 200 generations. The population size
and the number of offspring generated in each generation were µ = λ = 20.
For each problem instance, the algorithm was executed 10 times, and both the
best and average results were recorded. The optimized schedules of process
interruptions were produced in the form shown in Table 1.

Table 1. An example of the optimized interruption schedule for the production lines.

Line number Number of interruptions Interruption times

1 2 8:00–8:30 12:15–12:45
2 2 7:25–7:55 11:55–12:25
3 2 7:00–7:30 12:20–12:50
4 2 7:15–7:45 11:45–12:15
5 1 11:00–11:30
6 1 11:30–12:00

The evaluation confirmed that schedule optimization can substantially con-
tribute to the decrease of energy costs in the production unit. Energy consump-
tion resulting from the target load excess on the lines was reduced by at least
25% on workdays, but in most cases by about 30%. Table 2 shows the achieved
reduction averaged over 10 runs of the optimization algorithm for each day in
a two-week period. The reproducibility of the reduction in kWh obtained in 10
runs for each problem instance was within 2%.

4.2 Testing the Optimality of Schedules
Additional numerical experiments were carried out to check how close the

optimized schedules are to the true optimal ones. For this purpose a selected
scheduling problem representing a typical situation at the plant was used. All
six production lines were required to operate and estimates of power demand
profiles shown in Fig. 1 were used. If case of no process interruptions, the target
load excess would amount to 3218.3 kWh. For this power demand situation,
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Table 2. Average reduction of the target load excess on the production lines obtained by the
evolutionary scheduling system.

Target load excess Reduction
Day [kWh] [kWh] [%]

Mon 2616.5 1000.4 38.2
Tue 2569.6 970.5 37.8
Wed 3218.3 1012.6 31.5
Thu 2892.2 926.2 32.0
Fri 3055.1 931.6 30.5
Sat 655.0 413.0 63.0
Sun 0.0 0.0 0.0
Mon 2461.2 810.1 32.9
Tue 2117.7 636.6 30.1
Wed 2910.3 836.8 28.7
Thu 2752.8 803.3 29.2
Fri 2523.5 869.8 34.5
Sat 0.0 0.0 0.0
Sun 0.0 0.0 0.0

test problem instances of various complexity were defined. Their complexity
was varied through constraint values T0, T , and M .

To denote a problem instance with particular constraint values, will use
the notation (T0, T, M), where times T0 and T are given in minutes, and
M ∈ [1..N ]. The test set of problem instances consisted of (30, 240, 3),
(30, 240, 1), (30, 120, 3), (30, 120, 1). Note that (30, 240, 3) is the default
setting of constraint values used at the plant, while additional settings resulting
in more demanding problems were chosen to further check the performance of
the developed scheduling system.

For the evaluation purposes, optimal schedules for the selected problem in-
stances were produced by the Constraint Logic Programming approach. Con-
straint Logic Programming (CLP, [4, 11]) is a generalization of logic program-
ming [12] where unification is replaced by a more general mechanism of con-
straint satisfaction over a specific computation domain, such as Boolean, finite
or real. It is capable of finding optimal solutions to the problems of manage-
able size. We used the ECLiPSe CLP environment and its finite domain solver
CLP(F). Unfortunately, the scheduling problem introduced in Section 2 is too
complex to be treated generally. However, particular problem instances can be
handled individually by considering their specificities during problem solving.

Schedule costs found by this tool and by the evolutionary scheduling system
are compared in Table 3. More clear picture of the evolutionary algorithm
performance can be obtained from Table 4 which shows the deviation of the
schedule improvement from the optimum gained with CLP.
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Table 3. Optimal schedule costs found with CLP and suboptimal costs obtained with the evo-
lutionary algorithm (EA); the results are in kWh.

Problem instance EA
(T0, T, M) CLP best average

(30, 240, 3) 2209.1 2211.5 2213.1
(30, 240, 1) 2374.3 2385.1 2419.7
(30, 120, 3) 2185.8 2187.1 2187.4
(30, 120, 1) 2345.8 2365.8 2390.4

Table 4. Deviation of schedule cost improvement by the EA from the optimal improvement
obtained with CLP.

Problem instance EA
(T0, T, M) best average

(30, 240, 3) 0.2% 0.4%
(30, 240, 1) 1.3% 5.4%
(30, 120, 3) 0.1% 0.2%
(30, 120, 1) 2.3% 5.1%

These results are very informative for practical assessment of the evolutionary
scheduling algorithm. While the initial tests on real problems showed that
potential decrease of energy costs is at the expected level, we now have an
absolute measure of the scheduling algorithm performance. It is particularly
encouraging, that under constraint setting (30, 240, 3), which is usually used at
the plant, the result is very close to the optimum. For hypothetical problems
with more complex spaces the gap to the optimum increases, but we believe
that initial results given in this paper can still be improved.

