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Preface

Competing among themselves and adapting to the environment, mem-
bers of biological populations accumulate experience and improve their
performance. Their genetic material is recombined and propagated from
generation to generation according to the laws of genetics. Relying on
elementary activities of individuals, societies of insects and bird flocks
exhibit complex emergent behavior. These and many other fascinating
natural phenomena have been a rich source of inspiration in computer
algorithms design for decades. As a result, the family of bioinspired al-
gorithms has become quite large and includes evolutionary algorithms,
ant colony optimization, particle swarm optimization, and artificial im-
mune systems, to name just a few. They were designed to overcome the
drawbacks of traditional algorithms in demanding application scenar-
ios where little, if any, information is available to assist problem solving.
Optimization is an area where these techniques are studied and exercised
with particular practical success.

This volume contains recent theoretical and practical contributions
to the field of bioinspired optimization presented at the Fourth Interna-
tional Conference on Bioinspired Optimization Methods and their Ap-
plications (BIOMA 2010), held at the Jožef Stefan Institute, Ljubljana,
Slovenia, on 20 and 21 May 2010.

Encouraged by the success of the previous BIOMA conferences orga-
nized in 2004, 2006 and 2008 as part of the Information Society Multicon-
ference, BIOMA starts its own way this year. It continues its mission of
bringing together theoreticians and practitioners to present their recent
achievements and exchange the ideas, and promoting the bioinspired
optimization methods to wider audience.

Each paper submitted to the conference was reviewed by three mem-
bers of the international program committee. In the reviewing pro-
cedure, 18 papers were selected for presentation at the conference and
publication in the proceedings. They were contributed by 40 (co)authors
coming from 9 countries.

vii



viii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The BIOMA 2010 invited speaker is Christian Blum, a research fel-
low at the Technical University of Catalonia, Barcelona, Spain. He
has contributed to the fields of swarm intelligence and hybridization of
metaheuristics. His talk on hybrid mataheuristics reviews recent devel-
opments in combining metaheuristics, such as ant colony optimization,
evolutionary algorithms and variable neighborhood search, with tech-
niques from operations research and artificial intelligence.

Theoretical and algorithmic studies presented at the conference ad-
dress a variety of issues in bioinspired optimization: parallelization of the
differential evolution algorithm, analysis of exploration and exploitation
in evolutionary algorithms, component decomposition in parallel differ-
ential evolution, a distinct candidate approach to multiobjective opti-
mization, parameter estimation in a cell regulatory system model with
bioinspired optimization algorithms, a slow feature analysis approach to
the analysis of nonstationary time series, and a self-organizing cognitive
architecture. The applied work reports come from a number of inter-
esting domains: multi-processor system-on-chip design, design optimiza-
tion in mechanical, electrical and chemical engineering, optimization of a
metallurgical production process, optimization of broadcasting in sensor
networks, production planning, scheduling of bus transportation staff,
online mathematics learning, woody plants model recognition, and vari-
able selection in econometric modeling with stochastic algorithms.

BIOMA 2010 is sponsored by the Slovenian Research Agency. Techni-
cal sponsors of the conference are the World Federation on Soft Comput-
ing, the Slovenian Artificial Intelligence Society (SLAIS), and the Jožef
Stefan Institute.

Our thanks go to the conference sponsors, members of the program
and organizing committees, the invited speaker, paper presenters and
other participants for contributing their parts to the conference. We
wish you an inspiring scientific meeting and a pleasant stay in Ljubljana.

Ljubljana, 6 May 2010

BOGDAN FILIPIČ AND JURIJ ŠILC
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Abstract The combination of components from different algorithms is currently
one of the most successful trends in optimization. The hybridization
of metaheuristics, such as ant colony optimization, evolutionary algo-
rithms, and variable neighborhood search, with techniques from op-
erations research and artificial intelligence plays hereby an important
role. The resulting hybrid algorithms are generally labelled hybrid meta-
heuristics. The rising of this new research field was due to the fact that
the focus of research in optimization has shifted from an algorithm-
oriented point of view to a problem-oriented point of view. In this brief
survey on hybrid metaheuristics we provide an overview on some of the
most interesting and representative developments.
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Keywords: Exact techniques, Hybridization, Metaheuristics, Optimization

1. Introduction

The term metaheuristic was introduced to define heuristic methods
that can be applied to a wide set of different problems. In other words,
a metaheuristic can be seen as a general algorithmic framework which
can be applied to different optimization problems with relatively few
modifications to make them adapted to a specific problem. Genetic and
evolutionary algorithms, tabu search, simulated annealing, iterated local
search, and ant colony optimization, just to name a few, are typical rep-
resentatives falling under this generic term. Each of them has an individ-
ual historical background, follows certain paradigms and philosophies,
and puts one or more particular strategic concepts in the foreground. For
a detailed introduction to metaheuristics we refer the interested reader
to [13, 26].

In contrast to the early days of metaheuristic research, the last 5-10
years have produced a large number of algorithms that simply do not
fit into a single metaheuristic category. This is because these untradi-
tional approaches combine various algorithmic ideas, often originating
from several branches of artificial intelligence, operations research and
computer science in general. Such approaches are commonly referred to
as hybrid metaheuristics [11]. The lack of a precise definition of this term
is sometimes subject to criticism. In our opinion, however, the relatively
open nature of this term is rather helpful, as strict borderlines between
related fields of research are often a hindrance for creative thinking and
the exploration of new research directions.

The main motivation for the hybridization of different algorithmic
concepts has been to obtain better performing systems that exploit and
combine advantages of the individual pure strategies, that is, hybrids
are believed to benefit from synergy. In fact, choosing an adequate com-
bination of multiple algorithmic concepts is often the key for achieving
top performance in solving many hard optimization problems. However,
the task of developing a highly effective hybrid approach is not easy at
all. Nevertheless, there are several hybridization types that have proven
successful on many occasions, and they can provide some guidance.

The growing popularity of this line of research is documented by rather
recent conferences and workshops such as CPAIOR [63], Hybrid Meta-
heuristics [6, 7], and Matheuristics [39]. Moreover, the first book specif-
ically devoted to hybrid metaheuristics has recently been published in
2008 [11]. In this brief survey, we provide an overview of hybrid meta-
heuristics by illustrating prominent and paradigmatic examples, which
range from the integration of metaheuristic techniques among them-
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selves, to the hybridization of metaheuristics with constraint and math-
ematical programming. The interested reader can find other reviews on
hybrid metaheuristics in [11, 17, 20, 51].

2. Examples and Literature Overview

In our opinion, the current body of research on hybrid metaheuristics
can be subdivided into five different categories, namely, the hybridization
of metaheuristics with (meta-)heuristics, constraint programming, tree
search methods, problem relaxations, and dynamic programming. Each
of these five categories is treated below in its own subsection. For each
category we will list representative works.

2.1 Hybridization of Metaheuristics with
(Meta-)Heuristics

The hybridization of metaheuristics with (meta-)heuristics is quite
popular, especially for what concerns the use of local search methods
inside population-based methods. Indeed, most of the successful appli-
cations of evolutionary computation and ant colony optimization make
use of local search procedures for refining the generated solutions. This
is because the major strength of population-based methods is their ex-
ploration capability. At the start of the search they generally try to
capture a global picture of the search space, and typically, rather simple
and problem-dependent operations are then iteratively applied to derive
diverse new solutions successively, focusing the search on promising re-
gions of the search space. Conversely, the strength of local search meth-
ods is their rather fast intensification capability, that is, the capability of
quickly finding better solutions in the vicinity of given starting solutions.
In summary, population-based methods are good in identifying promis-
ing areas of the search space in which local search methods can then
quickly determine the best solutions. Therefore, this type of hybridiza-
tion is often very successful. In the field of evolutionary algorithms these
hybrids even carry their own name, memetic algorithms [35].

Apart from the usual above-mentioned hybridization, this category
contains, for example, so-called multi-level techniques [65, 66]. They are
heuristic frameworks with the potential of making the search process of a
metaheuristic more effective and efficient. The basic idea of a multilevel
technique is the one of coarsening a given problem instance. Then, the
problem is solved on the coarsened instance and the obtained solution
is transformed in order to obtain a solution to the original instance.
Variable fixing strategies [46, 50] are related techniques.
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Another hybrid in this first category are hyper-heuristics [14]. They
work on a higher level than classical metaheuristics, in the sense that
they do not directly operate on the search space of the problem un-
der consideration. Instead they operate on a search space consisting of
lower-level heuristics—or even metaheuristics—for the tackled problem.
Hyper-heuristics are broadly concerned with selecting the right meta-
heuristic at any situation.

Interestingly, in recent years a few examples have appeared for the
use of components from population-based methods within metaheuristics
based on local search. One of these examples concerns population-based
iterated local search [59] where iterated local search is extended from
working on a single solution to working on a population that is managed
in the style of evolution strategies. In a different example, Lozano and
Garćıa-Mart́ınez [37] advocate the use of an evolutionary algorithm as
a perturbation technique within iterated local search, while Resende et
al. [54] devise several versions of a hybrid algorithm based on GRASP
and path relinking methodologies.

An important branch of hybridization is the enhancement of meta-
heuristics with additional techniques for improving run-time, results, or
both. Montemanni and Smith [41] propose an algorithm to solve the
frequency assignment problem that is based on tabu search. Hereby,
tabu search is enhanced by heuristic manipulation, a mechanism based
on the idea that adding constraints to a problem results in a search space
reduction, which, in turn, may facilitate the solution of the problem.

2.2 Hybridization of Metaheuristics with Constraint
Programming

Constraint programming (CP) is a programming paradigm that is
build upon constraints and constraint solving [38]. CP is generally said
to be particularly effective in finding feasible solutions to highly con-
strained problems. On the other side, metaheuristics are generally very
effective in finding good-quality solutions to mildly constrained opti-
mization problems while requiring a limited amount of computational
resources. In turn, metaheuristics are generally not very effective in
tackling highly constrained problems, while CP alone usually does not
achieve a particularily high performance in solving loosely constrained
optimization problems. Given these considerations, the combination of
metaheuristics with CP seems applicable to problems with a fairly high
number of constraints and, at the same time, a sufficiently large number
of feasible solutions [40].
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The integration of (meta)heuristics and CP dates back to the late
1990s; see, for example, the works by Pesant and Gendreau [43, 44] and
subsequent works [19, 58]. A survey on possible ways of integrating
metaheuristics and CP is provided by Focacci et al. in [24]. With a
bit of oversimplification, four main approaches for the integration of
metaheuristics and CP can be identified:

1 Metaheuristics are applied before CP, providing a valuable input,
or vice versa.

2 Metaheuristics, mainly local search methods, use CP to efficiently
explore the neighborhood of the current solution.

3 Construction-based metaheuristics use CP in order to prune the
search space.

4 CP applies a metaheuristic in order to improve a solution (i.e., a
leaf of the search tree) or a partial solution (i.e., an inner node).
Metaheuristic concepts can also be used to obtain incomplete but
efficient tree exploration strategies.

The first one of these approaches represents a rather loose hybridiza-
tion and can be seen as an instance of cooperative search [22]. The
second approach combines the advantages of a fast search space ex-
ploration by means of a metaheuristic with the efficient neighborhood
exploration performed by a systematic method. A prominent example
of such a kind of integration is large neighborhood search and related
approaches [15, 57]. The third approach has found applications espe-
cially in ant colony optimization [34, 40, 61]. Hereby, CP is used at
each solution construction step to filter the available options for the ex-
tension of the current partial solution. The fourth approach preserves
the search space exploration based on systematic search (such as tree
search), but sacrifices the exhaustive nature of the search [28, 29]. The
hybridization is usually achieved by integrating concepts developed in
the context of metaheuristics (e.g., probabilistic choices, aspiration cri-
teria, heuristic construction) into tree search methods. For example,
instead of a chronological backtracking, a backjumping based on search
history or information retrieved from local search samples can be per-
formed. Other examples of this approach can be found in [48, 56].

2.3 Hybridizing Metaheuristics with Tree Search

Optimization techniques can be characterized by their way of explor-
ing the search space. Some algorithms consider the search space of an
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optimization problem in form a of a tree, the so-called search tree, which
is generally defined by an underlying solution construction mechanism.
Each path from the root node of the search tree to one of the leaves
corresponds to a step-by-step construction of a candidate solution. In-
ner nodes of the tree are partial solutions to the given problem. The
process of moving from an inner node to one of its child nodes is called
a solution construction step, or an extension of a partial solution.

The class of tree search algorithms comprises approximate methods
such as ant colony optimization and GRASP, but also complete tech-
niques such as branch & bound and heuristic variants of complete tech-
niques such as beam search. Therefore, the hybridization of metaheuris-
tics with other tree search techniques is probably one of the most popular
hybridization approaches. One of the first works on a combination of
branch & bound with an evolutionary algorithm is the one by Nagar et
al [42]. Hereby, an incomplete execution of branch & bound is used to
guide the working of an evolutionary algorithm.

Exact tree search methods have been used quite a few times in solu-
tion merging, which is based on the idea of deriving new and hopefully
better solutions from the attributes originating from two ore more input
solutions. Applegate et al. [2, 3] were among the first to apply tree search
methods in the context of merging. In an application for the travelling
salesman problem they merge solutions and produce a (potentially) new
solution by solving the resulting reduced graph to optimality.

Similarly as constraint programming is sometimes used for searching
large neighborhoods (see Section 2.2), other tree search methods are also
utilized for this purpose. Especially branch & bound techniques based
on linear programming, including branch-and-cut, are often a promising
option when the problem at hand can be expressed by a mixed integer
programming (MIP) model. The availability of highly effective general
purpose MIP solvers, which are typically based on sophisticated branch-
and-cut frameworks but nevertheless can be relatively easily applied,
makes this approach particularly interesting in practice. In the litera-
ture, numerous successful examples exist for such approaches. Among
the more generally applicable ones is local branching [23]. A success-
ful problem-specific example for large neighborhood search by means of
solving sub-MIPs via branch-and-cut has been described by Prandtstet-
ter and Raidl for the car sequencing problem [47].

Instead of using an exact method within a metaheuristics, the liter-
ature also offers examples where incomplete versions of exact methods
are used to enhance metaheuristics. One of these examples is Beam-
ACO [8, 9], which is a hybrid algorithm that combines ant colony opti-
mization with beam search. This algorithm employs parallel and non-
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independent solution constructions at each iteration, in the style of beam
search. Another example is the hybridization of metaheuristics with
backtracking. In [30] the authors describe applications of various hy-
brid metaheuristics to problems ranging from car sequencing and graph
coloring to scheduling. For example, a tabu search algorithm for the
job shop scheduling problem is presented, combining local search with
complete enumeration as well as limited backtracking search.

The examples mentioned above are characterized by a subordinate
use of an exact method within the metaheuristic. However, the lit-
erature also offers examples where metaheuristics are used for guiding
the search process of an exact technique, or a heuristic derivate. For
example, Rothberg [55] suggests a tight integration of an evolutionary
algorithm in a MIP solver based on branch & cut. The evolutionary
algorithm is applied at regular intervals as a branch & bound tree node
heuristic. Another example concerns the works presented in [12, 25],
where the applications of beam search and a memetic algorithm are in-
tertwined. More specifically, phases of beam search and the memetic
algorithm alternate. Beam search purges its queue of open partial solu-
tions by excluding those ones whose upper bounds are worse than the
value of the best solution found by the memetic algorithm. On the other
side, beam search guides the search of the memetic algorithm by inject-
ing information about promising regions of the search space into the
population. Another example where metaheuristics may be used as a
subordinate technique is diving [18], which is a mechanism for focusing
the search process of branch & bound in an initial phase to neighbor-
hoods of promising incumbents in order to quickly identify high-quality
solutions.

2.4 Hybridization of Metaheuristics with Problem
Relaxation

Guiding metaheuristics by problem relaxation has become quite pop-
ular in recent years. A so-called relaxed problem is obtained by sim-
plifying or omitting constraints from the original problem formulation.
The hope is, first, that the relaxed problem can be efficiently solved, and
second, that the structure of an optimal solution to the relaxed problem
together with its objective function value can be used in some way for
solving the original problem. For example, the optimal solution value
of a relaxed problem can be seen as a bound for the optimal solution
value of the original problem. Therefore, it can be used in a branch &
bound algorithm for discarding parts of the search tree. An important
type of relaxation in combinatorial optimization concerns dropping the
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integrality constraints of the involved variables from a MIP formulation.
The resulting linear programming (LP) relaxation can then be solved to
optimality by efficient methods like the well-known Simplex algorithm.

One of the most obvious ways to utilize an optimal solution to the LP
relaxation of a problem at hand is to directly derive a heuristic integer
solution which is feasible for the original problem. Depending on the
problem, this can be achieved by simple rounding or more sophisticated
repairing strategies. For example, Raidl and Feltl [52] present a hy-
brid genetic algorithm for the generalized assignment problem. The LP
relaxation of the problem is solved and its solution is exploited by a ran-
domized rounding procedure to create an initial population of promising
integral solutions.

In [64], Vasquez and Hao present a two-phase approach for the multi-
dimensional 0-1 knapsack problem (MKP). This algorithm is a prime
example for a hybrid metaheuristic guided by problem relaxation. The
main idea consists in solving a number of relaxed problems obtained
by dropping the integrality constraints to optimality. This is done in
a first phase. Afterwards, in a second phase, tabu search is used to
search around the optimal solutions to the relaxed problems. Another
examples concerns the work by Puchinger and Raidl [49]. They in-
troduced relaxation guided variable neighborhood search (RGVNS). The
main algorithmic framework of RGVNS is variable neighborhood search.
However, neighborhoods are dynamically ordered according to so-called
improvement-potentials. These estimates are determined by computing
bounds on the objective function values of the optimal solutions within
each neighborhood. Such bounds are obtained by solving a relaxation
of the original problem.

A successful example for using other relaxation techniques is the hy-
brid Lagrangian GA for the prize collecting Steiner tree problem by
Haouari and Siala [27]. Hereby, the GA uses results from the previ-
ously solved Lagrangian relaxation. In particular, the original graph is
reduced by discarding edges, meaningful initial solutions are generated,
and the objective function is modified by considering reduced costs.

For the knapsack constrained maximum spanning tree problem, a sim-
ilar combination of Lagrangian decomposition and a genetic algorithm
is described in Pirkwieser et al. [45]. A combination of a Lagrangian
relaxation approach and a variable neighborhood descent metaheuristic,
which is also based on similar principles, has recently been developed for
a real-world fiber optic network design problem by Leitner and Raidl [36].

Tamura et al. [60] propose an algorithm that works by first executing
a GA for identifying a promising region of the search space. The fitness
of solutions is hereby related to Lagrangian relaxations. Afterwards, an
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exhaustive search is used to find the best solution within the identified
region.

Finally, Reimann [53] introduces an ant colony optimization algorithm
for the symmetric travelling salesman problem where an optimal solution
to the minimum spanning tree relaxation is used for biasing the search of
the artificial ants towards edges that form part of the minimum spanning
tree.

3. Hybridization of Metaheuristics with
Dynamic Programming

Dynamic programming (DP) is another example of an optimization
method from operations research and control theory that can be success-
fully integrated with metaheuristics, both in the case of constructive and
local search techniques. DP provides a method for defining an optimal
strategy that leads from an initial state to the final goal and it has been
successfully applied to many optimization and control problems [5].

Iterated dynasearch is a hybrid metaheuristic that uses DP as a neigh-
borhood exploration strategy inside iterated local search [31]. The ra-
tionale behind this integration is that in neighborhood search, the larger
the neighborhood size, the better the quality of the local optimum re-
turned (on average). Suitable neighborhoods are often of exponential
size, making it impractical to perform an explicit exhaustive lexicograph-
ical enumeration. Therefore, more computationally efficient neighbor-
hood exploration techniques are required. In some cases, DP can make
it possible to completely explore an exponential size neighborhood in
polynomial time and space [1, 16].

In [10], Blum and Blesa present the use of a DP algorithm within two
different metaheuristics for the k-cardinality tree (KCT) problem. The
general idea of their approaches is not limited to the KCT problem and
can, potentially, be used for other subset problems. Basically, the idea is
to let the metaheuristic generate objects that are bigger than solutions,
containing in general an exponential number of solutions to the problem
under consideration. DP is then used to efficiently find for each object
the best solution that it contains.

Hu and Raidl [32] use DP within an evolutionary algorithm as a mech-
anism for generating the best solution that can be obtained from an
incomplete solution. A somewhat related approach is presented in [21].
In [33], DP is used purely as a decoder for tackling the rectangle pack-
ing problem with general spatial costs, which consists in packing given
rectangles without overlap in the plane so that the maximum cost of the
rectangles is minimized.



12 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The following examples deal with hybridizations based on problem
decompositions. In [67], the authors propose a hybrid method that com-
bines adaptive memory, sparse DP, and reduction techniques to reduce
and explore the search space. The first step consists in the generation
of a bi-partition of the variables. The resulting small problem is solved
using the forward-phase of DP. The space defined by the remaining vari-
ables is explored using tabu search. Hereby, each partial solution is
completed with the information stored during the forward phase of DP.
The application of DP to subproblems is also proposed in [62]. The
presented local search technique called iterative dynamic programming
works by subdividing the problem into subproblems, and optimizing the
subproblems separately by DP.

Finally, we would like to point out an interesting heuristic version
of DP known as bounded dynamic programming in which at each level
the number of states is heuristically reduced. In this way, the authors
of [4] were able to find most optimal solutions to benchmark instances
of the simple assembly line balancing problem in a reduced amount of
computation time.

4. Conclusions

Research on hybrid metaheuristics is still in its early stages. However,
we are convinced that, in the years to come, most publications on meta-
heuristic applications will be concerned with hybrids. Nevertheless, the
process of designing and implementing hybrid metaheuristics is rather
complicated and involves knowledge about a broad spectrum of algorith-
mic techniques, programming and data structures, as well as algorithm
engineering and statistics. In fact, it is hardly possible to provide guide-
lines for the successful development of hybrid metaheuristics. However,
in the process of developing a hybrid metaheuristic it is indispensable
(1) to carefully search the literature for the most successful optimization
approaches for the problem at hand or for similar problems, and (2) the
study of different ways of combining the most promising features of the
identified approaches. We hope that this paper may serve as a starting
point for this purpose.
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[67] C. Wilbaut, S. Hanafi, A. Fréville, and S. Balev. Tabu search: global intensifi-
cation using dynamic programming. Control Cybern., 35(3):579–598, 2009.



II

THEORY AND ALGORITHMS





PARALLEL DIFFERENTIAL EVOLUTION
WITH ENDEMIC RANDOMIZED
CONTROL PARAMETERS

Matthieu Weber, Ferrante Neri∗, Ville Tirronen
Department of Mathematical Information Technology

University of Jyväskylä, Finland
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Abstract This paper proposes the use of endemic control parameters within a
Parallel Differential Evolution algorithm. The Differential Evolution
running at each subpopulation is associated with randomly initialized
scale factor and crossover rate, which are then repeatedly updated dur-
ing the optimization process. Numerical results show that the Endemic
Randomized Control Parameter Parallel Differential Evolution seems
to be a simple, robust, and efficient algorithm suited for various appli-
cations. An important finding of this study is that randomized initial
values of both control parameters and repeated updates of the scale fac-
tor are beneficial to the optimization process, whereas repeated updates
of the crossover rate are detrimental.

Keywords: Differential Evolution, Parallel Evolutionary Algorithm, Self-adaptation

1. Introduction

Differential Evolution (DE), see [8], is an optimization algorithm which
has shown high performance in various types of applications particularly
when applied to continuous problems, for example [11]. DE is implicitly
self-adaptive (see [3]), which allows it to extensively explore the problem
space during the early stages of the evolution and progressively narrow
the search within the most promising areas of the decision space. Al-
though this mechanism is effective, there is a hidden drawback: the DE
contains a limited amount of search moves and the population could fail
at enhancing upon the available genotypes, thus resulting in a stagnation

∗This work is supported by Academy of Finland, Akatemiatutkija 130600, Algorithmic Design
Issues in Memetic Computing.
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condition. In order to overcome this drawback, computer scientists in re-
cent years have attempted to improve the DE performance by modifying
the basic DE. Some popular examples of this scientific trend can be found
in [9] where multiple search strategies are employed, in [2] where the off-
spring are generated by combining two mating pools (one global and one
local, respectively), and in [1] where a randomization of the parameters
increases the variability of the potential search moves. Another popu-
lar method of enhancing the DE performance is through employment
of structured populations. In [6], a distributed DE scheme employing a
ring topology (the cores are interconnected in a circle and the migrations
occur following the ring) has been proposed for the training of a neural
network. [10] proposes a distributed DE characterized by a ring topology
and the migration of individuals with the best performance to replace
random individuals of the neighbor subpopulation; an application of this
algorithm for training of a neural network has been presented in [7].

This paper focuses on distributed DE and in particular on the ring
topology scheme presented in [10]. The main novelty in Parallel Differen-
tial Evolution (PDE) described in [10] consists of the migration scheme
and the related probability: the DE is independently performed on each
subpopulation composing the ring and, at the end of each generation,
with a certain probability the individual with the best performance is
copied into the neighbor subpopulation and replaces a randomly selected
individual from the target subpopulation. In [10], a compromise value
of migration probability is proposed. In this paper we propose a novel
algorithm based on PDE, namely Endemic Randomized Control Param-
eters Parallel Differential Evolution. Instead of the fixed values of the
control parameters used in PDE, ERCPDE uses pseudo-randomly gener-
ated values, inspired by the Self-Adapting Control Parameters method
described in [1]. Scale factors and crossover rates are endemic (local)
to each subpopulation and they are updated over time according to a
probabilistic scheme.

The remainder of this article is organized in the following way. Sec-
tion 2 describes the working principles of DE, PDE and ERCPDE. Sec-
tion 3 shows the experimental setup and numerical results of the present
study. Section 4 gives the conclusions of this paper.

2. Endemic Randomized Control Parameters
Parallel Differential Evolution

In order to clarify the notation used throughout this paper we refer
to the minimization problem of an objective function f (x), where x is
a vector of n design variables in a decision space D.
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At the beginning of the optimization process Spop individuals are
pseudo-randomly sampled with a uniform distribution function within
the decision spaceD (for simplicity, the term random will be used instead
of pseudo-random in the reminder of this paper). The Spop individuals
constituting the populations are distributed over m subpopulations Pk,
k = 1, . . . ,m, organized into a unidirectional ring. Each subpopulation
is therefore composed of Spop/m individuals.

Within each subpopulation a original DE, following its original defi-
nition, is performed. At each generation, for each individual xi of the
Spop , three individuals xr, xs and xt are randomly extracted from the
population. According to the DE logic, a provisional offspring x′off is
generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+] is a scale factor which controls the length of the
exploration vector (xr − xs) and thus determines how far from point xi
the offspring should be generated. With F ∈ [0, 1+], it is meant here
that the scale factor should be a positive value which cannot be much
greater than 1, see [8]. While there is no theoretical upper limit for
F , effective values are rarely greater than 1.0. The mutation scheme
shown in Equation (1) is also known as DE/rand/1. It is worthwhile
mentioning that there exist many other mutation variants, see [9].

When the provisional offspring has been generated by mutation, each
gene of the individual x′off is exchanged with the corresponding gene of
xi with a uniform probability and the final offspring xoff is generated:

xoff ,j =

{
x′off ,j if rand (0, 1) ≤ CR

xi,j otherwise
(2)

where rand (0, 1) is a random number between 0 and 1; j is the index of
the gene under examination.

The resulting offspring xoff is evaluated and, according to a one-to-
one spawning strategy, it replaces xi if and only if f(xoff ) ≤ f(xi);
otherwise no replacement occurs. It must be remarked that although
the replacement indexes are saved one by one during generation, actual
replacements occur all at once at the end of the generation.

In PDE, each subpopulation Pk runs the DE algorithm described
above. On each generation, the subpopulation has a given probability φ
to send a copy of its best individual to its next neighbor subpopulation
in the ring. When a migration occurs, the migrating individual replaces
a randomly selected individual belonging to the target subpopulation,
with an exception being made of the subpopulation’s best performing
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Migrate xbest with a φ probability

Sub-population

CRk

Fk

. . . . . .

F1

CR1

Fm
CRm

Figure 1. Working principle of the ERCPDE

individual, which can never be replaced. For the sake of clarity a scheme
highlighting the working principles of ERCPDE is shown in Fig. 1.

In PDE, the control parameters of DE (namely the scale factor F and
the crossover rate CR) are global for all the subpopulations, meaning
that whichever subpopulation an individual x belongs to at a given time
the same values of F and CR are used when the DE algorithm is applied
to it. In ERCPDE however, each subpopulation Pk has its own scale
factor Fk and crossover rate CRk. Thus, when an individual x resides
within population Pk, DE is applied to it using the local Fk and CRk

control parameters. During the initialization phase of the algorithm,
the values of Fk and CRk are randomly set in each subpopulation, such
that Fk ∈ [Fl, Fl + Fu] and CRk ∈ [0, 1]. Additionally, the values of Fk
and CRk of each subpopulation vary in time; more precisely, on each
generation Fk and CRk have a probability to be updated of τ1 and τ2,
respectively, see [1]:

Fk =

{
Fl + Fu × rand1, if rand2 < τ1

Fk, otherwise
(3)

CRk =

{
rand3, if rand4 < τ2
CRk, otherwise

(4)

where randj , j ∈ {1, 2, 3, 4}, are uniform pseudo-random values between
0 and 1; τ1 and τ2 are constant values which represent the probabilities
that parameters are updated, Fl and Fu are constant values which rep-
resent the minimum value that F could take and the maximum variable
contribution to F , respectively.

To understand the rationale behind the proposed mechanism, it is
important to analyze the concept of parallelism and migration in a PDE
scheme. In the classical DE, for each stage of the optimization process
the algorithm can generate only a limited amount of exploratory moves.
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If these moves are not enough for generating new promising solutions,
stagnation occurs as the algorithm does not manage to improve upon
any solution of its population for a prolonged number of generations.

The use of multiple populations in distributed DE algorithms allows
an observation of the decision space from various perspectives and, most
importantly, decreases the risk of stagnation. In addition, the migration
mechanism ensures that solutions with a high performance are intro-
duced into the subpopulations during their evolution, which modifies
the set of search moves and promote detection of new promising search
directions. Thus, the migration is supposed to mitigate the risk of stag-
nation of the DE subpopulations and to enhance the global algorithmic
performance.

Since the number of search moves allowed to an individual depends
not only on other individuals in the population, but also on the values of
the scale factor and crossover rate, allowing for different values of these
two control parameters within the framework of a structured population
such as the one used by PDE leads to a higher number of possible search
moves, which increases the explorative capacity of the algorithm and
leads to a quicker improvement. This paper proposes to achieve such a
setup by assigning multiple values of the scale factor and the crossover
rate to each subpopulation in PDE and by updating them over time
so as to yet increase the number of search moves a given individual is
allowed.

Table 1. Test Problems

Test Function Decision Optimum

Problem Space

Ackley −20 + e+ 20 exp
(

− 0.2
n

√
∑n

i=1 x
2
i

)

[−1, 1]n 0

− exp
(

1
n

∑n

i=1 cos(2π · xi)xi

)

Alpine
∑n

i=1 |xi sinxi + 0.1xi| [−10, 10]n 0

Sphere ‖x‖2 [−5.12, 5.12]n 0

Michalewicz −∑n

i=1 sinxi

(

sin
(

i·x2
i

π

))20

[0, π]n unknown

Rastrigin 10n+
∑n

i=0

(

x2
i − 10 cos(2πxi)

)

[−5.12, 5.12]n 0

Schwefel −
∑n

i=1 xi sin
(

√

|xi|
)

[−500, 500]n −418.9829n
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3. Experimental Results

The test problems listed in Table 1 have been considered in this study.
The rotated version of some of the test problems listed in Table 1

have been included into the benchmark set. These rotated problems
have been generated through the multiplication of the vector of variables
by a randomly generated sparse orthogonal rotation matrix, created by
composing n rotations of random angles (uniformly sampled in [−π, π]),
one around each of the n axes of the search space. In total, ten test
problems have been considered in this study with n = 500.

Table 2. Average Fitness ± standard deviation at the end of the optimization

PDE ERCPDE CR+F ERCPDE-F

Ackley 1.62e − 01± 1.67e − 02 1.52e − 02± 7.50e − 03 6.47e − 03± 4.88e − 03

Alpine 8.88e + 01± 1.26e + 01 7.05e + 00± 3.95e + 00 1.98e + 00± 2.36e + 00

DeJong 1.92e + 01± 3.57e + 00 3.37e − 01± 5.80e − 01 8.82e − 02± 1.95e − 01

Michalewicz −3.06e + 02± 5.68e + 00 −3.11e + 02± 1.49e + 01 −3.51e + 02± 3.58e + 01

Rastrigin 1.91e + 03± 9.94e + 01 1.08e + 03± 1.42e + 02 8.64e + 02± 1.38e + 02

Schwefel −1.30e + 05± 3.17e + 03 −1.33e + 05± 3.27e + 03 −1.50e + 05± 1.14e + 04

Rt. Ackley 2.15e − 01± 2.50e − 02 4.45e − 02± 9.44e − 03 3.36e − 02± 1.03e − 02

Rt. Michalewicz −1.76e + 02± 7.76e + 00 −1.56e + 02± 7.13e + 00 −1.83e + 02± 2.58e + 01

Rt. Rastrigin 1.95e + 03± 1.51e + 02 1.16e + 03± 1.55e + 02 9.61e + 02± 1.65e + 02

Rt. Schwefel −1.65e + 05± 4.74e + 03 −1.54e + 05± 6.07e + 03 −1.66e + 05± 8.11e + 03

In order to prove the effectiveness of varying control parameters, PDE
has been used as a reference algorithm and run with a value of φ set to 0.2
(suggested value in [10]). For the sake of comparison, the jDE algorithm
described in [1] has been run on the same function, but preliminary
experiments show it to be clearly inferior to PDE (as is illustrated in
Fig. 2 on page 49) and is therefore not included in the results presented
below. ERCPDE has been run with the same value of φ; Fl and Fu
were set to 0.1 and 0.9, respectively. Regarding the values of τ1 and
τ2, two versions are presented here. The first version, indicated with
ERCPDE-CR+F, has τ1 = 0.1 and τ2 = 0.1, the second indicated with
ERCPDE-F has τ1 = 0.1 and τ2 = 0. In the last case, crossover rates
are randomly sampled values and remain unchanged for the duration of
the optimization process.

All the algorithms in this study have been run with populations of 200
individuals divided into 5 subpopulations of 40 individuals each, a setup
which, according to our preliminary study, leads to the best average
performance over the test functions. Each algorithm has undergone
50 independent runs for each test problem. Each single run has been
performed for 500, 000 fitness evaluations. Table 2 shows the average of
the final results detected by each algorithm ± the standard deviations,
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Table 3. Results of the Wilcoxon Rank-Sum test (Comparison with ERCPDE-F)

Ackley + +

Alpine + +

DeJong + +

Michalewicz + +

Rastrigin + +

Schwefel + +

Rt. Ackley + +

Rt. Michalewicz = +

Rt. Rastrigin + +

Rt. Schwefel = +

with the 500 dimension case. The algorithm achieving the best result
for each test problem is highlighted in bold face.

In order to prove the statistical significance of the results, the Wilcoxon
Rank-sum test has been applied according to the description given in [12]
for a confidence level of 0.95. Table 3 shows results of the test. A “+” in-
dicates the case in which ERCPDE-F statistically outperforms, for the
corresponding test problem, the algorithm mentioned in that column
and a “=” indicates that a pairwise comparison leads to success of the
Wilcoxon test, i.e., the two algorithms have the same performance. The
results presented in Table 3 show that ERCPDE-F outperforms PDE in
eight out of the ten test problems, and has comparable results in two
cases. ERCPDE-F also outperforms ERCPDE-CR+F on all ten test
problems.

Table 4. Results of the Holm procedure (Comparison with ERCPDE-F)

i Optimizer z p α/i Hypothesis

2 PDE -4.02e+00 2.85e-05 2.50e-02 Rejected

1 ERCPDE CR+F -2.68e+00 3.65e-03 5.00e-02 Rejected

In order to strengthen the statistical significance of the results, the
Holm procedure [5] has been applied by following the description in [4].
Considering the results in Table 2, the three algorithms under analysis
have been ranked based on their average performance over the ten test
problems, assigning to each algorithm a score Ri for i = 0, . . . , NA − 1
(where NA is the number of algorithms under analysis, NA = 3 in our
case). With the calculated Ri values, the ERCPDE-F has been taken as
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the reference algorithm. The values zi have been calculated as

zi = (R0 −Ri)/
√
NA(NA + 1)/(6NTP )

where R0 is the rank of ERCPDE-F and NTP is the number of test
problems in consideration (NTP = 10 in our case). The corresponding
cumulative normal distribution values pi corresponding to the zi values
have been calculated and compared with the corresponding α/i where α
is the confidence threshold, set to 0.05 in our case. Table 4 displays zi val-
ues, pi values, and corresponding α/i. Moreover, it is indicated whether
the null-hypothesis (when the two algorithms have indistinguishable per-
formances) is “Rejected” i.e., the ERCPDE-F statistically outperforms
the algorithm under consideration, or “Accepted” if the distribution of
values can be considered the same (no algorithm is outperformed). The
Holm procedure confirms that the ERCPDE-F displays a significantly
better performance with respect to the other algorithms in this study.

Table 5. Results of the Q-test

PDE ERCPDE-CR+F ERCPDE-F

Ackley 4.91e+03 2.24e+03 1.96e+03

Alpine 8.14e+04 2.18e+03 2.04e+03

DeJong 2.49e+03 9.27e+02 9.67e+02
Michalewicz ∞ 7.00e+04 5.69e+03

Rastrigin ∞ 3.64e+03 2.71e+03

Schwefel ∞ ∞ 4.86e+03

Rt. Ackley 8.39e+03 2.35e+03 2.05e+03

Rt. Michalewicz 7.44e+03 ∞ 5.21e+03

Rt. Rastrigin ∞ 3.88e+03 2.75e+03

Rt. Schwefel 4.35e+03 1.23e+04 3.48e+03

In order to carry out a numerical comparison of the convergence speed
performance for each test problem, the average fitness values J and G
returned by the best performing algorithm respectively at the beginning
and at the end of the optimization process have been computed. The
threshold value THR = J − 0.95(J − G) has then been calculated and
represents 95% of the decay in the fitness value of the best performing
algorithm. If during a certain run an algorithm succeeds in reaching
the value THR, the run is said to be successful. For each test problem,
the average amount of fitness evaluations n̄e required for each algorithm
to reach THR has been computed. Subsequently, the Q-test (Q stands
for Quality) described in [3] has been applied. For each test problem
and each algorithm, the Q measure is computed as: Q = n̄e/R where
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the robustness R is the percentage of successful runs. It is clear that,
for each test problem, the smallest value equals the best performance in
terms of convergence speed. The value “∞” means that R = 0, i.e., the
algorithm never reached the THR. Table 5 shows the Q values for the
ten problems; the best results are highlighted in bold face.