Certainly, one may ask whether it is possible to apply the CLP system for
regular scheduling at the plant. It turns out that its advantage of guaranteed
optimal solutions comes at some other costs. Solving problems of this type
with CLP is only efficient on individual basis, where additional constraints for
schedules are derived from input data (e.g. feasible time intervals for process
interruptions) and implemented to prune the search space. Further increase of
problem complexity would sooner or later exceed the capabilities of the system.
The CPU time spent to obtain optimal solutions with the CLP system depends
very much on the problem instance, and ranges from a few minutes to several
hours on an ordinary Pentium computer. On the other hand, the execution of the
evolutionary algorithm on the same computer requires about half a minute for
each problem instance, and only slightly increases with problem complexity.
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5. Conclusions
An evolutionary algorithm was developed to schedule process interruptions

on car-body production lines in an automobile factory where the objective is to
decrease power demand over critical periods. In a comparative study the results
of the evolutionary algorithm were assessed with regards to optimal results
found by a CLP system. The comparison was beneficial in that it confirmed the
evolutionary algorithm is capable of finding near-optimal results for a typical
scheduling task appearing on the lines.

The approach was implemented as a process scheduling module within a sys-
tem for energy consumption management at the plant. The role of the scheduling
module is to assist the process supervisor in preparing daily schedules for the
pressing unit. Through its application it is possible to analyse the impact of
various production plans and constraint settings on energy consumption. Most
important, its regular exploitation significantly contributes to the decrease of
production costs at the plant.

Acknowledgment
This work was supported by the Slovenian Ministry of Education, Science

and Sport, and by the companies Revoz and INEA.

References
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Abstract The determination of optimal and robust controllers for the longitudinal maneu-
vers of a modern fighter is the aim of this work. For the constrained multi-
objective optimization process both a classical evolutionary algorithm and a
newer estimation of distribution one have been used. Obtained results have
been commented and discussed. In short, evolutionary approach (both algo-
rithms) gives the advantage of handling the non-linearities due to the H∞ norm
computation and allows for a true multi-objective optimization.

Keywords: Evolutionary optimization, Multi-objective optimization, Estimation of distribu-
tion algorithm, Robust control, Flight maneuvers

1. Introduction
Within the aerospace industry there is a large amount of interest in flight con-

trol system design. The controller design is a complex problem and, for a general
model, it is characterized by a number of fundamental trade-offs between con-
flicting design specifications. For a typical aircraft systems we can recognize
several classes of criteria, for instance, among the others, performance criteria,
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which reflect tracking error and disturbance rejection characteristics of certain
signals, and robustness criteria, which reflect the stability bounds with respect
to parameter variations.

Over the past decades H∞ control theories have been well developed and
widely applied to the problems of control system design, the focus of which
is often on tracking and disturbance rejection in the low-frequency region and
robustness to unmodelled dynamics in the high-frequency region, although the
problem specifications may in some cases determine otherwise. The former
is usually captured by minimizing the closed-loop sensitivity functions at low-
frequencies. The latter is usually captured minimizing the closed-loop com-
plementary sensitivity functions at high-frequency. But the controlled system
should have good responses to reference signals on the time domain as well.

Finding control gains that minimize or maximize a designated cost function in
a mixed time and/or frequency domain subject to multiple constraints specified
by mixed time and/or frequency domain specifications is a complex, constrained
optimization problem that cannot be solved analytically. Moreover, this kind of
problem is characterized by a number of non commensurate design objectives
that must all be obtained for the solution to be satisfactory and, due to the nature
of trade-offs involved, the problem rarely has a unique solution. Instead, a set
of equally admissible solutions are sought from an appropriately formulated
optimization problem.

In this paper, we consider the application of two different evolutionary algo-
rithms (EAs) to the design of a flight controller for a simplified fighter model.
After a description of the used algorithms (detailed for the estimation of dis-
tribution one), few words are spent to introduce the requirements to obtain in
order to have robustness characteristics for a generic system. After, the opti-
mization setting is detailed and achieved results are shown and commented. A
conclusion section summarizes the work and introduces future applications and
extensions.

2. Estimation of Distribution Algorithms
The extensive use of evolutionary algorithms in the last decade demonstrated

that an optimization process can be obtained by combining effects of interac-
tive operators such as selection - whose task is mainly to identify the best
individuals in the current population - and crossover and mutation, which try
to generate new and better solutions starting from the selected ones. But, if
the mimicking of natural evolution in living species has been a source of in-
spiration of new strategies, the attempt to copy natural techniques as they are
sometimes introduces a great complexity without a corresponding improvement
of algorithms performance. Moreover standard evolutionary algorithms can be
ineffective when problems exhibit a high level of interaction among variables.
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This is mainly due to the fact that recombination operators are likely to disrupt
promising sub-structures of optimal solutions.

In order to make a rational use of the evolutionary metaphor and/or to create
optimization tools that are able to handle very hard problems (with several pa-
rameters, with difficulties in linkage learning, deceptive), some algorithms have
been proposed that automatically learn the structure of the search space. In-
stead of implicit reproduction of important building blocks and their mixing by
selection and two-parent recombination operators, new solutions are generated
by using the information extracted from the entire set of promising solutions.

Generally, these methods, starting from results of current populations, try
to identify a probabilistic model of the search space, and crossover and muta-
tion operators are replaced with sampling. These methods have been named
Estimation of Distribution Algorithms (EDAs).

Most EDAs have been developed to manage optimization processes for
single-objective, combinatorial problems, but several works regarding prob-
lems in continuous domains have been proposed as well.

We can distinguish three types of EDAs depending on the way the proba-
bilistic model is built: a) without dependencies among variables, with bivariate
dependencies among variables, and c) with multivariate dependencies (more
information about EDAs can be found in [6]).

In this work we used both a conventional and well known NonDominated
Sorting Genetic Algorithm-II (NSGA-II) and a home made EDA. After a brief
introduction to the NSGA-II, as detailed in [3], few words will be spent to
describe the used multi-objective EDA named MOPED.

2.1 NSGA-II
In NSGA-II the dominance depth is used to classify the population and a

crowding parameter is determined in order to rank the individuals inside each
class of dominance.

For each element of a class, the crowding parameter is obtained as the sum of
the difference of the cost functions of the nearest elements in the cost function
space, divided by the range spanned by the population with respect to each
objective function. Inside each class, the individuals with the higher value of
the crowding parameter obtain a better rank than those with a lower one, forcing
to explore the Pareto front.

The whole algorithm (the unconstrained version) can be detailed as follows.
Initially, a random parent population P0 is created. The population is sorted
based on the non-domination. Each solution is assigned a fitness equal to its
non-domination level (1 is the best level). Thus, minimization of fitness is
assumed. Binary tournament selection, recombination, and mutation operators
are used to create a child population Q0 of size nind. From the first generation
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onward, the procedure is different. First, a combined population Rt = Pt ∪Qt

is formed. The population Rt will be of size 2nind. Then, the population
Rt is sorted according to non-domination. The new parent population Pt+1

is formed by adding solutions from the first front till the size exceeds nind.
Thereafter, the solutions of the last accepted front are sorted according to the
crowded comparison operator and the first nind points are picked. This is how
we construct the population Pt+1 of size nind. This population of size nind is
now used for selection, crossover and mutation to create a new population Qt+1

of size nind.
In this work the real-coded, constrained version (simulated binary crossover,

SBX, and polynomial mutation) has been used. The adopted constraint han-
dling technique follows the dictates of the constraint-domination principle [3],
which discriminates between unfeasible and feasible solution during the non-
dominated sorting procedure. The definition of constrained-domination is: a
solution i is said to constrained-dominate a solution j, if (a) solution i feasible
and solution j is unfeasible; (b) or solution i and j are both unfeasible, but
solution i is nearer to the constraint boundary; (c) or both solutions are feasible
and i dominates j.

2.2 MOPED Algorithm
The MOPED (Multi-Objective Parzen based Estimation of Distribution) is

a multi-objective optimization algorithm for continuous problems that uses the
Parzen method to build a probabilistic representation of Pareto solutions, with
multivariate dependencies among variables.

Similarly to what was done in [5] for multi-objective Bayesian Optimization
Algorithm (BOA), some techniques of NSGA-II are used to classify promising
solutions in the objective space, while new individuals are obtained by sampling
from the Parzen model. NSGA-II is identified as a promising base for the
algorithm mainly because of its intuitive simplicity coupled with brilliant results
on many problems.

The Parzen method [4] pursues a non-parametric approach to kernel density
estimation and it gives rise to an estimator that converges everywhere to the true
Probability Density Function (PDF) in the mean square sense. Should the true
PDF be uniformly continuous, the Parzen estimator can also be made uniformly
consistent. In short, the method allocates exactly nind identical kernels, each
one “centered” on a different element of the sample.

Main differences between MOPED and NSGA-II are due to the classification
and search techniques. For this reason only these parts of MOPED are detailed
here ([1, 2]).

2.2.1 Classification & Fitness Evaluation. The individuals of the pop-
ulation are classified in a way that favors the most isolated individuals in the
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objective function space, in the first sub-class (highest dominance) of the first
class (best suited with respect to problem constraints).

The first step in the evaluation of the fitness parameter is given by the de-
termination of the degree of compatibility of each individual with the problem
constraints, the overall number of which is given by m. This compatibility is
measured by a constraint parameter, cp, which is a weighted sum of every un-
satisfied constraint. Once the value of cp is evaluated for all the individuals, the
population is divided in a predetermined number of classes, 1 + Ncl. The nbest

individuals that satisfy all the constraints (cp = 0) are in the first class. The
remainder of the population is divided in the other groups, each one containing
an approximately equal number of individuals, given by (nind − nbest)/Ncl.
The second class is formed by those individuals with the lower values of the
constraint parameter and the last one by those with the highest values. For each
class, individuals are ranked in terms of dominance criterion and crowding
distance in the objective function space, using the NSGA-II techniques.