They show that the ERCPDE-F variant of the proposed ERCPDE
algorithm has the best performance in terms of convergence speed in
nine cases out of the ten test problems considered. Most importantly,
the ERCPDE-F algorithm, throughout all considered test problems, is
never characterized by an∞ value of Q-measure. This fact demonstrates
that the proposed algorithm is always competitive with the other algo-
rithms in the benchmark and is never outperformed. In summary, the
algorithmic behavior of ERCPDE-F is extremely promising in terms of
algorithmic robustness.

Results show that endemic control parameters are an improvement
over the original PDE algorithm. In addition, the fact that ERCPDE-F
is superior to ERCPDE-CR+F indicates that repeated updates of the
scale factor is beneficial to the performance of the algorithm, whereas
the same kind of update applied to crossover rate is detrimental. In this
sense, our study partly confirms and extends the self-adaptive control
parameters strategy presented in [1] to PDE systems. The fact that
in our case a crossover rate update is detrimental to the algorithmic
performance is, according to our conjectures, explained by the fact that it
appears to lead to an excessively frequent variation in the search strategy
of each subpopulation, thus not allowing for an efficient exploitation of
the available genotypes. Instead, as results show, it makes the algorithm
too explorative, which seems to lead to stagnation (see Fig. 2).
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28 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

4. Conclusion

This paper proposes a novel distributed algorithm based on a parallel
differential evolution scheme previously proposed in literature, namely
Endemic Randomized Control parameters Parallel Differential Evolu-
tion. Each population is characterized by its own control parameter
values. The individuals displaying the best performance migrate across
the subpopulations, thus conforming to various search strategies. The
endemic (belonging to the subpopulation) control parameters are up-
dated over time according to probabilistic criteria. Numerical results
show that the proposed algorithmic strategy leads to significant im-
provements in terms of algorithmic performance with respect to original
Parallel Differential Evolution. In addition, the scheme employing only
the update of the scale factor seems more promising with respect to the
scheme that updates both control parameters, which seems to indicate
that while Parallel Differential Evolution structure requires a certain
degree of randomization in order to highly enhance its performance, ex-
cessive randomization may lead to a too explorative algorithmic behavior
and therefore stagnation.
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Abstract

This paper introduces an ancestry tree-based approach for exploration
and exploitation analysis. The approach introduces a data structure to
record the evolution history of a population and a number of exploration
and exploitation metrics. Such an approach not only provides insight
of how and when the two “e” influence an evolution process but also
how the genetic structure of an individual is affected. The approach is
applied to the multi-objective 0/1 knapsack problem.
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1. Introduction

Any search algorithm is leveraged by two important aspects: explo-
ration discovers potential offspring in new search regions; and exploita-
tion utilizes promising solutions already identified. Exploration and ex-
ploitation (i.e., EE) of search space of an evolution process is one of ut-
most importance in evolutionary computation community, too [2]: High
ratio of exploration tends to search entirely new regions of search space
for potential offspring and to prevent local optimum convergence; and
high ratio of exploitation tends to carry over identified potential individ-
uals until the end of an evolution process. Yet, how and when to blend
exploration with exploitation and balance them towards optimization
and/or optimum convergence is still a challenging topic.

Existing approaches achieve the how objective by controlling crossover
rate, mutation rate, selection pressure, and population size during an
evolution process [7]. For example, mutation and crossover operators
answer EE demands respectively by modifying individuals to increase
the structural diversity of a population and by maintaining most of orig-
inal or parents’ genetic materials. Similarly, an evolution process may be
adapted toward more exploitation/exploration by increasing/decreasing
selection pressure or decreasing/increasing population size. As for the
when objective, there have been plenty of metrics introduced as guide-
lines or insight to determine when to adjust operators toward more ex-
ploration or exploitation. The simplest metrics are fitness. A number
of approaches utilize fitness to guide the EE explicitly or implicitly. For
example, 1/5 success rule uses fitness to determine whether an individ-
ual is mutated successfully and then decide if mutation rate needs to
be changed. Similarly, Parameter-Less GA [4] compares the average fit-
ness of two populations with different sizes and then determines if either
one requests population resizing. Other approaches within this category
include [1, 3], among others. Diversity-derived metrics are another com-
mon one for guiding EE. The simplest diversity metrics are Hamming
distance, Euclidean distance, and standard deviation. Various kinds of
entropy (e.g., [6, 8]) are used to measure the diversity of a population.
Other diversity-related approaches include [5, 9], to name a few. For
other kinds of metrics, they are left to interested readers.

However, the aforementioned approaches/metrics are still difficult to
delimit exploration from exploitation. To tackle this well-known chal-
lenge, this paper introduces an ancestry tree-based approach for anal-
ysis of EE. The approach introduces an ancestry tree data structure
to represent the evolution of an individual, including its genetic ma-
terials, ancestors, descendants, types of modifications and number of
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changes (i.e., distance) from previous generation. Additionally, a num-
ber of metrics are presented to offer insight of how (i.e., which operators
and their ratios) and when (i.e., generation and progressiveness) EE in-
fluence an evolution process. Because of retaining the evolution record
of an individual at a genotype level, EE applied to an individual’s ge-
netic structure can be also explicitly observed and measured. This paper
utilizes the multi-objective 0/1 knapsack problem to testified the usage
and explicitness of the approach.

The paper is organized as follows: Section 2 reviews the multi-objective
0/1 knapsack problem and the algorithm to solve the problem; Section
3 introduces the ancestry tree and metrics for EE; Section 4 presents
results; and conclusions are presented in Section 5.

2. Multi-Objective 0/1 Knapsack Problem

The multi-objective 0/1 knapsack problem [10] is defined as follows:
Given a set of m items and a set of n knapsacks, where ci is capacity of
knapsack i, pi,j is a profit and wi,j is weight of item j according to knap-
sack i, the task is to find a vector x = (x1, ..., xm) ∈ {0, 1}m, such that
∀i ∈ 1, ..., n :

∑m
j=1wi,j · xj ≤ ci and for which f(x) = (f1(x), ..., fn(x))

is maximum, where fi(x) =
∑m

j=1 pi,j · xj .
This paper applies SPEA2 [10] to solve the aforementioned problem.

The algorithm starts with introducing an initial population (P0 with
size = N) and an empty archive (A0 with size = M). It then iter-
atively performs four sequential steps until stopping criteria are met:
(1) Fitness Assignment evaluates individuals of current population and
those in the archive; (2) Environmental Selection chooses/copies non-
dominated individuals to archive for next generation (At+1) from current
population (Pt) and current archive (At); (3) Mating Selection performs
binary tournament selection with replacement on At+1 in order to fill
the mating pool; and (4) Variation applies recombination and mutation
operators on the mating pool and Pt+1. The output of the algorithm is
a set of decision vectors represented by the non-dominated individuals
in At+1. For more details, please refer to [10].

3. The Ancestry Tree

An ancestry tree is to record the evolution history of an individual
within a population by the composition of a set of data collection struc-
tures (shown in Fig. 1). Each structure, representing an evolved indi-
vidual at a specific generation, records individual’s current generation,
individual id, ancestor and its id, structure of the individual (chromo-
some data), how structure of the individual was obtained from ancestor
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(by crossover (c), mutation (m), and/or repair (r), etc.), and number
of changes between the individual and its ancestor (e.g., Hamming dis-
tance). If there is more than one parent (crossover operator), the ances-
tor that results in smaller number of changes is selected. The entire tree
is then constructed accordingly based on the data collected during the
process. An ancestry tree example is presented in Fig. 2. As shown in

1000110100 c,m,r 4

chromosome data

modification type [c,m,r]

number of changes

3,3 2,3

data ID

parent ID

Figure 1. Data collection structure

the figure, ancestries of any individual and how an individual is obtained
during the evolution can be identified. For example, individual (0, 8),
individual 8 from 0th generation, is randomly generated in initial pop-
ulation (random). Individual (3, 9), individual 9 from 3rd generation,
is evolved by ancestor (0, 8) using crossover operator and its Hamming
distance to its ancestor is 2. Similarly, individual (4, 7), having an an-
cestor (3, 9), is generated by reproduction and hence Hamming distance
is 0 (clone).

00001101001,2

10001101000,8

00001101002,7 01001101003,9

c (2)c (1)c (1)

01001101004,7

(0)

10001101002,6 00001101012,1

c (1)c (1)

00001100003,2

00011101013,4

00001101013,6

c (1) (0)

c (2)

00001101003,7 00001111014,8

c,m (1)c (2)

00001101115,4 00001111015,6

c (0)c,r (2)

01011101014,5

10011101015,3

 m(1)

 c(2)

Figure 2. Example of ancestry tree

It is clear that the number of ancestry trees (τ) is equal to the initial
population size (pop size) and that the roots of these trees represent
initial individuals. Let’s define the number of tree nodes as tree size
(size(τ)), so the tree size of Fig. 2 is 16. As such, trees with individu-
als, having low fitness, can stop growing before the end of an evolution
process. Conversely, individuals that were preferred in selection process
may have higher probabilities evolve in trees with higher size.
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From this perspective, one may claim that a root individual that has
ancestry tree with higher size has more exploitation than smaller one(s),
because it has more descendants evolved by modifying parent genome.
But this could be true only if a small part of genome is changed. If any
operator changes almost the entire parent genome, one may not claim
that a new individual is produced by exploitation. To validate the above
claim, an ancestry tree has to be split at a certain threshold number
x, which can delimit exploration from exploitation. Various distance
measures (e.g., Euclidian and Hamming) can be used for this purpose.
For the multi-objective 0/1 knapsack problem, Hamming distance is
applied since knapsack items are independent among each others. Every
connection in τ with the number of changes higher than x results in
splitting the ancestry tree (τ (x)). The splitting process is symbolically
presented in Fig. 3.

<X ≥X <X

>X≥X≥X

<X ≥X <X<X

<X <X<X <X<X

Figure 3. Splitting process of ancestry tree

Every split tree τ (x) can be indexed as τ
(x)
i,j , where i ∈ [0 . . . I]; j ∈

[0 . . . J ]; I = pop size − 1; and J = splits
(x)
i − 1, describing number

of trees after splitting process of τ
(x)
i . In the case of tree from Fig. 2,

number of splits
(2)
8 = 6 (i.e., 5 + remaining one). Bigger size(τ

(x)
i,j )

means more exploitation of tree τi,j root and its descendants. The
number of all trees with threshold x, count(x) can be calculated as:

count(x) =
∑I

i=0 splits
(x)
i .
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3.1 Exploration Metrics

With the combination of the facts from previous subsection, ratio be-
tween EE can be defined as percentage of exploration, calculated as ratio
between count(x) and all individuals, where G is number of generations.

explorRatio(x) =
count(x)

pop size+ pop size ·G =
count(x)

count(0)

Metric can also be calculated just for one tree, for our example of τ
(2)
8

we get explorRatio(2) =
count(τ

(2)
8 )

count(τ
(0)
8 )

= 6
16 = 0.2375.

As splitting process with x = 2 is applied to Fig. 2, six new trees
(j ∈ [0 . . . 5]) are obtained. Each new root individual represents a

new search area, which is a starting point for exploration (root(τ
(x)
i,j )).

With simple analysis of these individuals, more detailed information
about exploration phase can be obtained. For example, exploration

type (explorType) is metric that counts root(τ
(x)
i,j ) modification types

(count(type)), different operators that are applied during evolution. Root
individuals (3,2), (3,4), (3,9), (5,3) and (5,4) were obtained by crossover,
individual (5,4) was also affected by repair operator and individual (0,8)
is from initial population and was generated randomly. After type count-
ing, metrics is normalized by sum of all modification types (countAll-
Types). Result can be interpreted as impact of operators on exploration.

explorType(x, type) =
count(type)(root(τ

(x)
i,j ))

countAllTypes(root(τ
(x)
i,j ))

where i ∈ [0 . . . I], j ∈ [0 . . . J ].

Metrics can be also used for just one ancestry tree. For τ
(2)
8 we get:

explorType(2, ∗) =
count(type)(root(τ

(2)
8,j ))

countAllTypes(root(τ
(2)
8,j ))

=















0 mutation

0.72 crossover

0.14 repair

0.14 random

Metric explorType answers the question of how exploration was star-
ted, while next metric tries to answer when it was started. To be able
to analyze only exploration we transform an ancestry tree in such a way
that we ignore all individuals made by exploitation. Individuals in such a

tree are root(τ
(x)
i,j ) and their parents parentRoot(τ

(x)
i,j ). For our example,

transformed tree is presented on Fig. 4.

10001101000,8

01001101003,900001100003,200011101013,4 00001101115,4

10011101015,3

split
split tree root individuals

lev
el

Figure 4. Transformed example of ancestry tree
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Metric explorDynamic1 is calculating average (avr) number of gen-

erations (gen) that was needed from parent (parentRoot(τ
(x)
i,j )) to the

sibling (root(τ
(x)
i,j )). For example, from Fig. 4, function parentRoot for

individuals (3,2), (3,4), (3,9) and (5,4)) returns individual (0,8) and for
individual (5,3) it returns individual (3,4). Generational difference is 3
generations for individuals (3,2), (3,4), (3,9); 5 generations for individual
(5,4) and 2 generations for individual (5,3).

explorDynamic1(2) = avr(3, 3, 3, 5, 2) ≈ 3.2± 1.09

In general, the formula can be stated as:

explorDynamic1(x) = avr(gen(root(τ
(x)
i,j )))− gen(parentRoot(τ

(x)
i,j )),

where i ∈ [0 . . . I] , j ∈ [1 . . . J ].
Because metric explorDynamic1 does not provide any information

about how many splits happened before (in direct ancestry line), the
following metric is defined. Metric explorDynamic2 is analyzing tree
split level (treeLevel). With this metric we can observe progressiveness
of exploration. A low number indicates that most explorations were
made from the same search point (same parentRoot)). This can also
mean that a lot of unsuccessful explorations were tried from local opti-
mum.

For τ
(2)
8 we get for all root individuals except individual (5,3) tree

level 1. Individual (5,3) has tree level 2 (path (0,8)→(3,4)→(5,3)).

explorDynamic2(2) = (1, 1, 1, 1, 2) ≈ 1.2± 0.45

General formula:

explorDynamic2(x) = avr(treeLevel(τ
(x)
i,j )), where i ∈ [0 . . . I], j ∈ [1 . . . J ].

3.2 Exploitation Metrics

To define exploitation ratio (exploitRatio), we can use metric explor-
Ratio as base: exploitRatio(x) = 1− explorRatio(x).

Unlike exploration analysis, where number of split trees and their root
individuals were important, for exploitation analysis we are interested
in split tree sizes, nodes, and their structures. Because we are also
interested in all node individuals, we will index them with k ∈ [0 . . .K].
A tree root individual is always indexed with 0 and last index K is equal

size(τ
(x)
i,j )− 1.

Metric exploitType is similar to explorType except that we are inter-
ested in all nodes except root. It is important not to count root nodes
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because they represent exploration.

exploitType(x, type) =
count(type)(τ

(x)
i,j (k))

countAllTypes(τ
(x)
i,j (k))

where
i ∈ [0 . . . I],
j ∈ [0 . . . J ],
k ∈ [1 . . .K]

In the case of example from Fig. 2 we get:

exploitType(2, ∗) =
count(type)(τ

(2)
8,j (k))

countAllTypes(τ
(2)
8,j (k))

=















0.18 mutation

0.64 crossover

0.00 repair

0.18 clone

To measure the influence of selection on exploitation, exploitStructure
metric is defined. If same individual was selected more than once, a tree
becomes wider and as a result it has more leaves. For example, after

splitting tree τ
(2)
8 : root individual (0,8) has 5 leafs ((2,6), (2,7), (3,6),

(3,7) and (5,6)); root individual (3,4) has leaf (4,5); root individual (3,9)
has leaf (4,7); and root individuals (5,3), (3,2), (3,9) and (5,4) have no
leafs. This can be expressed as ratio between tree size and number of
leafs (root is not counted as leaf). We get:

exploitStructure(2) =
∑5

j=0 countLeafs(τ
(2)
8,j )

size
(2)
8

= 5+1+1+0+0+0+0
16

= 0.43

General formula:

exploitStructure(x) =

∑I

i=0

∑J

j=0 countLeafs(τ
(x)
i,j )

∑I

i=0 size
(x)
i

4. Results

In this section, due to page limitations, short analysis of EE on the
multi-objective 0/1 knapsack problem with n = 2 and m = 100 is pre-
sented only. For this experiment SPEA2 algorithm with control pa-
rameters pm = 0.01, pc = 0.8, tournament size = 2, pop size = 250,
archive size = 250, and G = 290 was used. Similar control parameters
were used in [10], where SPEA2 found near optimum pareto front.

First, let us identify interesting threshold x (first three columns in Ta-
ble 1). Threshold x = 4 was selected, because exploration/exploitation
ratio is near 50%. Distribution of EE between different algorithm op-
erators can be observed with explorType and exploitType metrics. For
these metrics we may expose a significant impact of repair operator
(25%) and low participation of cloning (8.8%). In average, new explo-
ration was started after 73 generations (explorDynamic1) and explo-
ration was progressively continued 12 times (explorDynamic2). The
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ancestry tree has almost uniform distribution between ancestors and de-
scendants (exploitStructure). How number of generations is influencing
on EE (last six columns in Table 1) can be also observed. We can also see
that exploration ratio is slightly falling and influence of repair operator
is slightly increasing.

Influence of mutation rate pm (0.5%, 1% and 2% in Table 2) is an-
alyzed next. In this scenario we are not just analyzing all individuals
(all), but also most optimistic scenario (optimistic), where only pareto
optimum individuals and their ancestors were included. Because it is
also interesting to know how many children that direct ancestors need
to evolve in a right path, we also run metrics just on those individ-
uals (semioptimistic). In Table 2 we can see that for pm = 1% we
need, in most optimistic case, only 236 individuals to obtain pareto
front (countAllNodes for optimistic set of individuals). Low percent-
age of individuals in semioptimistic scenario (against all individuals)
means that there were a lot of search in local optima. Ratio between
all individuals 72750 and semioptimistic scenario 57112 (pm = 1%) is
good. It indicates that the SPEA2 algorithm is well balanced in this
experiment and it has no problems with local optima. But, to confirm
this assumption we would need more statistically interpreted tests on
different problems. Even more importantly, Table 2 also indicates that
by increasing mutation rate balanced exploration/exploitation ratio is
broken, which resulted in less optimal results (pareto front).

5. Conclusions

This paper introduces a novel ancestry tree-based approach to record
the evolution history of a population. A number of metrics are de-
rived which offer insight of how and when to perform exploration or
exploitation, although some metrics due to space limitation were not
presented and discussed. Additionally, the (splitting) tree structure and
exploration/exploitation metrics also guided us how genetic structure
was explored/exploited during an evolution process. The results of the
multi-objective 0/1 knapsack problem show that such metrics explicitly
present how and when exploration and exploitation dominated, which
can also help us analyze the behavior of the evolution process in a better
way. The presented approach can be used in various scenarios: evolution
parameter control analysis, problem based success rate analysis, and the
comparison of different evolution algorithms, among others. The analy-
sis can be carried out incrementally, in selected parts or as a whole. As
a result of such analysis we may develop a new algorithm, improve an
algorithm or just get better understanding of an algorithm.
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Abstract This paper proposes decomposing the search space of large-scale prob-
lems into lower-dimensionality subspaces, and associating each of these
to one subpopulation of a Parallel Differential Evolution algorithm.
Each subpopulation is running a modified Differential Evolution algo-
rithm, where the crossover function is limited to components of the
subpopulation’s associated subspace. According to numerical results
the Parallel Component Decomposition Differential Evolution seems to
be a clear improvement over the original Parallel Distributed Evolution,
making it a simple, robust, and efficient algorithm suited for various ap-
plications.