After that all the individuals of the population have been ranked, from the best
to the worst one, as a consequence of their belonging to a given class and sub-
class, and the value of their crowding parameter, a fitness value, linearly varying
from 2 − α (best individual of the entire population) to α (worst individual),
with α ∈ [0, 1), is assigned to each individual. This fitness value determines
the weighting of the kernel for the sampling of the next generation individuals.

2.2.2 Building the Model and Sampling. On the basis of the infor-
mation given by nind individuals of the current population, by means of the
Parzen method, a probabilistic model of the promising search space portion is
built (see previous section). Then, τnind new individuals, with τ ≥ 1 are sam-
pled, using the probabilistic model just determined. The variance associated
to each kernel depends on (i) the distribution of the individuals in the search
space and (ii) on the fitness value associated to the pertinent individual, so as to
favor the sampling in the neighborhood of the most promising solutions. For
generic processes it can be useful to alternatively adopt different kernels from a
generation to the other, in order to obtain an effective exploration of the search
space.

3. Robust Control
Consider a control system as shown in Fig. 1, where PPP 0(s) is an ni-inputs

and no-outputs nominal plant, ∆PPP (s) is the plant perturbation, CCC(s) is the
controller, rrr(s) is the reference input, uuup(s) is the control input, eee(s) is the
tracking error, ddd(s) is the external disturbance, and yyy(s) is the output of the
system. Without loss of a generality, the plant perturbation ∆PPP (s) is assumed
to be bounded by a known stable function matrix WWW 1(s), i.e. σ̄ (∆PPP (jω)) ≤
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σ̄ (WWW 1(jω)) , ∀ω ∈ [0,∞), where σ̄(AAA) denotes the maximum singular value
of a matrix AAA.

Figure 1. General feedback configuration.

The robust H∞ optimal disturbance attenuation problem for the system in
Fig. 1 lies in how to find a controller CCC(s) to stabilize the closed-loop system
and attenuate the external disturbance. The principle criterion for this problem
is simultaneously minimizing the robust stability performance

‖WWW 1(s)TTT (s)‖∞ < 1 (1)

and satisfying the following disturbance attenuation performance

‖WWW 2(s)SSS(s)‖∞ ≤ γ < 1 (2)

where ‖AAA‖∞ = maxω[σ̄(AAA(jω))], WWW 2(s) is a stable weighting function ma-
trices specified by designer, and SSS(s) and TTT (s) are the sensitivity function and
complementary sensitivity function, respectively, of the nominal system with
the following representations:

SSS(s) = (III + PPP 0(s)AAA(s)CCC(s)HHH(s))−1

TTT (s) = (III + PPP 0(s)AAA(s)CCC(s)HHH(s))−1 (PPP 0(s)AAA(s)CCC(s)HHH(s))
(3)

In short, the weighting matrices allow imposing what kind of “unexpected”
uncertainty and what kind of “unexpected” disturbances the controlled system
can deal with without problems [7].

4. Optimization Process
4.1 System Model

The aim is designing a longitudinal controller for the simplified F-14 fighter
as modeled in MATLABTM/Simulink. The input into the linear model PPP 0
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is the elevator deflection angle δe, the outputs are the angle of attack α and the
pitch rate q, and the states are q and the vertical velocity w, the feed-back is
only on the q channel. The linearized plant model PPP 0 is as follows:

α

δe
=

−0.09283s − 6.946

s2 + 1.296s + 4.501
(4)

q

δe
=

−6.885s − 4.017

s2 + 1.296s + 4.501
(5)

4.2 Optimization Statement
The performance of the controlled system are specified in terms of com-

mand response characteristics to a normalized reference signal (step response),
disturbance rejection features and robustness despite uncertainties of the plant.

The step command response characteristics are defined in terms of rise time
tr, settling time ts and overshoot Mp. Rise time is defined here as the time the
unit step response y(t) takes from y = 0.10 to y = 0.90, i.e., tr = t(y90%) −
t(y10%), settling time is here defined as the time for y(t) to stabilize within 5
percent of its final value and the overshoot is defined as the relative peak of y(t),
i.e., Mp = (ypeak − y∞)/(y∞). Whereas, the disturbance rejection features
are accounted by means of the ∞-norm of the sensitivity S and the robustness
is accounted by the ∞-norm of the complementary sensitivity T .

The optimization processes were aimed at finding the six coefficients (ki, i =
1, 6) of the single-input/single-output (SISO) controller C, the general structure
of which is

C(s) =
k1s

2 + k2s + k3

k4s2 + k5s + k6
, (6)

which minimize the elements of the vector function fff = [fover,q, frise,q]
T ,

where fover,q and frise,q are the overshoot and the rise time function of the q
response, respectively.