Keywords: Differential Evolution, Large-scale optimization, Parallel Evolutionary
Algorithm, Search space decomposition

1. Introduction

Differential Evolution (DE), see [7], has shown high performance in
various types of optimization problems, and more particularly in contin-
uous problems, for example [10]. Like all optimization algorithms, DE
suffers from the so-called “curse of dimensionality”, which refers to the
fact that the complexity of a multidimensional problem increases with
its dimensionality in an exponential fashion. In [12] we have shown that
the structured population characterizing the Parallel Differential Evo-
lution (PDE) described in [9] is one enhancement that allows to break
this curse: instead of running the DE over a single population, PDE

∗This work is supported by Academy of Finland, Akatemiatutkija 130600, Algorithmic Design
Issues in Memetic Computing.
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runs multiple DE algorithms over multiple subpopulations which are
organized in a unidirectional ring; with a given probability, the best in-
dividual of a subpopulation is migrated to the next subpopulation in the
ring, where it replaces a random individual. In order to enhance PDE,
[12] then proposes to use two families of subpopulations, the first one
running a regular PDE while the second runs independent instances of
the population-size reduction DE proposed in [2]; after an observation
period, individuals from the second family are injected into the subpop-
ulations of the first family.

The randomization of DE’s control parameter during the course of
the optimization process, such as in [1], is another strategy which allows
to improve the performance of the algorithm. In [13], we propose to
blend the randomization of the control parameters with the migration
mechanism of the PDE, resulting in a variant of the latter where the scale
factor used by the DE at one given subpopulation is migrated (with a
small perturbation) along with the best individual.

The rationale behind these variants of PDE and DE lies in the fact
that DE contains a limited amount of search moves and the population
could fail at enhancing upon the available genotypes thus resulting in
stagnation. The variation over time of the control parameters or the
injection of independently optimized individuals increases the number of
available search moves, thus allowing for a more exhaustive exploration
of the problem space.

Yet another possibility of enhancing the DE is to subdivide the search
space into subspaces and optimize only the components of the solution
that belong to one subspace, while keeping the others constant. This
approach, which effectively breaks the curse of dimensionality by lo-
cally reducing the dimensionality of the problem, was first proposed in
[6]. Here each component of the solution was optimized separately by a
dedicated subpopulation, while the fitness of one solution was evaluated
over the whole set of components by taking random individuals from the
other subpopulations in order to reconstruct a whole solution; this pro-
cess was called cooperative co-evolution. This decomposition scheme is,
however, reputed to be inefficient on non-separable functions (see [6, 15])
i.e., where the variables of the problem interact with each other. To over-
come this problem, [17] uses randomly selected sub-components which
change over time, [15] proposes using a set of weights, itself evolved us-
ing DE, to select the sub-components, [16] makes use of the DE with
neighborhood search, while [11] selects components showing the highest
variance across the population as the ones to be optimized at a given
time. The three above cited articles made use of non-standard DE algo-
rithms in order to yet increase their efficiency.
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The algorithm proposed in this paper, the Parallel Component De-
composition Differential Evolution (PaCoDDE) borrows the structured
population and best individual migration from the Parallel Differen-
tial Evolution (PDE) described in [9] and merges it with a static sub-
component decomposition: the search space is decomposed into sub-
spaces of near-equal dimensionality, and each subspace is assigned to
one subpopulation. The subpopulations focus on optimizing their solu-
tions within their own subspaces, while keeping the rest of the compo-
nents constant. On every generation, each subpopulation has a given
probability of migrating its best-performing individual to the next sub-
population in the ring, allowing to the optimized sub-components to
incrementally propagate the other subpopulations.

The remainder of this article is organized in the following way. Sec-
tion 2 describes the working principles of DE, PDE and PaCoDDE. Sec-
tion 3 shows the experimental setup and numerical results of the present
study. Section 4 gives the conclusions of this paper.

2. Parallel Component Decomposition
Differential Evolution

In order to clarify the notation used throughout this paper we refer
to the minimization problem of an objective function f (x), where x is
a vector of n design variables in a decision space D.

At the beginning of the optimization process, Spop individuals are
pseudo-randomly sampled with a uniform distribution function within
the decision space D (for simplicity, the term random will be used in-
stead of pseudo-random in the reminder of this paper). The Spop individ-
uals constituting the populations are distributed over m subpopulations
Pk, k = 1, . . . ,m arranged in a unidirectional ring. Each subpopulation
is therefore composed of Spop/m individuals. Additionally, the set of
dimensions of the search space D is decomposed into m subsets Ck of
approximately equal sizes nk, with the constraints that

∑m
k=1 nk = n

and ∀(k1, k2) ∈ {1, . . . ,m}2 , k1 6= k2, Ck1 ∩ Ck2 = ∅. In other words, Ck
represents the sub-component of x that is to be optimized by subpopu-
lation Pk.

Within each subpopulation Pk, a modified DE is performed. At each
generation, for each individual xi of Pk, three individuals xr, xs and xt
are randomly extracted from the subpopulation. According to the DE
logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)



46 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

where F ∈ [0, 1+] is a scale factor which controls the length of the
exploration vector (xr − xs) and thus determines how far from point xi
the offspring should be generated. With F ∈ [0, 1+], it is meant here
that the scale factor should be a positive value which cannot be much
greater than 1, see [7]. The mutation scheme shown in Eq. (1) is also
known as DE/rand/1. It is worthwhile mentioning that there exist many
other mutation variants, see [8].

When the provisional offspring has been generated by mutation, each
gene xi,j , j ∈ Ck of xi is exchanged with the corresponding gene of x′off
with a uniform probability and the final offspring xoff is generated:

xoff ,j =

{
x′off ,j if j ∈ Ck and rand (0, 1) ≤ CR

xi,j otherwise
(2)

where rand (0, 1) is a random number between 0 and 1; j = 1, . . . , n is the
index of the gene under examination. This modified crossover function
always keeps the parent’s genes which are not part of the considered
sub-component, and actually crosses over only the genes of the offspring
and of the parent which are part of the sub-component.

The resulting offspring xoff is evaluated and, according to a one-to-one
spawning strategy, replaces xi if and only if f(xoff ) ≤ f(xi); otherwise no
replacement occurs. It must be remarked that although the replacement
indexes are saved one by one during generation, actual replacements
occur all at once at the end of the generation.

Migrate xbest with a φ probability

Sub-population

. . . . . .

Cm

Ck

C1

Figure 1. Working principle of the PaCoDDE

In PDE, each subpopulations Pk runs a regular DE algorithm, which
is replaced in PaCoDDE by the modified DE algorithm described above.
On each generation, the subpopulation has a given probability φ to send
a copy of its best individual to its next neighbor subpopulation in the
ring. When a migration occurs, the migrating individual replaces a ran-
domly selected individual belonging to the target subpopulation, with
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an exception being made of the subpopulation’s best performing indi-
vidual, which can never be replaced. For the sake of clarity, a schema
highlighting the working principles of PaCoDDE is shown in Fig. 1.

Although PaCoDDE may seem crude due to the fact that it makes
use of a static decomposition of the search space while the modern
above-mentioned algorithms are based on random or dynamic decom-
position schemes, its specificity lies in that the individuals showing the
best performance are traveling between subpopulations during the run
of the algorithm, being optimized incrementally over each of their sub-
components, and revisiting each subpopulation multiple times. The mi-
gration rate must therefore be high enough to ensure that these individu-
als are not allowed to become excessively specialized within one subspace
while being far from optimal when considering the whole search space.

3. Experimental Results

The test problems listed in Table 1 have been considered in this study.
The rotated version of some of them have been included into the bench-
mark set. These rotated problems have been generated through the
multiplication of the vector of variables by a randomly generated sparse
orthogonal rotation matrix, created by composing n rotations of ran-
dom angles (uniformly sampled in [−π, π]), one around each of the n
axes of the search space. While the six unrotated functions are separa-
ble, the rotated versions are not. In total, ten test problems have been
considered in this study with n = 500.

Table 1. Test Problems

Test Function Decision Optimum

Problem Space

Ackley −20 + e+ 20 exp
(

− 0.2
n

√
∑n

i=1 x
2
i

)

[−1, 1]n 0

− exp
(

1
n

∑n

i=1 cos(2π · xi)xi

)

Alpine
∑n

i=1 |xi sinxi + 0.1xi| [−10, 10]n 0

Sphere ‖x‖2 [−5.12, 5.12]n 0

Michalewicz −∑n

i=1 sinxi

(

sin
(

i·x2
i

π

))20

[0, π]n unknown

Rastrigin 10n+
∑n

i=0

(

x2
i − 10 cos(2πxi)

)

[−5.12, 5.12]n 0

Schwefel −∑n

i=1 xi sin
(

√

|xi|
)

[−500, 500]n −418.9829n
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Table 2. Average Fitness ± standard deviation at the end of the optimization process

PDE DEwSAcc PaCoDDE

Ackley 1.62e − 01± 1.67e − 02 4.22e − 02± 9.85e − 03 5.44e − 02± 5.80e − 03

Alpine 8.88e + 01± 1.26e + 01 7.07e + 01± 1.74e + 01 1.97e + 01± 3.05e + 00

Sphere 1.92e + 01± 3.57e + 00 1.51e + 00± 5.68e − 01 2.42e + 00± 4.55e − 01

Michalewicz −3.06e + 02± 5.68e + 00 −2.52e + 02± 1.04e + 01 −4.18e + 02± 3.18e + 00

Rastrigin 1.91e + 03± 9.94e + 01 1.57e + 03± 2.24e + 02 7.84e + 02± 4.48e + 01

Schwefel −1.30e + 05± 3.17e + 03 −1.27e + 05± 6.91e + 03 −1.59e + 05± 2.12e + 03

Rt.Ackley 2.15e − 01± 2.50e − 02 8.36e − 02± 1.26e − 02 1.41e − 01± 2.10e − 02

Rt.Michalewicz −1.76e + 02± 7.76e + 00 −1.48e + 02± 4.90e + 00 −2.55e + 02± 4.93e + 00

Rt.Rastrigin 1.95e + 03± 1.51e + 02 2.50e + 03± 2.32e + 02 1.19e + 03± 5.06e + 01

Rt. Schwefel −1.65e + 05± 4.74e + 03 −1.25e + 05± 4.54e + 03 −1.90e + 05± 2.81e + 03

To prove the effectiveness of component decomposition within the
framework of a PDE algorithm, PaCoDDE has been compared to the
original PDE and to the DEwSAcc described in [17]. In both PDE and
PaCoDDE the control parameters of DE, namely the scale factor F and
the crossover rate CR have been set to 0.7 and 0.3 respectively, in accor-
dance with the suggestions given in [19] and [18]. The migration rate φ
was set to 0.2, as suggested in [9]. The τ parameter of DEwSAcc was set
to 0.2

√
2/
√
500, as recommended in [17] for 500-dimensional problems.

It has to be mentioned that DEwSAcc, in addition to search space de-
composition, uses multiple mutation schemes and self-adaptive control
parameters, a variation on the original DE which in itself improves per-
formance of the algorithm compared to the original DE. PaCoDDE, on
the contrary, uses a single mutation scheme and static control parameter
values, as does PDE.

All the algorithms in this study have been run with populations of
200 individuals. In PDE and PaCoDDE, these individuals are orga-
nized into 5 subpopulations of 40 individuals, a setup which, according
to our preliminary study, leads to the best average performance over
the test functions. For DEwSAcc, a single population of 200 individuals
is used. The search space was decomposed as follows. The dimen-
sions of the problems, indexed from 1 to 500, were split into 5 intervals
Ck = {100k − 99, . . . , 100k} for k = 1, . . . , 5. Each interval Ck was then
assigned to subpopulation Pk. Each algorithm has undergone 50 inde-
pendent runs for each test problem. Each single run has been performed
for 500,000 fitness evaluations. Table 2 shows the average of the final
results detected by each algorithm ± the standard deviations. The al-
gorithm achieving the best result for each test problem is highlighted in
bold face. An example of the performance trend is shown in Fig. 2.

To prove the statistical significance of the results, the Wilcoxon Rank-
sum test has been applied according to the description given in [14]
for a confidence level of 0.95. Table 3 shows results of the test. A
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Figure 2. Example of a performance trend (Schwefel)

“+” indicates a case where PaCoDDE statistically outperforms, for the
corresponding test problem, the algorithm mentioned in that column,
a “−” indicates that PaCoDDE is outperformed by the algorithm it is
compared to, and a “=” indicates that a pairwise comparison leads to
success of the Wilcoxon test i.e., that the two algorithms have the same
performance. The results presented in Table 3 show that PaCoDDE
outperforms PDE for all ten test problems. It moreover outperforms
DEwSAcc in seven cases out of the ten.

Table 3. Wilcoxon Rank-Sum test (Comparison with PaCoDDE)

PDE DEwSAcc

Ackley + -
Alpine + +
Sphere + -
Michalewicz + +
Rastrigin + +
Schwefel + +
Rt. Ackley + -
Rt. Michalewicz + +
Rt. Rastrigin + +
Rt. Schwefel + +

To strengthen the statistical significance of the results, the Holm pro-
cedure [5] has been applied by following the description in [4]. Consider-
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ing the results in Table 2, the three algorithms under analysis have been
ranked on the basis of their average performance calculated over the ten
test problems, assigning to each algorithm a score Ri for i = 0, . . . , NA−1
(where NA is the number of algorithms under analysis, NA = 3 in our
case). With the calculated Ri values, the PaCoDDE has been taken as
the reference algorithm. The values zi have then been calculated as

zi = (R0 −Ri)/
√
NA(NA + 1)/(6NTP )

where R0 is the rank of PaCoDDE and NTP is the number of test prob-
lems in consideration (NTP = 10 in our case). The cumulative normal
distribution values pi corresponding to the zi values have then been cal-
culated and compared with the corresponding α/i values where α is the
confidence threshold, set to 0.05 in our case. Table 4 displays zi values,
pi values, and corresponding α/i. Moreover, it is indicated whether the
null-hypothesis (when the two algorithms have indistinguishable per-
formances) is “Rejected” i.e., the PaCoDDE statistically outperforms
the algorithm under consideration, or “Accepted” if the distribution of
values can be considered the same (no algorithm is outperformed). The
Holm procedure thus confirms that the PaCoDDE performs significantly
better than the other algorithms in this study.

Table 4. Results of the Holm procedure (Comparison with PaCoDDE)

i Optimizer z p α/i Hypothesis

2 PDE -2.68e+00 3.65e-03 2.50e-02 Rejected
1 DEwSAcc -2.01e+00 2.21e-02 5.00e-02 Rejected

To carry out a numerical comparison of the convergence speed perfor-
mance for each test problem, the average fitness values J and G returned
by the best performing algorithm respectively at the beginning and at
the end of the optimization process have been computed. The threshold
value THR = J − 0.95(J −G) has then been calculated and represents
95% of the decay in the fitness value of the best performing algorithm. If
during a certain run an algorithm succeeds in reaching the value THR,
the run is said to be successful. For each test problem, the average
amount of fitness evaluations n̄e required for each algorithm to reach
THR has been computed. Subsequently, the Q-test (Q stands for Qual-
ity) described in [3] has been applied. For each test problem and each
algorithm, the Q measure is computed as: Q = n̄e/R where the robust-
ness R is the percentage of successful runs. It is clear that, for each
test problem, the smallest value equals the best performance in terms
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of convergence speed. The value “∞” means that R = 0, i.e., the algo-
rithm never reached the THR. Table 5 shows the Q values for the ten
problems and the best results are highlighted in bold face. These show

Table 5. Results of the Q-test

PDE DEwSAcc PaCoDDE

Ackley 4.41e+03 2.96e+03 3.42e+03
Alpine 9.98e+03 5.35e+03 3.61e+03

Sphere 2.38e+03 1.42e+03 2.06e+03
Michalewicz ∞ ∞ 4.41e+03

Rastrigin ∞ 2.48e+05 3.92e+03

Schwefel ∞ ∞ 3.62e+03

Rt. Ackley 4.88e+03 3.03e+03 4.01e+03
Rt. Michalewicz ∞ ∞ 4.18e+03

Rt. Rastrigin ∞ 2.47e+05 3.94e+03

Rt. Schwefel ∞ ∞ 3.33e+03

that the PaCoDDE has the best performance in terms of convergence
speed in seven cases out of the ten test problems considered. Most
importantly, the PaCoDDE algorithm, throughout all considered test
problems, is never characterized by an ∞ value of the Q-measure, which
demonstrates that the proposed algorithm is always competitive with
the other algorithms in the benchmark and is never outperformed. In
summary, the algorithmic behavior of PaCoDDE is extremely promising
in terms of algorithmic robustness.

Results show that sub-component decomposition of the search space
applied to PDE is an improvement over the original algorithm. This
confirms the results presented in [6] about search space decomposi-
tion and sub-component optimization, and extends them to structured-
population DE schemes.

4. Conclusion

This paper proposes an improved variant of the Parallel Differential
Evolution for high-dimensionality problems, namely Parallel Component
Decomposition Differential Evolution. The search space of the prob-
lem is decomposed into disjoint subspaces, each of which is associated
to one subpopulation of a Parallel Differential Evolution. Each sub-
population runs a modified Differential Evolution algorithm, where the
crossover function limits its action on the considered individual to the
components belonging to the associated subspace. Individuals display-
ing the best performance are then given the possibility to migrate to
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the neighboring subpopulation, where another of their sub-component
is optimized. Numerical results show that the proposed algorithmic logic
leads to significant improvements in terms of algorithmic performance
with respect to standard Parallel Differential Evolution. Despite the
fact that our algorithm employs a single mutation scheme, static control
parameter values and a static sub-component decomposition, on average
it outperforms the DEwSAcc algorithm which employs multiple muta-
tion schemes, self-adaptive control parameters and a random, dynamic
decomposition scheme. The integration of such features into a Parallel
Differential Evolution framework seems to be a promising research path.
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Abstract Traditional multi-objective optimization algorithms typically return sev-
eral hundred non-dominated candidate solutions. From practical point-
of-view, a small set of 5-10 distinct candidates is often preferred be-
cause post-processing of many solutions may be too costly, too time-
consuming, too difficult to compare design differences, or similar solu-
tions turn out to be statistically equal in prototyping and manufactur-
ing. Interestingly, these limitations apply to most real-world problems.
In this paper, we introduce Multi-objective Distinct Candidates Op-
timization (MODCO) as an approach to find a user-defined number of
clearly different solutions wrt. performance and design. In MODCO, we
distinguish between generalized and domain-specific preferences, where
generalized preferences address the aforementioned limitations and the
domain-specific preferences cover the DM’s whishes if available.

Keywords: Distinct candidates, Diversity management, Multi-objective optimiza-
tion

1. Introduction

Successful application of multi-objective optimization to a real-world
problem typically consists of two steps. First, the optimization step
where the problem is set up, the chosen algorithm is executed, and
all non-dominated solutions are gathered. Second, the decision mak-
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ing step where the single solution to implement is chosen among the
non-dominated solutions found in step 1, see Fig. 1 and Deb [9, p. 5].

Minimize F2
...
Minimize Fn

Subject to constraints

Multi−objective optimization problem

Minimize F1

Chosen trade−off solution

Step 2: Decision making

Step 1: Optimization

Multiple candidate solutions
on true Pareto front

Multi−objective optimizer
IDEAL

Higher−level information

on all candidate solutions

Figure 1. Process for application of multi-objective optimization.

In this process, the decision maker (DM) has to apply his preferences
among the objectives to select the final solution. Veldhuizen and Lamont
categorize the point in the process where the DM apply his preferences
into three categories; 1) a priori – before the optimization is initiated,
2) progressive – during the optimization, and 3) a posteriori – after the
optimization is finished [18]. Algorithms in category 1 typically trans-
form the multi-objective problem into a single objective by specifying an
utility function combining the multiple objectives. The weighted sum
approach is the most widely known algorithm in this category. The
progressive algorithms in category 2 usually incorporate the DM’s pref-
erences in form of decision support systems, see [8] for a survey. Finally,
category 3 algorithms exclude the DM’s preferences from the search. In-
stead, they typically produce a large set of Pareto-optimal solutions for
the DM to choose from in step 2.

The drawback of approach 1 and 2 is that the DM has to make a
choice regarding the importance of the involved objectives prior to the
actual optimization, which may be difficult before the DM has seen any
solutions. In addition, such choices are highly domain-specific and prob-
lem dependent, and algorithms are thus hard to generalize for a broader
range of applications. In contrast, the traditional MO algorithms in
category 3 are generally applicable. However, these algorithms produce
hundreds or thousands of solutions and the notion is to leave it to the
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DM to gather the “higher-level information” in step 2 on this set and
choose the actual solution to implement. The often large set returned
by a posteriori algorithms pose a serious problem because it may be
impossible to gather “higher-level information” on such a large set. In
short, time, money, and other reasons may prevent the application of the
higher-level information gathering methods (further simulation, proto-
type construction, testing, etc.) on a set of more than 5–10 solutions.
Consequently, we consider the current algorithms as either too domain-
specific (category 1 or 2) or too general (category 3), because a huge set
of candidate solutions is returned. Naturally, pruning the set using the
DM’s preferences is the obvious remedy for this drawback. However, this
approach poses another problem because it may be difficult for the DM
to state his preferences as explicit decision making rules. In our view,
selection from a huge set or pruning the set tend to make the DM focus
on the performance (objective space) and neglect the design differences
(search space). In contrast, only investigating a few solutions promotes
a better balance between performance and design. Furthermore, the low
number of solutions allows the DM to apply preferences, use decision
rules, and evaluate objectives not stated explicitly.

The MODCO approach address these challenges by incorporating gen-
eralized preferences into the algorithm with the goal of finding a small set
of 5–10 distinct candidates to make step 2 manageable without stating
explicit preference relations. In MODCO, the concept generalized pref-
erences covers a priori considerations that are relevant to most if not all
real-world applications. This analysis answers the following questions
(further elaborated in Sections 2 and 3):

1 Number of candidates: KNC ∈ [1 : ∞] ⊆ N

How many candidates is it practically and economically feasible to
inspect, analyze, and compare in post-processing?

2 Performance distinctiveness: KPD ∈ [0.0 : 1.0] ⊂ R

How different should the candidates be performance-wise?

3 Design distinctiveness: KDD ∈ [0.0 : 1.0] ⊂ R

How different should the candidates be design-wise?

4 Simulator accuracy: KSA ∈ [0.0 : 1.0]M ⊂ R
M

What is the accuracy of the involved simulators?

In MODCO, the parameters KNC, KPD, KDD, and KSA constitute the
generalized preferences, and they may be implemented as the secondary
selection criterion in an algorithm. Hence, MODCO algorithms aim at
reducing the DM’s task in step 2 by dividing the higher-level information
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into two groups, generalized preferences as an a priori analysis to step
1 and the domain-specific information gathering as a precursor to the
decision making in step 2. In this, the domain-specific information gath-
ering includes further investigations such as visual inspection, detailed
simulation, and prototype testing on the distinct candidates followed
by evaluation of the DM’s implicit or explicit preferences regarding the
objectives. Thus, a MODCO algorithm combines category 1 and 3 by
integrating the generalized preferences a priori and leaving the domain-
specific part to a manageable second step a posteriori.

The paper is structured as follows. Section 2 provides the motiva-
tion for the MODCO approach by summarizing 6 years of observations
from real-world industrial MO problems. Section 3 lists the features of
the ideal MODCO algorithm and the goals of MODCO. After having
introduced the MODCO ideas, we provide a survey of related research
in Section 4. Finally, Section 5 concludes the paper.

2. Motivation for MODCO Algorithms

The application of multi-objective optimization in an industrial con-
text raises a number of interesting challenges, dilemmas, and unforeseen
obstacles. The following observations are gathered from more than 6
years of work at Grundfos R&T solving more than 30 multi-objective
optimization tasks in very diverse engineering disciplines including fluid
mechanics, motor design, motor control, structural mechanics, electron-
ics, robust design optimization, value-chain optimization, production op-
timization, etc. Discussions with the DMs involved in these projects have
lead to a number of considerations that form the basis for the MODCO
approach. In short, the arguments for incorporating generalized prefer-
ences into the optimization algorithm fall in three categories; 1) post-
processing many Pareto-optimal solutions, 2) physical realization of a
solution, and 3) decision making among large sets of solutions. These
categories are discussed and elaborated in the following sections.

2.1 Post-Processing Many Pareto-Optimal Solutions

In an industrial application context, the multi-objective optimization
is often only a small step in a large design process. Hence, the solu-
tions found by an MO algorithm need to be further investigated to ver-
ify each solution against results from other parts of the design process.
Consequently, post-processing a large number of solutions is typically
infeasible for the following reasons: i) It is too expensive, ii) it is too
time-consuming, and iii) the optimization problem may only cover a part
of the full design.
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Regarding economy, it is often rather expensive to construct a physical
prototype of a simulated design. For instance, a 3D prototype print and
performance test of a single pump housing may cost up to 5000 Euro.
Thus, investigating 100 candidates is out of the question.

Concerning time, a large set of candidate solutions is also problematic
if it takes a lot of time to post-process a single solution. As mentioned
above, the optimization is often only a small step in a larger design pro-
cess and further extended simulation may be needed to verify the design
in greater detail. For example, conducting a full-range CFD simulation
on a design may take several days or weeks, which makes post-processing
of large sets impossible. Furthermore, such an investigation often only
constitutes a part of the simulations carried out on a design. Other
types of analyses include stress analysis, cost calculation, robust design
investigations, etc.

In addition to economy and time, the optimization may only be ad-
dressing a part of the total design. For example, the optimization prob-
lem may represent a sub-circuit of a pump controller circuit. Thus, ad-
ditional unmodeled features may have to be handled in post-processing.
The reasons for only looking at a partial problem are numerous. Some
points include: i) No sufficiently accurate model exists, e.g., electro-
magnetic noise in relation to circuits, ii) impossible to build a formal
model of the consequences of a design, iii) misguiding of the search by
problematic pairing of a high-accurate model for some objectives with
a low-accurate model for other objectives, and iv) a desire to run the
development project in parallel sub-teams, e.g., design pump hydraulics
and electromotor at the same time.

2.2 Physical Realization of a Single Solution

In an industrial design process, the simulation of a solution is usually
followed by a prototype testing and then finally creation of machining
tools for mass production. These three steps: i) simulation, ii) prototype
testing, and iii) mass production each pose some challenges that make
multiobjective optimization in its traditional form less favorable.

Regarding simulation, finding a large Pareto-optimal set is not al-
ways meaningful. Two nearby solutions may differ by e.g. 0.1% in
performance, but the simulator may have an expected inaccuracy in the
range of 1%–5% when the simulated solution is compared with a phys-
ical test of the design. Hence, it does not make sense to report a lot of
performance-wise similar solutions since prototype testing of them may
prove them to be statistically equal.
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In prototype testing, one problem is to make a 100% accurate rep-
resentation of the simulated design. All prototyping methods have tol-
erances. Consequently, there will be small differences between the sim-
ulated design and a corresponding prototype. In addition to this, no
testing equipment is 100% accurate. Thus, repeating test will not give
the exact same result.

Finally, preparing the design for mass production also renders some
challenges. In simulation and prototyping, the “design changes” were
caused by inaccuracies in simulator, prototype construction, and mea-
surement. However, realization of the design may require small changes
in the design, e.g., to make the part castable with a bi-directional cast-
ing process. Furthermore, mass produced parts also are not completely
identical since all production processes introduce small variations and it
is very costly to approach a 0% tolerance. Furthermore, the process it-
self may introduce some random variation such as size of welding seams
which is not modeled in the simulation. Hence, the produced parts differ
from the simulated even if no deliberate modifications have been made
to adapt the design to production.

2.3 Decision Making Among Large Sets of Solutions

Challenges related to decision making often come as either i) an ab-
stract or general statement from a development project such as “we
would like to evaluate the pros and cons of 3–5 clearly different de-
signs”, ii) local selection among similar Pareto-optimal solutions, or iii)
as the DM’s difficulties in interpreting the results and stating explicit
preference rules.

General statements from development projects are often seen in con-
cept studies where it is important to investigate and compare signifi-
cantly different designs instead of fine-tuning the performance of a de-
sign. Hence, the DM is more interested in a small set of clearly different
designs rather than a large set covering a smooth transition.

Concerning the local selection among Pareto-optimal solutions, DMs
tend to favor solutions residing in the so-called knee regions of the Pareto
front if no domain-specific preferences can be determined a priori. Hence,
solutions not in knee regions can be omitted from the set of returned
solutions as the DM is typically not willing to accept a large decrease in
one objective to gain a small increase in another.

Regarding the DM’s abilities, it is often the case that such persons
have a non-optimization background and in some cases even a non-
technical background. Thus, the DM may not have the technical skills
to make the right decision among a set of 500–1000 solutions represent-
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ing a smooth transition from one design type to another. Presenting a
low number of 5–10 clearly different solutions is more feasible because
it allows the DM to inspect each solution in great detail and make a
decision without explicitly stating preference relations.

3. Features of the Ideal MODCO Algorithm

The observations presented in the previous section can be condensed
into a number of desirable features for the ideal MODCO algorithm:

1 Return Pareto-optimal solutions.
This is identical to goal 1 of traditional MO algorithms.

2 User-defined maximal number of returned solutions.
Resources such as money and time sets a firm limit on the number
of solutions manageable in decision making. Any MODCO algo-
rithm should have an upper limit on number of returned solutions.

3 User-defined distinctiveness of the returned solutions.
The application often state if the goal is to perform an exploratory
search, to return a set of fine-tuned similar alternative solutions,
or something in between. Furthermore, the DM or domain expert
typically knows if the goal is to find clearly different designs (di-
versity in search space), performance-wise different solutions (di-
versity in objective space), or a combination of these two.

4 User-defined accuracy of simulators.
The accuracy of the simulators plays a key role in the later de-
cision making step. The MODCO algorithm should incorporate
any known simulator accuracies to ensure that the differences in
simulated performance also show in later post-processing. More
precisely, if A dominates B in optimization, then this should hold
for subsequent steps (prototyping, test, etc.) in the design process.

5 Return solutions in knee regions or according to user-defined pref-
erences.
DMs are rarely (if ever) interested in solutions not located in knee
regions of the Pareto front unless domain-specific preferences can
be defined. Hence, the ideal MODCO algorithm should return
solutions located in knee regions or alternatively solutions that
comply with the user-defined preferences.

Feature 1 is obviously required by any multi-objective algorithm. Fea-
tures 2–4 constitute general preferences that can be analyzed and defined
a priori to the optimization. Feature 5 is motivated by observations on
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the decision making process in more than 30 multi-objective optimiza-
tion tasks carried out at Grundfos R&T. Please note that feature 3 does
not express the DM’s preferences regarding the objectives importance,
but only how diverse the returned solutions should be.

Regarding features 2–4, we define the user-variables for setting these
requirements on the returned set. Table 1 lists the four variables sup-
porting the above mentioned features. Naturally, it is up to the MODCO
algorithm to transform the given value to an actual approach for imple-
menting the feature. The parameters KDD and KPD for defining distinc-

Table 1. The list of user-variables supporting feature 2–4.

Feat. Description Variable

2 No. of distinct candidates KNC ∈ [1 : ∞) ⊆ N

3 Design distinctiveness KDD ∈ [0.0 : 1.0] ⊂ R

3 Performance distinctiveness KPD ∈ [0.0 : 1.0] ⊂ R or [0.0 : 1.0]M ⊂ R
M

4 Simulator accuracy KSA ∈ [0.0 : 1.0]M ⊂ R
M

tiveness should be interpreted as shown in Fig. 2. As seen, a value of 0.0
indicates a user-preference for a low distinctiveness, which corresponds
to a preference for very similar solutions. A value of 1.0 corresponds
to high distinctiveness, i.e., very different solutions. An intermediate
value of, e.g., 0.5 represents a desire for a medium level of distinctive-
ness. In contrast to methods with explicit formulation of preferences,
this approach allows incorporation of rather vague statements from the
DM or domain expert. For example, a domain expert may say “For this
problem, I know that many somewhat different solutions have roughly the
same performance.” In MODCO, such a statement can be transformed
into KPD = 0.0 meaning “roughly same performance” and KDD = 1.0 or
perhaps KDD = 0.5 representing a desire for highly or somewhat differ-
ent solutions. To allow refined control over performance distinctiveness,
the KPD parameter may also be stated as a vector. In this case, the DM
may specify the level of distinctiveness for each objective.

Exploitative search

Similar solutions

High distinctiveness

Diverse solutions

Explorative search

0.50.0 1.0

Low distinctiveness

Figure 2. Distinctiveness range for parameters KDD and KPD.
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Regarding simulator accuracy, the vector KSA contains a value for
each objective where 1.0 corresponds to a 100% accurate simulator and
0.0 means the returned result is no better than a random value.

3.1 Three Goals of MODCO Algorithms

The previous sections containing motivation and MODCO features
form a basis for reformulating the three goals of traditional MO algo-
rithms, closeness, distribution and spread, to goals for MODCO algo-
rithms. In short, we suggest the following three goals:

1 Closeness – the distinct candidates should be on the true Pareto
front (or as close as possible).

2 Global distinctiveness – the candidate set should have a user-
defined max size KNC and contain clearly distinct solutions found
in accordance with KDD, KPD, and KSA.

3 Local multi-objective optimality – each candidate should be of pri-
mary interest to the DM, e.g., in a knee region if no explicit pref-
erences are given.

Goal 1 of MODCO algorithms is to find solutions on the true Pareto
front. This goal represent feature 1 and is identical to goal 1 in MO.

Goal 2 represents the DM’s desire for a set of clearly distinct solutions
with a user-defined maximal number of solutions in the set. The a priori
analysis of feature 2–4 can be summarized in one goal stating how many
and how different the returned solutions should be.

Goal 3 expresses the observation mentioned in Section 2.3 regarding
the DM’s preference for solutions located in knee regions of the Pareto
front or alternatively in accordance with the DM’s explicit preferences.
Thus, goal 3 represents feature 5 of the ideal MODCO algorithm.

4. Survey of MODCO-Related Algorithms

The MODCO approach was first studied in our earlier paper [10]. The
paper contains a brief introduction to the approach, the Cluster-Forming
Differential Evolution (CFDE), and a detailed study on performance and
effects of changing the MODCO parametersKPD andKDD. A real-world
study on mechanical and electrical engineering problems is presented in
[11].

The five features of the ideal MODCO algorithm have received some
attention by other researchers.
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Feature 1, closeness to true Pareto front, is undoubtedly the most
investigated since it is one of the goals of traditional MO research, for
surveys see [6, 7, 17].

Feature 2 about returning a limited set of distinct solutions has been
investigated in the approach known as “modeling to generate alterna-
tives (MGA)” suggested by Brill [3] and later applied in several studies
[5, 4, 13, 19]. In short, the main purpose in MGA is to present a set of
maximally different solutions to allow the DM to evaluate non-modeled
objectives and implicit preferences and decision rules. The idea in MGA
is to first find a starting solution, then define a maximal allowed drop
in fitness(es), and search one-by-one for other solutions that are max-
imally different in search space from previously found solutions while
fulfilling the constraint of having the fitness(es) above the defined re-
laxation target. Although applicable for generating alternatives, the
approach excludes the prime paradigm of MO – to find trade-offs wrt.
the objectives. In the MGA approach, a solution just has to lie in the
hypercube spanned by the relaxation thresholds. Thus, finding the max-
imally different solutions to accommodate the unmodeled objectives may
result in suboptimal solutions wrt. the modeled objectives. Feature 2
has also been investigated in studies incorporating the DM’s preferences
into the algorithm, for a survey see [8]. To the authors’ knowledge, no
paper suggests to integrate general preferences into the multi-objective
algorithm with the goal of returning a user-defined maximal number of
candidate solutions. However, several authors suggest to modify a tra-
ditional MO algorithm with various kinds of subpopulation schemes to
increase the search performance or parallelize the MOEA, for example
[2, 15]. Regarding on-the-fly clustering of solutions, Koch and Zell sug-
gest the MOCS algorithm [12]. MOCS cluster the solutions in objective
space with the aim of diversifying the search.

Feature 3 regarding setting a user-defined design and performance
distinctiveness is to the authors knowledge also not investigated. Gen-
erally, traditional MO research focuses at obtaining an even population
distribution, but not distinctiveness among a small set of candidates.

Feature 4 on simulator accuracy has, to some extent, been investigated
in a related form known as robust design optimization. It should be
noted that this research primarily deals with the manufacturing step of
the design process mentioned in Section 2.2, i.e., limiting the problems
originating from the tolerances in mass production. Several papers have
been published on robust design and some methods incorporate the link
back to the design variables, e.g., Li’s work on robust optimization [14].

Feature 5 about finding solutions in knee regions has been investi-
gated by a couple of authors in the MO research community. The most
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interesting study is presented by Branke et al. [1] who define two met-
rics (angle and a utility function) for detecting knee regions and favor
solutions in knee regions. Another study is published by Rachmawati
and Srinivasan [16] who suggest using a weighted sum similar to the
utility function of Branke et al. [1]. Regarding incorporation of user-
preferences, numerous studies have been performed, see [8].

5. Conclusions

In this paper, we have introduced the MODCO approach, which is
motivated by a number of observations from real-world problems from
the manufacturing industry. The goal in MODCO is to return a small set
of clearly distinct candidate solutions to allow a feasible in-depth post-
processing of the candidates. The main idea in MODCO is to refine the
multi-objective search by incorporating general preferences from the DM
and the domain expert’s knowledge of the problem at hand. Through a
few parameters, rather vague statements from the DM or domain expert
are transformed into desired characteristics of the returned set of solu-
tions. In addition to this, the MODCO approach allows incorporation
of any known simulator inaccuracies to further refine the search.

The MODCO approach may be seen as an extension or modification
of the traditional MO concept. Thus, a reformulation of the three goals
closeness, distribution, and spread of traditional MO is also in place.
The three MODCO goals are closeness, global distinctiveness, and lo-
cal multi-objective optimality. The closeness goal states a desire to find
solutions on the Pareto front, which is identical to the first goal of tradi-
tional MO. The global distinctiveness goal states that the returned set
of candidate solutions should comply with the user’s general preferences
on number of solutions, performance distinctiveness, design distinctive-
ness, and known simulator accuracy. Finally, the local multiobjective
optimality goal expresses the DM’s preferences for finding solutions in
knee regions or according to domain-specific preferences.
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Abstract The (re)construction of biological systems is of fundamental importance
to the emerging field of systems biology. Because of the complexity
of these systems, computational systems biology strongly relies on the
principles of mathematical modeling as an essential tool for determining
the behavior of numerous and simultaneous time- and space-dependent
processes. In general, the considered models are parametric and the un-
known parameters have to be estimated using experimental data, a task
known as parameter estimation. Parameter estimation is essentially an
optimization task, that in the highly nonlinear and constrained dynam-
ics of biological models can turn into a hard problem for traditional
local search optimization methods. Motivated by this challenge, the pa-
per addresses the task of parameter estimation in a nonlinear dynamic
model (described by ordinary differential equations) with 18 parameters:
The model describes a key cell regulatory system that switches between
cargo transport and maturation in early, respectively late endosomes
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in the endocytosis pathway. We approached the problem by using two
bio-inspired metaheuristics for global optimization and one direct local
search method for maximum-likelihood optimization. To asses the per-
formance of the applied methods, the parameters were estimated from
pseudo-experimental (simulated) data.