Optimal solutions have to satisfy the constraint:
∥
∥
∥
∥

WsS
WtT

∥
∥
∥
∥
∞

< 1 (7)

and additional constraints have been imposed to the characteristics of the ac-
tuator signal, in order to avoid actuator saturation, and to the time responses
in order to concentrate searching in the more interesting region of the Pareto
front, avoiding useless solutions.

In this case we have:

Ws = s+10
10s+1 Wt = 1000s+100

s+10000 (8)

which are scalar functions (the system is a SISO one) and Omax,q = 2,
Trmax,q = 3, Tsmax,q = 5, and Omax,α = 2, Trmax,α = 3, Tsmax,α = 5
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are constraints of the overshoot, the rise time and the settling time for q and
α, respectively. δe,max = 27 deg and δ̇e,max = 60 deg/s are the limits of the
deflection angle and of the deflection rate of the elevator, respectively.

The used algorithms have been set with the parameters in Tables 1 and 2.
The starting point approach is that of maximum ignorance, that is the initial
population is uniformly sampled within the allowed range of variables (−30 ≤
ki ≤ 30, i = 1, 6)

Table 1. NSGA-II parameters.

Values

Population 150
Generations 150
Crossover prob. 0.99
Crossover index 5
Mutation prob. 1/6
Mutation index 5

Table 2. MOPED parameters.

Values

Population 150
Generations 150
Fitness param. 1.1
Generator index 1
Constraint classes 150/2

4.3 Results
For each code 5 independent runs have been performed (with a maximum

generation stopping criterion, 150 generations). Figure 2 shows two of the
fronts (NSGA-II and MOPED) randomly chosen within the obtained set. A
comparison between the two fronts points out that if the approximation of the
NSGA-II is better in the internal side of the front, MOPED is able to find more
solutions at the extremes.

This is surely due to the different search operators used by the algorithms.
The real coded SBX has a rapid convergence to the central part of the front, but
this means also an impoverishment of the information of the population, which
makes difficult the exploration of distant regions. The operator of the MOPED,
on the contrary, has a slower convergence and, as a consequence, can better
explore a wider region.

Both algorithms are successful, when a deterministic sequential quadratic
programming (SQP) algorithm with a random starting point (with the same
bounds) is not able at finding any satisfying solution. For this problem the SQP
algorithm demonstrated to be useless even if the starting point is a solution of
the Pareto set.

In order to show how the robustness requirements influence the goodness
of the solutions, the q output of two individuals are depicted in Fig. 3. One
solution, which satisfies every constraint, is picked up from the Pareto set and
the other one, which satisfies every constraints but that for the W2(s)S, is picked
up from an intermediate population. Notwithstanding the nominal response is
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Figure 2. Obtained Pareto fronts.

Figure 3. Time domain solutions (q channel) for a solution satisfying the constraint on the
S function (solid line) and another one which does not (dashed line). On the right side a zoom
allows a better view.

almost equal, a low frequency disturbance has minor effect on the solution with
‖W2(s)S‖ < 1.
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5. Conclusions
In this work we applied two different evolutionary algorithms to the opti-

mization of a controller for longitudinal maneuvers. The problem is just a test
case, where more traditional, deterministic techniques fail because of high non-
linearity of the problem. Both algorithms, a traditional NSGA-II and a newer
EDA, demonstrate being able to handle such a kind of problem. Substantially,
the two algorithms are similar and differences are only due to the used search
operators. The results point out that if both algorithms allow finding Pareto
solutions, the EDA one is able at maintaining diversity and, consequently, a
better spread of individuals on the Pareto front.

This work, however, is only the first step towards a tool, which, by means of
evolutionary techniques with or without the cooperation of other soft computing
techniques, could carry out a fully automatic controller design for different kinds
of flying vehicles.
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Abstract In this paper we present an evolutionary heuristic based upon genetic algorithms
for the problem of balancing healthy meals. We formulate the problem as a
multiconstrained fractional knapsack problem that is easy to formulate, yet, its
decision problem is in the class of NP-complete problems. Experimental results
show that the genetic algorithm heuristic is capable of obtaining high-quality
solutions for the problem of balancing healthy meals, requiring a polynomial
computational time. Using this method, software can generate balanced healthy
meals that consider multiple weakly-correlated dietary recommendations and
guidelines and include as much as possible functional food and drinks that are
available in a given season for a good price.

Keywords: Optimization, Multiconstrained fractional knapsack problem, Genetic algorithms,
Penalty functions, Repair algorithms

1. Introduction
Appropriate nutrition is one of the most important protective factors against

chronic diseases such as cardiovascular diseases, diabetes, cancer, and os-
teoporosis. Many dietary recommendations designed to prevent and control
chronic diseases have been integrated with guidelines designed to prevent nu-
tritional deficiencies and infectious diseases [3]. However, transfer of these
useful but complex recommendations and guidelines into practice is not an
easy task. We can use nutrition software as an assistant who handles numerous
research quality data and tracks various nutrient information.