Keywords: Metaheuristic optimization, Ordinary differential equations, Parameter
estimation

1. Introduction

The (re)construction of biological systems is of fundamental impor-
tance to the emerging field of computational systems biology. In gen-
eral, these systems exhibit complex nonlinear dynamic, which is usually,
modeled by ordinary differential equation (ODE) models. In a typical
approach to ODE modeling of a biological system, a human domain
expert specifies the structure of the system and the functional form of
the ODEs. The task of determining appropriate values for the constant
parameters based on time course data (observed or simulated) is called
parameter estimation.

Due to the nonlinear and constrained systems dynamics, parameter
estimation of biological models is quite demanding and computationally
expensive. The problem is usually multimodal (local search methods fail
to find the global solution), high-dimensional (computationally expen-
sive) and constrained in the parameter space, black-box (unknown struc-
ture of the system), and further confounded by short time course noisy
data (experiments in cell and molecular biology). Related work in the
domain of parameter estimation in system biology [12] has shown that,
to overcome the above mentioned difficulties, global optimization (GO)
methods should be used, with a focus on stochastic GO (as solvers of
black-box real-size problems) and hybrid methods (GO with local search
solvers).

This work addresses the task of parameter estimation in a model of
the endocytosis dynamics, a key regulatory system that switches between
cargo transport and maturation in early, respectively late endosomes [11,
15]. The underlying process is the conversion of the Rab5 protein to the
Rab7 protein, where the Rab5 and Rab7 domain proteins are mutually
exclusive. The theoretical and experimental approach undertaken to
model this process [3], proved that a cut-out switch ODE model best
fits the biological observations.

Assuming the cut-out switch structure and given the initial condition
for Rab species, we reconstructed the parameters of the original study,
based on simulated pseudo-experimental data, by employing a recently
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proposed metaheuristic Differential Ant-Stigmergy Algorithm (DASA)
[6, 7, 8]. Since DASA has never been used for parameter estimation in
ODE systems, we compare the results with the already well established
metaheuristic Differential Evolution (DE) [13] and the direct local search
method Algorithm 717 [1] for nonlinear parameter estimation. The op-
timization problem was formulated as a maximum-likelihood problem,
under the assumption of normally distributed and independent residu-
als with constant variance. This maps the problem into a least-squares
problem, where we search for parameter values minimizing the sum of
squared (residuals) errors.

The rest of the paper is structured as follows. Section 2 defines the
parameter estimation task in general and in the specific case of ODE-
based models. Section 3 addresses the parameter estimation problem
in the Rab5-to-Rab7 conversion model. Section 4 describes in brief the
methods used for parameter estimation in the endocytosis model. Sec-
tion 5 first describes the setup of the empirical evaluation, then presents
and discusses the obtained results and finally outlines possible directions
for further work. Section 6 summarizes this study and concludes.

2. Parameter Estimation in ODE Models

Given are a model structure m(c), which includes a set of adjustable
parameters c = {c1, . . . , cD}, and a set of observation data d. The task
of parameter estimation is to fit the model parameters to values copt that
define a model which reproduces the observed data in the best possible
way. This is performed by minimizing a cost (objective) function that
measures the goodness of fit.

2.1 Non-Linear Least-Square Estimation

Among several suggested cost metrics, the maximum-likelihood esti-
mator [5] introduced by R. A. Fisher in 1912, stands out for being the one
that maximizes the probability of observing the given data d if the model
m(copt) is chosen. The likelihood function depends on the probability
of the measurements. Assuming the measurements follow a product of
normal distributions with constant variance, the maximum-likelihood
parameter estimation maps into a non-linear least-square estimation of
the parameters, which minimizes the sum of squared errors (residuals)
given as

SSE (m(c)) =
M∑

i=1

N∑

j=1

(
Yi[j]− Ŷi[j]

)2
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for observed data d = {Yi[j], 1 ≤ i ≤ M, 1 ≤ j ≤ N}, where M is the
number of measured outputs, N is the number of samples per observed
output, and Ŷi[j] is the j-th sample of the i-th predicted output.

2.2 Simulation of ODE Models

We represent the underlying problem as a system described with a
set of input/output, divided into exogenous variables, E, and system
variables, S. More precisely, E are observed variables on which the
model depends (that are on the right-hand side of the ODEs) and S are
dependent variables that we would like to model (the left-hand side of
the ODEs). Then the dynamic behavior F of the system described with
ODEs, given initial values S(t0) and E(t) on the observed time interval
[t0, tN−1], will be of the form

d

dt
S = (S(t), E(t), c) ,

where t is time, the variable on which the derivation is applied and c is
the set of fitted parameters.

Note that, the system variables might be additionally classified as
observed/unobserved. If the variable can be measured it is called ob-
served, and if it can not be measured/observed it is called unobserved.
The output from the ODE model in general can be formulated as

Ŷ (t) = (S(t), E(t)).

This means that the evaluation of the chosen ODE-based model, defined
by the parameter c, depends indirectly on the calculation of the system
variables. In order to find S(t), numerical approximation methods for
ODE integration have to be applied. Therefore, we used the CVODE
package [2], a general-purpose solver written in C for the initial value
problem of stiff/non-stiff ODEs. CVODE uses the adaptive-step Adams-
Moulton and backward differentiation formula method for integration.

3. Endocytosis Model

This work addresses the task of parameter estimation in a specific
endocytosis model. The model captures the cellular mechanisms of
endosome maturation and cargo transport. It is based on biochemi-
cal protein-protein interactions of the Rab5 and Rab7 protein domains
[11, 15].

The theoretical and experimental approach undertaken to model the
endocytosis rely on the mutually exclusiveness of the Rab5 and Rab7
domains. It has proved that the cut-out switch model best fits the
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biological observations [3]. This model, defined by four ODEs and 18
kinetic parameters, describes the behavior of four variables (species),
that is the active (GTP-bound) and inactive (GDP-bound) forms of the
Rab5 and Rab7 proteins. The variables are r5 (Rab5-GDP), R5 (Rab5-
GTP), r7 (Rab7-GDP), and R7 (Rab-GTP).

The mathematical formulation of the Rab5-to-Rab7 conversion is given
below, where v1, . . . , v10 denote different biochemical reactions in which
the observed Rab5 and Rab7 proteins are interacting, while c1, . . . , c18
are the kinetic rates that are to be estimated. The model formulated
in this form does not depend on any independent input, meaning the
system is completely defined by four system variables and no exogenous
variables. Further, we assumed that the system is completely observed
and that the system variables represent the system output.

v1 = c1 v2 = c2 r5 t

(100+t)(1+e(c3−R5) c4 )

v3 = c5 r5 v4 = c6

v5 =
c7 r7 R

c8
7

c9+R
c8
7

v6 = c10 r7
1+e(c11−R5) c12

v7 = c13 R5

1+e(c14−R7) c15
v8 = c16 r7

v9 = c17 R5 v10 = c18 R7

d
dt
r5 = v1 + v7 + v9 − v2 − v3

d
dt
R5 = v2 − v7 − v3

d
dt
r7 = v4 + v10 − v5 − v6 − v7

d
dt
R7 = v5 + v6 − v10

In order to compare the performance of different optimization algo-
rithms for the given problem, artificial experimental data were generated
by simulation of the model with the parameters values c∗ set as follows:

c1 = 1 c2 = 0.3 c3 = 0.1 c4 = 2.5 c5 = 1 c6 = 0.483
c7 = 0.21 c8 = 3 c9 = 0.1 c10 = 0.021 c11 = 1 c12 = 3
c13 = 0.31 c14 = 0.3 c15 = 3 c16 = 0.483 c17 = 0.06 c18 = 0.15

and initial conditions S∗(to), suggested as optimal by Del Conte-Zerial
et al. [3].

S∗(to) : r5[t0] = r7[t0] = 1mol
l

R5[t0] = R7[t0] = 0.001mol
l

Moreover, we defined two versions of the problem, P1 and P2:



72 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

P1, 18-dimensional optimization problem with given initial conditions
S∗(t0) and parameters bounds ci ∈ (0, 4), 0 ≤ i ≤ 18,

P2, 22-dimensional problem defined with ci ∈ (0, 4), 0 ≤ i ≤ 18, and
initial conditions of the species taken as additional parameters to
be estimated, ci ∈ (0, 1.7), 19 ≤ i ≤ 22.

Having in mind that the simulated data are exact data (generated in the
absence of noise), unlike real experimental data, we also considered the
parameter estimation problems under normal Gaussian noise, N(0, 1),
relatively added to the exact data in a quantity defined by the percentage
factor s

Ynoisy = Y (1 + s N(0, 1)).

4. Methods

This section describes the optimization approaches used to solve the
nonlinear parameter estimation problem in the Rab5-to-Rab7 conver-
sion endocytosis model. We chose one deterministic local search opti-
mization method for solving non-linear least-squares problems, and two
bioinspired population-based metaheuristics for global, robust optimiza-
tion.

4.1 Algorithm 717

Algorithm 717 (ALG717) denotes a set of FORTRAN 77 modules
for solving the parameter estimation problem in nonlinear regression
models like nonlinear least-squares, maximum likelihood and some ro-
bust fitting problems. The basic method is a generalization of NL2SOL
– An Adaptive Nonlinear Least-Squares Algorithm [4], which uses a
model/trust-region technique for computing trial steps along with adap-
tive choice of the Hessian model. The algorithm is a variation of the
Newton’s method (augmented Gauss-Newton method), in which a part
of the Hessian is computed exactly and a part is approximated by a
secant (quasi-Newton) updating method. So the algorithm sometimes
reduces to the Gauss-Newton or Levenberg-Marquardt method.

To promote convergence from poor starting guesses, the method em-
ploys the idea of having a local quadratic model qi of the objective func-
tion f at the current best solution ci and an estimate of an ellipsoidal
region centered at ci in which qi is trusted to represent f . So the next
point, ci+1, or the next trial step, is chosen to approximately minimize qi
on the ellipsoidal trust-region. The information obtained for f at ci+1 is
used for model updating and also to resize and reshape the trust region.
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Among the modules, one can chose the variants DGLF and DGLG
for solving unconstrained optimization, or DGLFB and DGLGB that
use simple bounds constraints on the parameters. Using the DGLF and
the DGLFB modules means approximate computation of the needed
derivatives by finite differences, while the DGLG and DGLGB modules
expect the derivatives of the objective function to be provided by the
routine that calls them.

Since ALG717 is not a global search algorithm, we wrapped the orig-
inal procedure in a loop of restarts with randomly chosen initial points,
providing in some way a simple global search. The number of restarts
was defined to result in an equal number of function evaluations as set
for the other two methods.

4.2 Differential Evolution

Differential evolution (DE) is a simple and efficient population-based
heuristic for optimizing real-valued multi-modal functions, introduced
by Storn and Price in the 1990s [13]. It belongs to the class of Evolu-
tionary algorithms (EA) inspired by the nature of evolution, meaning it
is based on the idea of simulating the evolution of individuals (candidate
solutions) via processes of selection, mutation and crossover.

The main difference between standard EA and DE is in the repro-
duction step, where for every candidate solution an offspring is created
with a simple arithmetic (differential) mutation operation over three (or
more) parents.

In addition, the rate at which the population evolves can be controlled
by a scale factor, F , a user-defined positive real number. To complement
the differential mutation strategy, DE employs uniform crossover (also
known as discrete recombination) over the candidate and mutated so-
lutions, where a user-specified crossover factor, CR ∈ [0, 1], is used to
control the fraction of parameter values copied form the mutated so-
lution. Finally, the offspring solution is evaluated and substitutes its
parent in the population if its fitness is better.

Depending on the specific mutation and crossover procedure, one can
chose among several DE schemas “DE/x/y/z”. Here, “DE/x/y/z” indi-
cates DE for Differential Evolution, x represents a string denoting the
vector to be perturbed (rand: random vector; best: best vector), y is
the number of difference vectors considered for perturbation of x and
z stands for the type of crossover being used (exp: exponential; bin:
binomial).

Since the original code of the DE algorithm [10] does not check if
the new generated solutions are feasible (within the prescribed bound
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constraints) we had to slightly modify the code. The modification is
simple: if the solution is outside the specified bounds it is set to the
closest bound.

4.3 Diffrential Ant-Stigmergy Algorithm (DASA)

The basic concept of DASA is as follows [6, 7, 8]. First, we translate
the multi-parameter problem into a search graph. We then use an opti-
mization technique to find the cheapest path in the constructed graph.
This so called offsets-path consists of the values of differences belonging
to the optimized parameters.

Prior to the actual optimization, an initial amount of pheromone is
deposited according to the Cauchy probability density function in all
the vertices in the search graph. There are m ants in a colony, all
of which begin simultaneously from the start vertex. The probabil-
ity with which they choose the next vertex depends on the amount
of pheromone in the vertices. The ants repeat this action until they
reach the ending vertex. Then, for each ant, based on the chosen off-
sets path ∆x1∆x2 . . .∆xn and currently best solution x′, a new solution
x = [x′1+∆x1, x

′
2+∆x2, . . . x

′
n+∆xn] is constructed. If a better solution

is found, it replaces the current best solution. Furthermore, in such a
case, the pheromone amount is redistributed according to the associated
offsets-path that led to this improvement. The new probability density
functions have maxima over the path’s vertices and the scale factor is
accordingly decreased to improve convergence.

Afterwards, pheromone evaporation from all the vertices occurs, i.e.,
the amount of pheromone is decreased by some predetermined percent-
age, ρ, on each probability density function. The whole procedure is then
repeated until some ending condition is met (e.g., some predetermined
number of iterations).

5. Experimental Evaluation

This section describes the setup, the outcome and the evaluation of the
initial experiments conducted to investigate the performance of ALG717,
DE and DASA when applied to the task of parameter estimation in
the non-linear dynamic model of Rab5-to-Rab7 conversion, using exact
measured (simulated) data and simulated measurement noise.

5.1 Setup

The setup of the testing procedure included 25 runs of every exper-
iment (combination of algorithm and problem) and a fixed number of
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500.000 function evaluations per run. Next, we used a resampling pro-
cedure for handling the noise in the measured data, where the “true”
model measurements were taken as mean value calculated from 10 dif-
ferent values of the noisy observed output Ynoisy. Furthermore, two noise
scenarios for s = 5% and s = 20% were considered. Finally, based on
manual tuning, the algorithms parameters were set as follows.

In ALG717, the DGLGB routine with user-supplied derivatives of the
objective function is applied, the number of restarts is set to 25.000 (with
20 evaluations per restart) and 20.000 (25 evaluations per restart) for
P1 and P2, respectively.

In DE, the strategy “DE/rand-to-best/1/exp” was used, population
size was set to NP = 200, weight factor to F = 0.85, and crossover
factor to CR = 1.0.

In DASA, the number of ants was set to m = 8, the pheromone
evaporation factor to ρ = 0.2, the maximum parameter precision to
ǫ = 10−15, the discrete base to b = 10, the global scale increase factor to
s+ = 0.07, and the global scale decrease factor to s− = 0.02.

Note that manual tuning included testing of a few parameter com-
bination and was applied to DE and DASA. In order to generate the
set of parameters, we discretized the continuous domain of parameter
values with a certain step (chosen according to suggestions found in
the literature). In this way, we run DE with the following parame-
ters: strategy = [“DE/best/1/exp”, “DE/rand/1/exp”, “DE/rand-to-
best/1/exp”, “DE/rand/2/exp”, “DE/rand/1/bin”, “DE/best/2/bin”],
F = [0.5, 0.6, 0.7, 0.85], and CR = [0.3, 0.5, 0.7, 1.0]. Population size was
fixed to 200 in all cases. For every parameter combination the algorithm
was run twice. In a similar way, we executed two runs of DASA on the
following sets of parameters: s+ = [0.01, 0.03, 0.07], ρ = [0.2, 0.4, 0.6],
and m = [4, 6, 8, 10]. The rest of the parameters were kept fixed to the
default values suggested by the authors of DASA.

5.2 Evaluation Criteria

We compare the methods according to the sum of squared errors
(SSE), as defined in Section 2.1, and the convergence curve based on
the average results over 25 runs for each problem. In addition, we use
the following two performance metrics standardly used for model vali-
dation.

The root mean squared error (RMSE) of a model measures the dif-

ference between values predicted by the model Ŷ and values actually
observed from the system being modeled Y , on the same scale as the
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modeled outputs.

RMSE(m(c)) =

√√√√ 1

N

M∑

i=1

N∑

j=1

(
Yi[j]− Ŷi[j]

)2
=

√
1

N
SSE(m(c))

The correlation coefficient (R) is a standard measure that determines
how well the predictive model fits the given data in terms of linear
dependence and is given as:

R =
1

M

M∑

i=1

E[(Yi − E[Yi])(Ŷi − E[Ŷi])](
E[Yi − E[Yi]]

)2 (
E[Ŷi − E[Ŷi]]

)2 ,

where E[·] denotes mathematical expectation. Correlation close to 1
means that (the shape of) the predicted data are identical to the mea-
sured data but might have a different scale or baseline. Correlation of
−1 means that the predicted data and the measured data are similar in
a mirrored fashion, while 0 means dissimilar data.

5.3 Results and Discussion

Experimental results from parameter estimation of the Rab5-to-Rab7
conversion model with ALG717, DE and DASA using simulated experi-
mental (exact and noisy) data are presented in Table 1. The rows Best,
Median and Worst represent the values of the measures (SSE, RMSE
and R) for the best, median and worst solution found with respect to
SSE, a specific method and specific problem, over all 25 runs. In a sim-
ilar way, the Mean and Std rows outline the average value and standard
deviation of the corresponding performance measures with respect to
the specific method and specific problem, over 25 runs as well.

Note that the optimum in the case of noise is not zero anymore, as
given in Table 1. Since the observed data are artificially generated,
including the noise added in the data as described in Section 2, the
optimum can be artificially calculated as the sum of squared errors of
the noisy observations regarding the non-noisy observations.

According to Table 1, DE comes almost to the optimum (zero error),
confirmed by the high (almost 1) correlation in half of the runs while
solving both problems using non-noisy data. In all experiments, the DE
best solutions were better than the one obtained by DASA and ALG717.
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Table 1. Experimental results from parameter estimation of the Rab5-to-Rab7 con-
version model based on pseudo-experimental data with and without noise, N(0, 1)

SSE RMSE R

s
[%

]

ALG717 DE DASA ALG717 DE DASA ALG717 DE DASA

problem P1

Best 948.55 0.08 9.18 0.58 0.01 0.06 0.288 0.998 0.982

Median 1375.01 0.62 21.73 0.70 0.02 0.09 0.179 0.981 0.921

01) Worst 1679.68 337.98 89.89 0.78 0.35 0.18 0.090 0.495 0.682

Mean 1366.84 22.69 24.50 0.70 0.04 0.09 0.171 0.948 0.825

Std 164.68 77.80 16.85 0.04 0.08 0.03 0.087 0.132 0.114

Best 827.60 2.74 8.07 0.55 0.03 0.05 0.255 0.583 0.570

Median 1378.80 4.43 26.05 0.70 0.04 0.10 0.165 0.578 0.519

52) Worst 1524.86 10.30 74.91 0.74 0.06 0.16 0.125 0.517 0.505

Mean 1330.55 4.66 32.52 0.69 0.04 0.10 0.172 0.575 0.538

Std 162.88 1.92 19.40 0.04 0.01 0.03 0.068 0.014 0.021

Best 1144.49 42.54 50.18 0.64 0.12 0.13 0.216 0.497 0.495

Median 1400.29 52.71 63.35 0.71 0.14 0.15 0.211 0.490 0.493

203) Worst 1594.18 479.34 89.99 0.76 0.42 0.18 0.111 0.259 0.482

Mean 1400.06 184.76 67.26 0.71 0.23 0.15 0.140 0.451 0.489

Std 119.84 170.56 12.08 0.03 0.12 0.01 0.049 0.060 0.004

problem P2

Best 1022.16 0.10 10.99 0.61 0.01 0.06 0.190 0.998 0.850

Median 1415.33 0.68 41.11 0.71 0.02 0.12 0.080 0.977 0.559

01) Worst 1665.88 699.99 88.71 0.77 0.50 0.18 0.114 0.334 0.705

Mean 1398.96 29.32 39.82 0.71 0.04 0.12 0.141 0.830 0.727

Std 178.23 139.73 19.79 0.05 0.10 0.03 0.060 0.172 0.111

Best 980.18 2.75 13.07 0.59 0.03 0.07 0.164 0.583 0.571

Median 1411.62 3.80 41.40 0.71 0.04 0.12 0.101 0.530 0.531

52) Worst 1732.96 92.86 104.11 0.79 0.18 0.19 0.097 0.472 0.522

Mean 1396.33 9.14 45.75 0.71 0.05 0.12 0.128 0.554 0.528

Std 156.20 18.36 22.46 0.04 0.03 0.03 0.032 0.033 0.020

Best 1131.03 42.74 52.37 0.64 0.12 0.14 0.182 0.498 0.494

Median 1499.67 55.28 77.69 0.73 0.14 0.17 0.117 0.488 0.484

203) Worst 1679.07 909.64 108.07 0.78 0.57 0.20 0.098 0.199 0.474

Mean 1465.36 220.12 77.01 0.73 0.24 0.17 0.140 0.431 0.486

Std 141.37 243.64 14.94 0.04 0.14 0.02 0.082 0.095 0.006

1) optimal SSE = 0, R = 1 (non-noisy case)

2) optimal SSE = 2.6530, R = 0.584

3) optimal SSE = 42.4473, R = 0.4982
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Nevertheless, the presence of noise in the measured data visibly influ-
enced the performance of DE, especially in the case with 20% of added
noise, where the Mean, Std and Worst values of the objective function
are far larger than the one obtained by DASA. While DASA is relatively
far (2 orders of magnitude) compared to DE best solutions, it finds solu-
tions with almost consistent accuracy (Std) and is far less influenced by
the percentage of added noise in the measured data. Both DE and DASA
outperform ALG717 based on the statistics in Table 1: the presence of
the measurement noise does not influence the ALG717 performance in
a visible way (ALG717 is so far from the optimum that noise does not
influence the SSE noticeably).
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Figure 1. Convergence curves for the non-noisy case: a) problem P1, b) problem
P2.
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Figure 2. Convergence curves for data perturbed with 5% Gaussian noise: a) prob-
lem P1, b) problem P2.
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Figure 3. Convergence curves for data perturbed with 20% Gaussian noise: a)
problem P1, b) problem P2.

The graphs in Figures 1, 2, and 3 represent the convergence curves
of the algorithms for the specific problem, based on the mean of the
best value of the objective function from 25 runs over the number of
evaluations. Based on the convergence performance, DE and DASA
outperform ALG717 in all cases. When compared to each other in the
case of noise-free data (Fig. 1) and in the case of slight perturbation with
5% of measurement noise (Fig. 2), both have similar convergence with
a slightly faster convergence of DE to the optimum. However, in the
case of 20% of measurement noise (Fig. 3), DASA shows visibly better
convergence than DE.

As our main goal was to reconstruct the dynamic of the Rab5-to-Rab7
conversion model, we visualized the dynamic of the predicted model to
validate qualitatively the results from Table 1. Figure 4 gives a com-
parison of the algorithms on predicting the behavior of the R5 protein
concentration with the best estimated parameters for the P1 problem
obtained using noise-free data and data perturbed with 20% noise, re-
spectively. It is evident that there is a very good correlation between
the pseudo-experimental data and the predicted data for DE (almost
overlapping) and DASA (the trend and the shape are preserved) in the
non-noisy case. Moreover, DE and DASA show also very good perfor-
mance in the presence of noise, successfully dealing with the measure-
ment noise in parameter estimation (Fig. 4b). The behavior of the other
three variables r5, r7 and R7 is quite similar and is not included here.
For the same reasons, the visualization of the P2 dynamics is omitted.

A test of statistical significance was performed to check the difference
in the quality of the obtained solutions by ALG717, DE, and DASA.
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Figure 4. Experimental behavior vs. predicted behavior of Rab5 (R5) protein with
the best estimated parameters for the P1 problem using a) noise-free data, b) data
with 20% Gaussian noise

Based on the mean values of SSE, we performed pairwise comparisons
using the Wilcoxon signed-ranks test [14]. The test confirms that for a
5% significance level both DE and DASA are significantly better than
ALG717 and there is no significant difference in the quality of solutions
generated with DE and DASA.

5.4 Future Work

Additional experiments are needed in order to confirm the conclu-
sions drawn from the initial experimental evaluation results. Possible
directions for further work could take into consideration:

1 Investigation of the algorithm performance with regard to the num-
ber of resampled sets of experimental data. In reality, the repa-
ration of the measurements is determined (limited) by the experi-
mental costs, meaning we have to handle the parameter estimation
based on the real data with more robust optimization methods that
can cope with sparse and noisy data;

2 Empirical evaluations on real experimental data;

3 Address the problem with state-of-the-art algorithms used for pa-
rameter estimation in the systems biology domain [9, 12];

4 Modification of the existing methods to cope with the computa-
tionally expensive model simulations, resulting in faster conver-
gence towards the global optimum.
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6. Conclusions

This paper presents an initial study on parameter estimation in an
ODE-based biological model of the important endocytotic regulatory
system from simulated experimental data using bioinspired population
based metaheurstics, such as DE and DASA. The comparison with the
local search method ALG717, which fails to reconstruct the model pa-
rameters, confirmed that bioinspired metaheuristics are powerful meth-
ods for global nonlinear multi-dimensional optimization. We would like
to emphasise the remarkable performance of DE in the case of noise-free
experimental data and the promising results of DASA based on the more
accurate parameter estimation in the presence of higher level of noise.
The initial results open a wide space of possible directions for further
work, starting with validation of the drawn conclusions on real experi-
mental data and continuing with modification of the recently proposed
DASA approach to obtain even better convergence.
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SFA DETECTS SIGNALS SLOWER
THAN THE DRIVING FORCE

Wolfgang Konen, Patrick Koch
Institute for Informatics

Cologne University of Applied Sciences, Gummersbach, Germany

{wolfgang.konen; patrick.koch}@fh-koeln.de

Abstract Slow feature analysis (SFA) is a bioinspired method for extracting slowly
varying driving forces from quickly varying nonstationary time series.
We show here that it is possible for SFA to detect a component which is
even slower than the driving force itself (e.g. the envelope of a modulated
sine wave). It depends on circumstances like the embedding dimension,
the time series predictability, or the base frequency, whether the driving
force itself or a slower subcomponent is detected. Interestingly, we ob-
serve a swift phase transition from one regime to another and it is the
objective of this work to quantify the influence of various parameters
on this phase transition. We conclude that what is perceived as slow by
SFA varies and that a more or less fast switching from one regime to
another occurs, perhaps showing some similarity to human perception.

Keywords: Driving force, Nonstationary time series, Phase transition, Slow feature
analysis

1. Introduction

The analysis of nonstationary time series plays an important role in
the data understanding of various phenomena such as temperature drift
in an experimental setup, global warming in climate data, or varying
heart rate in cardiology. Such nonstationarities can be modeled by un-
derlying parameters, referred to as driving forces, that change the dy-
namics of the system smoothly on a slow time scale or abruptly but
rarely, e.g. if the dynamics switches between different discrete states
[11].

Often, e.g. in EEG-analysis or in monitoring of complex chemical or
electrical power plants, one is particularly interested in revealing the
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driving forces themselves from the raw observed time series since they
show interesting aspects of the underlying dynamics, for example the
switching between different dynamic regimes.

Several methods for detecting and visualizing driving forces have been
developed; based on recurrence plots [2], feedforward ANNs with extra
input unit [9] or, as Wiskott [11] recently proposed, by Slow Feature
Analysis (SFA), a versatile, robust, and fast algorithm. SFA has been
originally presented in context of a bioinspired model for unsupervised
learning of invariances in the visual system of vertebrates [10] and is de-
scribed in detail in [11, 12]. SFA works fully unsupervised, just by search-
ing nonlinear combinations of the input signals which vary as slowly as
possible in time.

What is “slow” in the driving forces compared to the raw observed
time series? Often it might be the case that a driving force contains
components on different time scales and it is crucial to understand which
time scale will be selected by the driving force algorithm. As an example
we consider driving forces made up of two overlayed frequencies f1 < f2.
Will the driving force detection algorithm detect the slower one of the
frequencies, f1, thus being more slow, or the combined driving force
made up of f1 and f2, thus being more accurate? With this paper we
try to deepen our understanding which parameters influence whether
the first or the second choice is taken.

2. Slow Feature Analysis

We briefly review here the SFA approach described in [11]. The
general objective of SFA is to extract slowly varying features from a
quickly varying multidimensional signal. For a scalar output signal and
an N -dimensional input signal x = x(t) where t indicates time and
x = [x1, . . . , xN ]

T is a vector, the question can be formalized as follows:
Find the input-output function g(x) that generates a scalar output sig-
nal

y(t) := g(x(t)) (1)

with its temporal variation as slowly as possible, measured by the vari-
ance of the time derivative:

minimize ∆(y) = 〈ẏ2〉 (2)

with 〈·〉 indicating the temporal mean. Wiskott and Sejnowski [12] pro-
pose a closely related slowness indicator η proportional to

√
∆(y). Low

η-values indicate slow signals, high η-values fast signals.
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To avoid the trivial constant solution, the output signal has to meet
the following constraints:

〈y〉 = 0 (zero mean) , (3)

〈y2〉 = 1 (unit variance) . (4)

This is an optimization problem of variational calculus and as such dif-
ficult to solve. But if we constrain the input-output function to be a lin-
ear combination of some fixed and possibly nonlinear basis functions, the
problem becomes tractable with the mathematical details given in [11].
A typical choice for the nonlinear basis functions are monomials of de-
gree 2, but other choices, e.g. monomials of higher degree or radial basis
functions could be used as well. Basically, SFA searches the eigenvector
in the expanded space with the smallest eigenvalue and projects the ex-
panded signal onto this eigenvector to obtain the output signal, which
we denote here by y or y1.

3. Experiments

In the following we present examples with time series w(t) derived
from the well-known logistic map [7, 11] to illustrate the properties of
SFA. The underlying driving force is always denoted by γ and may vary
between −1 and 1 smoothly and considerably slower (as defined by the
variance of its time derivative (2)) than the time series w(t). The ap-
proach follows closely the work of Wiskott [11] but with more systematic
variations in the driving force.

We consider here a driving force that is made up of two frequency
components

γ(t) =
1

2
(sin(0.0005νf t)︸ ︷︷ ︸

=γS(t)

+sin(0.0047νf t)︸ ︷︷ ︸
=γF (t)

) ∈ [−1, 1], (5)

where the first component γS is roughly ten times slower than γF . The
question is whether SFA as the driving force detector detects solely the
slower component γS of the driving force (in an attempt to minimize η) or
the full driving force γ (in an attempt to extract the underlying system
dynamics as accurately as possible). A second question is whether a
phase transition between the two choices might occur as we vary the
base frequency νf .

In order to visually inspect the agreement between a slow SFA-signal
and the driving force γ we must bring the SFA-signal into alignment
with γ (since the scale and offset of the slow signal y(t) formed by SFA
is fixed by the constraints and the sign is arbitrary). Therefore we define
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a γ-aligned signal

Aγ(y(t)) = ay(t) + b (6)

where the free parameters a and b are chosen in such a way that the
signal Aγ(y(t)) is in best possible alignment with γ(t).

The following simulations are based on 6000 data points each and
were done with Matlab 7.0.1 using the SFA toolkit sfa-tk [1].

3.1 Logistic Map in Chaotic and in Predictable
Regime

We consider a time series derived from a logistic map

w(t+ 1) = (4.0− q + 0.1γ(t))w(t)(1− w(t)) , (7)

which maps the interval [0, 1] onto itself and has the shape of an upside-
down parabola crossing the abscissa at 0 and 1. The logistic map exhibits
an interesting and complex dynamic behaviour, since its parameter q ∈
[0.1, 3.9] controls different forms of predictabilty: For q < 0.33 the map
is fully in its chaotic regime (a map with no visible structure, see Fig. 1),
for 0.33 < q < 0.53 we have a mixture of chaotic and predictable periods
and for 0.53 < q < 3.9 it is long-term predictable.
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0.6

0.8

1

w
(t

)

t

Figure 1. Time series w(t) derived from the logistic map with driving force according
to (7) for νf = 20 and q = 0.1. For all q < 0.33, no structure from the driving force
is directly visible in the map.

x(t) := [w(t− sτ ), w(t− (sτ − 1)), ..., w(t+ sτ )]
T (8)

with delay τ , odd dimension m and sτ := τ(m − 1)/2. Centering the
embedding vectors results in an optimal temporal alignment between
estimated and true driving force.
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Fig. 2 shows the estimated driving force (from SFA with m = 19, q =
0.1, τ = 1 and second order monomials) and the true driving force. At
the higher frequency νf = 60 the estimated driving force is in alignment
with the slower component γS(t). This is remarkable since the slower
component is not directly visible in the driving force, only indirectly as
envelope of the solid curve. Quite clearly there is a phase transition
occuring around νf = 40.
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Figure 2. SFA outputs y1(t) (solid lines) aligned to the driving forces (see (6)) for
base frequencies νf = 20, 40, 60 clearly show a phase transition from the complete
driving force γ(t) (dotted line) to its slower subcomponent γS(t) (dashed line). We
see two solid curves since we align the slowest SFA signal once with γ(t) and once
with γS(t). For clarity only the first 500 time steps out of 6000 are shown.

In Fig. 3 we vary the base frequency νf ∈ [4, 80] and we see a swift
phase transition. The transition frequency ν(P.T.) is the crossover point
of the two correlation curves, shown in Fig. 3 as black dot. For small
q = 0.1 (fully chaotic w; left part of Fig. 3) a phase transition occurs
at ν(P.T.) = 34 (black dot) while for larger q = 0.4 (mix of chaotic
and non-chaotic periods in w; right part of Fig. 3) the phase transition
happens earlier and occurs swifter at ν(P.T.) = 17.

3.2 The Phase Transition as a Function of q and m

How does the phase transition frequency ν(P.T.) vary as a function of
the predictability q and the embedding dimension m of the SFA-input
signal? Both parameters are varied systematically over a broad range
and the results are depicted in Fig. 4. First of all it is interesting to note
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Figure 3. We show the correlation of the SFA-output y1 with the driving force γ
(dash-dotted line) and with its slow component γS (thick dashed line). The black
dot indicates the phase transition at ν(P.T.). The slowness quotient η(y1)/η(γ) (solid
line) drops largely near the phase transition. Left: q = 0.1, phase transition at
ν(P.T.) = 34. Right: q = 0.4, phase transition at ν(P.T.) = 17.

that the SFA algorithm, being basically parameter-free, works very well
over this broadly varying input material, which makes SFA a robust and
versatile algorithm.

A second remark is necessary concerning the SFA implementation
sfa-tk [1]: While it worked well for small embedding dimensions m,
largerm led quite inevitably to numerical instabilities resulting in wrong
“slow” signals y1 which were neither slow nor did they respect the unit
variance condition 〈y2〉 = 1. We presented in [6] a slightly modified
implementation (closer along the lines of [12]) and based on SVD which
successfully avoids these numeric instabilities. This modified implemen-
tation is used throughout the experiments in this paper.

4. Discussion

It is important for driving force analysis with SFA to understand
the mechanisms by which the slowest signal is selected. If the driving
force contains two components of different frequencies, two interesting
things might happen: If the base frequency νf is large enough then SFA
will return the slower component as the slowest signal. This is quite
remarkable, since SFA detects a signal with a smaller η than the driving
force itself. Recall that this slower component is not directly visible in
the driving force, only indirectly as the modulation. But after all, it is
also quite understandable: If we view the dynamical system as a two-
stage process where the slow component γS is considered as a modulating
force acting on the other (faster) component γF with the output of this
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stage acting on the dynamical system, then in such a system description,
the slower component γS becomes directly visible.

Surprisingly, if we lower the base frequency νf , we reach the point
where the slow component comes “out of sight” and the slowest signal
returned by SFA is well-aligned with the driving force itself (slow plus
fast component). Why is the slow component alone no longer detected
by SFA? We hypothesize that two reasons are responsible for this:

1 If we lower the base frequency νf , the fast component γF becomes
slower and thus contains less information within a given embedding
horizon m. This makes the reconstruction of the slow component
γS more and more noisy. We finally reach the point where for a
given embedding dimension m the smoother reconstruction of γ
gets a smaller η (becomes slower) than the noisy reconstruction of
γS . Increasing m should make the reconstruction of γS smoother,
thus making γS again detectable as the slow component.

2 Another reason might be the chaotic nature of the logistic map. In
the chaotic region of the map w(t), noise is amplified and makes
the reconstruction of the slow component γS noisier until it again
comes to the point where the noisy reconstruction has a larger η
than the (smoother) reconstruction of γ. If this is true, then mov-
ing to a better predictable region of the logistic map (increasing
q) should make the slow component again detectable.

Both hypotheses are well-supported by the results shown in Fig. 4. On
the left-hand side we see the location of the phase transition. For most
input signals which are a function of q and νf there seems to be a
sufficiently large m so that the slow component becomes detectable.
For q = 0.7 this occurs already at very low frequencies. The curve for
q = 0.6 (not shown) is for m > 10 very similar to q = 0.7, which is
well-understandable if we recall that all q > 0.53 make the time series
long-term predictable, thus even a very slow subcomponent becomes
detectable. On the right-hand side of Fig. 4 we see that both methods,
increasing m or increasing q, finally lead to a reliable detection of the
slow subcomponent as it is claimed by our hypotheses.

Hypothesis 1 is also supported by the following experiment: If we
lower the frequency of the slow component γS but keep the fast compo-
nent γF the same, then SFA will always reliably detect the slow com-
ponent γS , even if only a quarter of its wave length appears in the time
series data. This is because the same γF allows a reconstruction of γS
at always the same smoothness level.
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Figure 4. Left: Phase transition frequency ν(P.T.) as a function of q and m. Right:
Absolute values of correlation at fixed νf = 40 when varying either m or q.

Nonlinear Regression. Hypotheses 1 and 2 are also supported by
the following nonlinear regression experiment: For the set of nonlinear
basis functions used by SFA (e.g. monomials of degree 2) and for a
given output signal (e.g. γ and γS) we seek the best reconstruction
in the least-square sense. Decreasing m or q leads to more and more
noisy reconstructions of γS . We find empirically that quite precisely at
the same phase transition points as in Fig. 3 the reconstruction of γS
gets a higher η (becomes less slow) than the reconstruction of γ. This
is remarkable since the slowness principle was not used at all in this
nonlinear regression experiment.

Connection to Human Perception. Since SFA has been originally
developed as a model for neural information processing [10], it might be
natural to ask, whether the observed switch between components and
its phase transition has any parallel to human perception and motion
coordination. Several phenomena with switching effects are discussed in
the literature:

The well-known backward spinning-wheel illusion [8] occurs frequently
in movies or under stroboscopic lighting conditions and it shows the
transition from a fast forward rotation detection to a slow backward
rotation detection. This effect is usually explained by the snapshot-like
presentation of the percept which has ambiguous motion interpretations.
Somewhat less known is that a similar, although harder to perceive ef-
fect can occur under plain sunlight and direct view with the eye [5, 8].
No snapshot-like explanation is possible here, the percept is continous
having a greater resemblance to the smoothly varying driving force of
our SFA experiments. A possible explanation of the sunlight spinning-
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wheel illusion is that rivalry between different motion detectors in the
brain occurs [5].