In this paper we introduce a meta-heuristic evolutionary optimization method
for solving the problem of balancing healthy meals that is applied by high-end
nutrition software. In Sect. 2 we provide a formulation of the problem of
balancing meals as a multiconstrained fractional knapsack problem; in Sect. 3
we describe a genetic algorithm for the multiconstrained knapsack problem;

147
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in Sect. 4 we evaluate the method; and in Sect. 5 we list our conclusions and
suggest possible future work.

2. The Problem of Balancing Healthy Meals
Foods and drinks are defined by many research quality data, such as basic

nutrients, vitamins, minerals, amino acids, fatty acids, etc. Finding a healthy
and a balanced meal is a complex problem because of two reasons: there are
many dietary recommendations and guidelines, and the search space is wide and
complex. Moreover, the quality of food and drinks change dynamically with
a season. Solutions of the problem are trade-off solutions. For such solutions
no improvement in any constraint is possible without violating at least one of
other constraints.

We formulate the problem of balancing healthy meals as a multiconstrained
(multidimensional) fractional knapsack problem (MFKP) that is easy to for-
mulate, yet, it can be solved efficiently by using some heuristic method. The
MFKP is defined as follows:

Given food and drink items of different weights (nutrient data) and values (qual-
ities) that are weakly-correlated, find the most valuable (healthy-and-balanced)
mix of pieces (fractions) of items which fit in a knapsack (meal) of fixed volumes.
Values are defined subjectively with respect to food functionality, seasonal avail-
ability and price. Knapsack volumes represent dietary recommendations and
guidelines, such as:

Energy intake and calories;

Intake of nutrients (carbohydrates, lipids, protein, vitamins and miner-
als);

Ratio of essential fatty acids;

Consumption of water, fruits and vegetables;

Fiber requirement;

Number of meals;

Etc.

Formal definition: There is a knapsack of M capacities Cj and N items. Each
item i has a value vi ∈ R, vi > 0, and a set of weights ωi,j ∈ R, ωi,j > 0,
one for each capacity. Find the selection of items (xi ∈ R, xi > 0) that fit
∑N

i=1 ωi,jxi Θ Cj , Θ can be ≤, =, or ≥, j = 1, . . . , M , and the total value,
∑N

i=1 vixi, is maximized.

The MFKP is in the class of NP-complete problems [2].
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3. Heuristic Method for the MFKP
There have been presented numerous methods for solving the knapsack prob-

lems. A comprehensive review of the multiconstrained 0-1 knapsack problem
and its associated exact and heuristic algorithms is given by Chu and Beasley
[4].

We decided to apply an evolutionary approach for balancing healthy meals
in a heuristic way by using a genetic algorithm (GA) [1]. GAs simulate nature
on a very abstract level to get solutions for sophisticated problems. They are
searching through an arbitrary search space both for exploration and exploitation
purpose.

With evolutionary GAs the MFKP can be solved by checking whether one
of the trial solutions represented as an abstract chromosome is a good solution
of the problem, i.e., whether it fulfills all the criteria. To create such a solution,
selected trial chromosomes are recombined and/or perturbed genetically to form
new chromosomes that are new members of the abstract population. It has been
proved that each finite GA will always converge to its global optimum region
[5], meaning that one good solution will always be found.

3.1 Direct Encoding
People consume several thousands of food and drink items, which intensifies

difficulties in creation of a trial chromosome. To relieve this difficulty, we
decided to separate N items into G groups, where G ≤ N and G is few
tens. Creating a composite meal, we select at most one item from each group.
Hence, in our representation, a trial chromosome contains G pairs S[g] of item
code ig and its quantity (Fig. 1). A value ig = 0 implies that no item is

g 1 2 G

S[g] 01060 31 02033 3 . . . 13523 85

Figure 1. Representation scheme.

selected for a group g. The number of possible solutions is approx. ( N
G

)
G|P |

,
P = {0.25, 0.5, 0.75, 1, 1.5, 2, 3, . . . , 10}, assuming each item ig has assigned
a quantity xig that is a multiple pig of some predefined value (portion size).
Item qualities are given by discrete, integer values from {1, 2, 3}. A higher
value denotes a higher item functionality and availability in season.

In our implementation, the GA can start either with a random population of
trial solutions or a population of solutions known by experience. The population
size is few tens.
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3.2 Fitness Evaluation
Each solution of the trial population is evaluated using the following fitness

function:

Fitness(chromosome) =
G∑

g=1

vigpig . (1)

Chromosomes having higher fitness values are more likely to be good solu-
tions.

3.3 Infeasible Solutions
A chromosome might represent an infeasible solution. An infeasible solution

is one for which at least one knapsack constraint is violated, i.e., ¬∑N
i=1 ωi,jxi

Θ Cj , Θ being ≤, =, or ≥, for some j = 1, . . . , M . There are several ways of
dealing with infeasible solutions in GAs [6]. However, we applied:

1 a penalty function to penalise the fitness of any infeasible solution without
distorting the fitness landscape, and in addition

2 a repair operator which transforms any infeasible solution into a feasible
one.

The penalty function is defined in a static way by adding a metric based on
a number of constraints violated, such as:

Penalty(chromosome) =
m∑

j=1

Xjδj , (2)

where

δj =







1, if constraint j is violated

0, if constraint j is satisfied
,

and Xj is the weight of a certain constraint j.
An infeasible solution is left unrepaired in the population with some prob-

ability to prevent premature convergence of the algorithm. Namely, optimal
solutions frequently lie on the boundary of the feasible region [7]. A repair
operator consists of the following phases:

1 Rank the problem constraints (i.e., define constraint weights Xj , j =
1, . . . , M );

2 Sort food and drink items in the chromosome according to the increasing
order of their values (qualities) and the decreasing/increasing order of
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their weights (nutrient data) for the exceeded/underestimated constraints,
considering the constraint weights Xj ;

3 For each item in the sorted chromosome, starting with the least quality
one, find an alternative item with more appropriate nutrient profile, again
considering the constraint weights Xj . A more appropriate nutrient pro-
file is searched in the neighborhood of the item or randomly, depending
on the repairing probability.

4 Repeat these local-optimization steps for several times (repairing rate) or
until the chromosome does not satisfy all the constraints, respectively.

3.4 Parent Selection
To create (reproduce) new trial solutions two strings have to be selected

from the current population as parents. In our implementation of the GA,
solutions with the best fitness are more likely to be selected for reproduction
as we apply the elitism strategy, where a number of least-fit members of the
current trial population are interchanged with an equal number of the best-
ranked chromosomes. Such an approach increases performance of the GA,
because it prevents losing the best-found solutions.

The parent selection is realized via the tournament approach. This is based
upon an idea of forming two pools of trial solutions, each consisting of the
same number of chromosomes. Two solutions with the best fitness, each taken
from one of the tournament pools, are chosen to be parents. Using a larger
size of the tournament pools has the effect of increasing selection pressure
on the more fit solutions. The problem of getting stuck in a locally optimum
solution can happen. To avoid this problem, we adopt the standard (binary)
tournament selection technique and realize the elitism through the interchange
ratio of least-fit to best-ranked solutions. This ratio is in the order of 4 or 6
down to 1 chromosome per population, depending on the population size.

3.5 Crossover and Mutation
In crossover, two “fit” parents are mated to produce a child that replaces the

least-fit solution in a given population if its fitness ranks above. This steady-
state approach may perform better than generational GAs because it better
retains feasible solutions found in the populations and may have higher selection
pressure. We apply a uniform crossover operator to produce a solution that
preserves the “genetic material” from both parents. Each element of the child
chromosome (a pair of the item code and its quantity) is created by copying the
corresponding element from one of the parents, chosen according to a binary
random number generator [0, 1]. In our implementation of the GA, using a two-
point crossover operator can also perform crossover. In this approach, copying



152 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the corresponding elements from one parent, and all the others by copying
the corresponding elements from other parent, creates elements of the child
chromosome between two points, selected by using a crossover probability.

Once a child solution has been generated through parent selection and cross-
over, a mutation procedure is performed that mutates some randomly selected
item codes and their quantities in the child solution. Each selected item is
mutated in one of the following ways, selected randomly,

by applying local optimization, i.e., the item code and its quantity are
replaced by a close item from the item group;

by replacing the item code and its quantity with a randomly selected item
from the same group;

by multiplying the item quantity by a random factor from P = {0.25, 0.5,
0.75, 1, 1.5, 2, 3, . . . , 10}.

Mutation has to be used to prevent convergence to local optima. The rate of
mutation is set to be a small value (in the order of 1 or 2 bits per chromosome).

3.6 Termination Criteria
We use two possibilities to stop the evolution:

A time-out approach: when a certain number of populations have been
generated and evaluated, the system is assumed to be in a stable state;

A wanted-solution approach: once a solution with a predefined value of
the fitness function is found, the optimization is terminated.

4. Evaluation of the GA for the MFKP
In order to evaluate the proposed evolutionary method for balancing healthy

meals, we optimized a set of meals using the GA. We used the USDA nutrition
database, Release 16 [8], which is the major source of food composition data in
the United States. It includes nutrient profiles for more than 6500 food and drink
items that are grouped into 23 groups. The items are ordered so that similar
foods and drinks are grouped together. Each nutrient profile contains more than
30 values, such as macronutrients, elements, vitamins, etc. These data were
used as weights. Qualities of items were defined considering their functionality
and availability in a given season. Seasonal foods and drinks belonging to the
list of functional foods and drinks (including broccoli, blueberries, red wine,
avocado, etc.) were assigned higher values (qualities). We considered the
following dietary recommendations and guidelines:

Calories (kcal) per meal (based on user’s individual criteria, such as
weight, height, age, gender and activity level);
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Ratio of carbohydrates, proteins and lipids: 55:15:30 (% of total energy);

Maximum level of cholesterol in milligrams;

Recommended intake of vitamin E in milligrams;

Ratio of linoleic (omega-6) and alpha-linoleic (omega-3) fatty acids: 2:1.

These constraints are equality constraints, except the “cholesterol” one,
which is an inequality (less-than-equal) constraint.

We developed software that implements the GA that balances healthy meals
using the Borland Delphi programming tool. It runs under the Microsoft Win-
dows operating systems on a Pentium PC. The USDA database is available in
a Microsoft Access format.

4.1 Experiments and Results
After several runs of the program, the most advantageous settings for the GA

were defined (Table 1) and a set of good solutions was collected.

Table 1. Settings for the GA parameters.

Parameter Value

Population size 20
Repairing probability 0.5
Repairing rate 3
Elitism ratio 0.2–0.05
Tournament pool size 2
Crossover probability 0.7
Mutation rate 0.05
Termination criteria 100 populations

It has proved that a repair operator has to be used in addition to the static
penalty function. Otherwise, the search gets stuck in a local minimum and vio-
lates the termination criteria. We estimated that approximately each third trial
solution was infeasible and required repairing. Although the worst-case time
complexity of the repairing algorithm is

∑G
g=1 O(NgM), in practice O(M)

steps were needed to find a close feasible solution. However, the most difficult
task in repairing was to derive the proper constraint weights Xj , j = 1, . . . , M .
We defined the highest weight to the “cholesterol” constraint and the lowest
to the “energy intake” constraint. In between were the second and the fourth
problem constraints (the ratios of macronutrients and essential fatty acids, re-
spectively).

In Fig. 2 and 3 a high-quality daily-meal solution generated from an initial
population of random trial solutions that satisfies the selected problem con-
straints is presented. The quantities were selected as multipliers of the portion
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sizes. Larger portions of more than 100 grams were multiplied by a factor from
{0.25, 0.5, 0.75, 1, 1.5, 2} and smaller portions of few grams by a factor from
{1, . . . , 10}, respectively.

Grams Food or drink item
72 ORANGE DRK, BRKFST TYPE, W/JUC & PULP, FRZ CONC
38 CEREALS, MALTEX, DRY
141 WEIGHT WATCHERS ON-THE-GO CHICK, BROCLI &

CHDR POCKT SNDWCH, FRZ
496 SOUP, TOMATO, LO NA, W/H2O
80 FAST FOODS, POTATO, MASHED
31 TURKEY, YOUNG HEN, SKN ONLY, CKD, RSTD
1 GINGER, GROUND
123 BEETS, CND, REG PK, SOL & LIQUIDS
28 CAKE, CHERRY FUDGE W/CHOC FRSTNG
31 ENSURE PLUS, LIQ NUTR
150 BANANAS, RAW
21,5 SOYBEANS, MATURE SEEDS, RSTD, SALTED
195 RICE, BROWN, LONG-GRAIN, CKD
85 MACKEREL, ATLANTIC, RAW
42 ALMOND PASTE

Figure 2. A good daily-meal solution.

RESULTS Recommended Achieved
Quality 3 3
Energy (Kcal) 1800 ± 100 1875.7
Protein (% of energy) 10–15 (preferable 15) 14.5
Total lipids (% of energy) 20–30 (preferable 30) 29.8
Carbohydrates (% of energy) 50–60 (preferable 55) 55.7
Vitamin E (mg) 15 ± 2 14.1
Saturated fatty acids (% of energy) ≤ 10 7.5
Omega-6 FA + Omega-3 FA (g) (11 + 5.5) ± 2 17.4
Cholesterol (mg) ≤ 300 120.4

Figure 3. Nutritional profile for the daily-meal solution.

In Fig. 4 performance of the proposed balancing method, based on measure-
ments of the number of times the trial solutions and constraints were evaluated
to come within a certain fraction of the optimum, are presented.

5. Conclusions
In the paper, we have presented a heuristic method for balancing healthy

meals that considers several constraints and the quality of food and drinks. The
method is based on a steady-state genetic algorithm because the search space
is complex and wide, yet, it has very small feasible regions. The GA uses the
direct coding of problem solutions, the elitism and the tournament approach for
selection of parents, uniform and two-point crossover, and “local-optimization”
mutation. Infeasible solutions are penalized by decreasing the “fitness” of the
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Figure 4. Performance of the balancing method.

evaluation function. Some infeasible solutions are further repaired so that the
least-quality food and drink items are changed with more appropriate items or
their quantities are modified by a multiple of the predefined portion size. We
collected the experimental results by running the GA from an initial population
of random trial solutions. Including some “real” meals, the method could per-
form better. We could also experiment with other (dynamic) penalty functions
to reduce the cost of repairing. Last but not least the USDA database need to
be replaced with the Slovene national nutritional database.
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