Another well-known phase transition occurs in bimanual motion co-
ordination when performing certain movements with the index fingers
of both hands [4]. For the observed phenomena there exists a theoreti-
cal model, the Haken-Kelso-Bunz model [3], which describes the phase
transition and certain hysteresis effects.

SFA has shown similar capabilities in the sense that the same setup
can learn to synchronize with different components of a driving force,
depending on the experimental conditions. It remains however to be
studied, whether one trained SFA system can (without further learn-
ing) switch between different components when applied to signals with
smoothly varying base frequency and whether a hysteresis effect can be
observed.

5. Conclusion

In this paper we have investigated the notion of slowness in slow fea-
ture analysis (SFA). It has been verified that SFA can reliably detect
slow driving forces or their subcomponents over a broad range of pa-
rameters in nonstationary time series, even in the presence of chaotic
motion.

However it has also been seen that what is perceived as slow can
vary for driving forces made up of components on different time scales.
Depending on the embedding dimensions and the predictability of the
underlying dynamical system we observe phase transitions where the
slowest SFA-signal moves from alignment to a slow subcomponent to
alignment with the (faster varying) complete driving force. Notably,
when alignment to the slow subcomponent occurs, SFA is capable of
detecting slow signals with an η-indicator considerably lower than the
η-value of the true driving force. We found that the slow subcomponent
is lost precisely in the moment when its reconstruction in the expanded
function space used by SFA has more temporal variation than the re-
construction of the complete driving force.

In real world data it is often not possible to vary the base frequency
or the degree of nonlinearity in the observed dynamical system system-
atically. Therefore, one advice from the present study should be to vary
the embedding dimension over a broad range in order to detect possible
slow signals which otherwise might be hidden. In any case, SFA has
shown to be robustly working on a broad range of input data and it is
able to reveal subtle components in the driving forces, thus making it a
versatile tool for driving force detection.
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Abstract Integrating different kinds of micro-theories of cognition in intelligent
systems when a huge amount of variables are changing continuously,
with increasing complexity, is a very exhaustive and complicated task.
Our approach proposes a hybrid cognitive architecture that relies on
the integration of emergent and cognitive approaches using evolutionary
strategies, in order to combine implicit and explicit knowledge represen-
tations necessary to develop cognitive skills. The proposed architecture
includes a cognitive level controlled by autopoietic machines and artifi-
cial immune systems based on genetic algorithms, giving it a significant
degree of plasticity. Furthermore, we propose an attention module which
includes an evolutionary programming mechanism in charge of orches-
trating the hierarchical relations among specialized behaviors, taking
into consideration the global workspace theory for consciousness. Addi-
tionally, a co-evolutionary mechanism is proposed to propagate knowl-
edge among cognitive agents on the basis of memetic engineering. As a
result, several properties of self-organization and adaptability emerged
when the proposed architecture was tested in an animat environment,
using a multi-agent platform.

Keywords: Artificial immune systems, Cognitive architectures, Gene expression
programming, Memetics, Neural nets

1. Introduction

In the last fifty years, the study of artificial cognitive systems have
involved a number of disciplines such as artificial intelligence, cognitive
science, psychology and more, in order to determine the necessary, suffi-
cient and optimal conditions and resources for the development of agents
exhibiting emergent intelligence. There are several theories of cognition,
each taking a different position on the nature of cognition, what a cog-
nitive system should do, and how a cognitive system should be analyzed
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and synthesized. From these, it is possible to discern three broad classes:
the cognitive approach based on symbolic information processing repre-
sentational systems; the emergent systems approach embracing connec-
tionist systems, dynamical systems, and enactive systems, all based on
a lesser or greater extent of principles of self-organization [1, 2]; and
the hybrid approach which combine the best of the emergent systems
and cognitive systems [3]. Some of the most relevant cognitive archi-
tectures which follow a cognitive approach are: SOAR [4], ACT-R [5],
ICARUS [3], and EPIC [3]. Some of the architectures of the emergent
approach of major importance are: GW [6], SASE [3], and DARWIN
[3]. The hybrid approach architectures are known as CEREBUS [3],
KISMET [7], CLARION [8], Polyscheme [9], and LIDA [10]. Some of
these architectures deal with aspects of cognitive modeling and repre-
sentation; some others include learning modules, inference and knowl-
edge generalization; and there are others that try to go further and add
motivational and meta-cognition components. The hybrid approach is
more complex and of greater interest to us since it seeks to unify the
different dichotomies of symbolic vs. sub-symbolic models, explicit vs.
implicit learning, and cognitive vs. emergent approaches. However, a
common weakness in the hybrid approach architectures is that they usu-
ally abridge the system functionality into a rigid structure of symbolic
and sub-symbolic components resulting in a poor ability to self-organize
and adapt to new environments. The present research focuses on im-
plementing a hybrid architecture for cognitive agents supported by both
cognitive and emergent approaches. On the one hand, the cognitive ap-
proach provides an explicit knowledge representation through the use of
symbolic AI techniques. On the other hand, the emergent approach de-
fines three evolutionary strategies as observed in nature [11]: Epigenesis,
Ontogenesis, and Phylogenesis, endowing the architecture with implicit
knowledge learning, sub-symbolic representations, and emergent behav-
ior guided by bio-inspired computational intelligence techniques. As the
cognitive approach is well known, we will briefly describe it here before
elaborating on the emergent approach. The remainder of this paper is
organized as follows. The description of the proposed architecture is
detailed in Section 2. Sections 3, 4, and 5 describe in more detail each
module of the emergent approach according to the three evolutionary
strategies. Section 6 outlines and discusses the results of the experi-
ments. The concluding remarks are shown in Section 7.
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2. Proposed Hybrid Cognitive Architecture

Figure 1 gives an overview of the hybrid architecture which has six
main modules: Attention module, Procedural module, Intentional/Decla-
rative module, Motor module, Motivational module, and Co-evolutionary
module. Each module is composed of sub-modules with more specific
functionalities which are communicated to each other by broadcasting
mechanisms. Architecture is distributed in two dimensions: horizontal
and vertical dimensions. At horizontal dimension, modules belong to ei-
ther emergent or cognitive level, whereas modules at vertical dimension
are distributed according to their functionality (attention, procedural
reasoning, intentions, motor processing etc.).

Figure 1. Hybrid Cognitive Architecture.

We will first give a brief description of all the modules of the ar-
chitecture and then provide a more detailed description of those mod-
ules that have been developed so far. Initially, our work has focused
on developing the procedural and co-evolutionary modules and their
interaction with attention and motor modules. The remainder of the
modules will be considered in subsequent stages of the research, and
therefore are not described in this work. The Procedural module cor-
responds to an area of the mammalian brain called Basal Ganglia [5]
which is in charge of functions such as rule matching, conflict resolution,
cognition, learning, and selection and the execution of actions. This
module is composed of several components called Specialist Behaviors
(SB), which are organised horizontally, and three sub-modules which
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are distributed vertically. The three sub-modules are: the connectionist
module, the autopoietic machines module, and the productions mod-
ule. The horizontally-formed components of the procedural module will
be explained in the next section. The Connectionist module (found at
the emergent level of the diagram) models innate skills, which require
less processing time in comparison with other deliberation processes. It
therefore uses the Backpropagation Neural Networks (BNN) which is
more appropriate for enacting reactive reasoning. The Autopoietic Ma-
chines module is formed by multiple self-organized and self-regulated
systems: Artificial Immune Systems [17], where each one models a set of
sub-symbolic rules on the basis of autopoietic principles [11]. The Pro-
ductions module manages different sets of symbolic rules which simulate
either the innate knowledge passed on genetically by an evolutionary
process, or the knowledge acquired by a previous experience. The In-
tentional module represents the agent’s intentionality through goal and
plan generation at the cognitive level, as well as prospection strategies
and internal simulation at the emergent level. This module will have
a declarative knowledge representation composed of chunks of semantic
and episodic memories which are accessed indirectly, as proposed in [8].
This module is able to predict the outcomes of the actions produced by
the system and construct a model of events for controlling perception
through stimuli anticipation. The Attention module has the respon-
sibility of interpreting the perceived information through the sensors
and transforming it into percepts (sensory inputs translated into prop-
erty/value pairs). The Attention module is based on Global Workspace
theory and Theater Metaphor for Consciousness [6]. This module has the
responsibility for coordinating the execution of several SBs, which com-
pete and cooperate in order to get the attention focus (consciousness).
The most innovative aspect of this module is the behavior orchestra-
tion managed by a mechanism that uses Gene Expression Programming
(GEP), an evolutionary programming algorithm proposed by Ferreira
[12]. This mechanism will be discussed later in Section 4.

3. Epigenic Approach

The epigenesis refers to heritable changes in phenotype (appearance)
or gene expression, caused by mechanisms other than changes in the
underlying DNA sequence. Therefore, the epigenesis represents the fi-
nal tuning process by means of each individual adapts efficiently to its
environment from the abilities included in its genetic code. In our work,
the epigenetic approach references to the mechanisms that allow agent
modifying some aspects of its both internal and external structure as a
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result of interacting with its environment, in other words, “learning”.
Therefore, we propose the development of two main approaches which
intend to simulate the most evident epigenetic systems observed in na-
ture: the central nervous system (CNS) and the immune system. In our
work, the connectionist module which represents the CNS is organized in
groups of Backpropagation Neural Networks (BNN), each one represent-
ing the sub-symbolic specialization of a task as in [13]. Each specialized
BNN is classified according to its purpose, in order to filter the perceived
stimuli from environment and select the respective reactive actions. We
propose an AIS as autopoietic machine [11] which starts with an sensory
input data set (antigens) that stimulate an immune network, and then
goes through a dynamic process until it reaches some type of stability.
Specifically, each autopoietic machine is based on AiNet [15], a model
which implements a discrete immune network that has been developed
for data compression and clustering and later for optimization.

3.1 Vertical Integration: Specialist Behaviors

The Specialist Behaviors (SB) are proposed as hybrid units of proce-
dural processing which are in charge of specializing the cognitive skills of
the architecture. These specialists are hybrid because of incorporation
of both symbolic and sub-symbolic elements at the procedural module.
In particular, the procedural module arranges a set of SBs distributed
vertically, every one made up of each horizontally-formed component
(i.e., an specific SB has one BNN, one AIS, one ER set, and one SER
set, as in Fig. 1). Thus, SBs help the architecture to articulate the set of
skills because of each SB attends on a specific set of stimuli signals and
gives an appropriated response to the environment. Accordingly, each
SB can be formalized as follows:

SB = ER ∪ SER ∪AM ∪ BNN.

The purpose of including multiple components in an SB is that each
one compensates the weaknesses of the rest. For example, BNN are often
better at making forward inferences about object categories than ERs,
whereas ERs are often better at making forward inferences involving
causal change than neural networks. AIS is able to make both kind of
inferences from implicit representations but it involves more processing
time discovering new rules than the other two components. In addition,
a reinforcement signal (as a factor of learning in the procedural module)
is used to modify the future responses of the agent. This is achieved
through adjusting the connections in BNNs, rewarding the activated an-
tibodies in AISs, and extracting sub-symbolic knowledge from emergent
level in SERs.
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4. Otogenetic Approach

Ontogenetic principles involve all the mechanisms in charge of devel-
oping an agent on the basis of the stored information in its own genetic
code without interposing the environment influence. Additionally, it
defines the history of structural change in a unity without the lost of
organization that allows that unity to exist. Some outcomes of these
principles as self-replication and self-regulation properties in biological
systems can be valued. In our work, the ontogenetic approach is sim-
ulated through the interaction among different modules: the Attention
module, the Goal module, the Anticipatory Module, and the SBs in Pro-
cedural module. The main idea in this approach is that the attention
module supported by Global Workspace theory, orchestrates the differ-
ent SBs in such a way that either cooperate or compete among them.
The attention module defines a set of attention machines (AM), which
are systems implemented as attention fixations that execute algorithms
by sequences of SBs. Each AM has a set of premises that describe
the pre-conditions of AM activation, the stream of SBs, and the post-
conditions that will have to guarantee after the execution of the stream.
Te pre-conditions indicate the goals, expectations, emotions, and stimuli
(provided by the working memory) which the agent will have to process
and satisfy at any given time. The stream of SBs is a sequence of SBs
and relations among them which describes how the agent must behave
in a particular situation. Finally, post-conditions are a set of states and
new goals generated after the execution of the stream. The main ques-
tion that addresses the development of the attention module is how it
will be able to arbitrate autonomously the execution of SBs in each AM
given a set of stimuli, expectations, goals, and emotions? As a result,
we propose an evolutionary model based on GEP [12] that is used to
evolve the AMs in order to generate an appropriated behavior orches-
tration without defining a priori the conditions of activation about each
SB. GEP uses two sets: a function set and a terminal set. Our proposed
function set is: IFMATCH, AND, OR, NOT, INHIBIT, SUPRESS, AG-
GREGATE, COALITION, and SUBORDINATION. The AND, OR and
NOT functions are logic operators used to group or exclude subsets of
elements (SBs, goals, working memory items, etc.). The conditional
function IFMATCH is an applicability predicate that matches specific
stimuli. This function has three arguments; the first argument is the
rule’s antecedent, an eligibility condition which correspond with a subset
of sensory inputs, motivational indicators (internal states, moods, drives,
etc.), and working memory elements, which model the agent’s current
state. All elements of these subsets are connected with logic operators.



Self-Organizing Cognitive Architecture 99

If the whole set of conditions exceeds a threshold, then the second argu-
ment, the rule’s consequent, is executed, otherwise the third argument is
executed. Second and third argument should be a set of functions such as
INHIBIT, SUPPRESS, AGGREGATE, COALITION, or SUBORDINA-
TION, or maybe an AND/OR function connecting more elements when
is necessary. The INHIBIT, SUPPRESS and AGGREGATE functions
have two SBs as arguments (SBA, SBB) and indicate that SBA inhibits,
suppresses, or aggregates SBB. The COALITION/SUBORDINATION
functions, instead of binomial functions mentioned above, perform a set
of SBs. The COALITION function describes a cooperation relationship
among SBs where actuators may activate multiple actions. The SUB-
ORDINATION function defines a hierarchical composition of SBs which
are activated in a specific sequence. In addition to, the terminal set is
composed by the SB set, the motivational indicators, the goal set, and
the working memory elements. Additionally “do not care” elements are
included so whichever SB, motivational indicator, goal, or working mem-
ory item can be referenced. Each agent has a multigenic chromosome,
that means, each chromosome has a gene set where each gene is an eli-
gibility rule like in the example, so the agent has several rules (genes) as
part of its genotype and each one is applied according to the situation
that matches the rule antecedent. Each gene becomes to a tree rep-
resentation and afterwards some genetic operators are applied among
genes of the same agent and genes of other agents, as in [12]. Some
of these genetic operators are: selection, mutation, root transposition,
gene transposition, two-point recombination and gene recombination, in
order to evolve chromosomal information. After certain number of evo-
lutionary generations, valid and better adapted AMs are generated. A
roulette-wheel method is used to select individuals with most selection
probability derived from its own fitness. Fitness represents how good
interaction with environment during agent’s lifetime was.

5. Phylogenetic Approach

In biology, phylogenesis (evolution) collects all those mechanisms which,
leaded by natural selection, have given place to the broad variety of
species observed in nature. Evolutionary mechanism operates in popu-
lations and as a result, it gets a genetic code which allows individuals of
a concrete population to adapt to the environment where they live in.
On the basis of phylogenetic theory [11], a co-evolutionary mechanism
is proposed to evolve fine-grained units of knowledge through the multi-
agent system, taking the foundation of meme and memetic algorithms.
The term “meme” was introduced and defined by Dawkins [16]], as the
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basic unit of cultural transmission or imitation that may be considered
to be passed on by non-genetic means. In our work, each meme contains
a symbolic and sub-symbolic representation of knowledge, and also a set
of indicators such as demotion, reliability, rule support and fitness. As a
result, our co-evolutionary mechanism is based on a Memetic Algorithm
[16] which is inspired by both Darwinian principles of natural evolution
and Dawkins’ notion of a meme. This mechanism can be viewed as a
population-based hybrid genetic algorithm coupled with an individual
learning procedure capable of performing local refinements. Most evolu-
tionary approaches use a single population where evolution is performed;
instead of this, in our co-evolutionary approach, the SBs are discrimi-
nated in categories and make them evolve in separate pools without
any interaction among themselves. After certain period of time a co-
evolutionary mechanism is activated. For each behavior pool, a stochas-
tic selection method is executed, where those SBs that had the best
performance (fitness) will have more probability to reproduce. Then, a
crossover genetic operator is applied among each pair of selected SBs
and some memes are both selected and interchanged with other ones.

6. Experimentation

In order to evaluate the proposed cognitive model, following aspects
were considered: (1) Analysis of eligibility rules evolved by GEP in the
attention module, and (2) Learning convergence of the co-evolutionary
mechanism.

An artificial life environment called Animat (animal + robot) is pro-
posed to test the experiments. The environment simulates virtual agents
competing for getting food and water, avoiding obstacles, and so forth.
Each animat, driven by an agent, disposes a set of 8 proximity sensors
around itself. In Fig. 2 is depicted the three environments and the de-
sired paths that the agent should cross. The environment in Fig. 2a was
a basic learning scenario where the agent had to follow a simple path.
In Figure 2b. some little changes were included, and in Fig. 2c the en-
vironment was more complex because of a new path of food and more
elements that were introduced. The experiments were made using three
agent behaviors: looking for food (SB-eat), avoiding obstacles (SB-avoid-
obstacles), and escaping from predators (SB-escaping-from-predators).
Thus, some experiments designed to evaluate the performance aspects
mentioned above are described next.
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Figure 2. Animat environments: a) basic environment, b) modified environment,
and c) complex environment.

6.1 Analysis of Eligibility Rules Evolved by GEP

After the attention machines in the attention module have evolved
during a specific number of generations, we analyze the final eligibility
rules of the best adapted agents where emergent properties arose. Ini-
tially, we present an initial eligibility rule which has syntax conflicts;
therefore an evolved eligibility rule syntactically well-formed emerges
from GEP. We have chosen an eligibility rule from a non-trained agent
and afterwards we show the same evolved eligibility rule but now it has
no syntax conflicts and also it’s better well-suited than its predecessor.

Eligibility Rule at generation 0:

IFMATCH:

{food},{tree},{empty},{empty},{empty},{empty},

{empty},{tree} AND {goal-is-eat}

THEN:

{SB-eat} INHIBITS {SB-avoid-obstacles} AND

{SB-avoid-obstacles} SUPRESSES {SB-eat}

ELSE:

SUBORDINATION {SB-avoid-obstacles} AND

{SB-eat}

The above eligibility rule means that when the agent senses “food”
around it, it must do something to get the food while is avoiding ob-
stacles, but is contradictory because {SB-eat} can’t inhibit {SB-avoid-
obstacles} while {SB-avoid-obstacles} is suppressing {SB-eat} at
the same time. So, the evolved consequent of the eligibility rule after 17
epochs is:

IFMATCH:

{food},{tree},{empty},{empty},{empty},{empty},

{empty},{tree} AND {goal-is-eat}

THEN
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COALITION {SB-eat} AND {SB-avoid-obstacles}

ELSE

{SB-avoid-obstacles} INHIBITS {SB-eat}

It is important to notice that evolved eligibility rule does not present
any syntax conflict and is a valid rule which forms a coalition among
SB-avoid-obstacles and {SB-eat} behaviors when the agent reads
food and obstacles around it. Otherwise, the agent always will exe-
cute the rule: {SB-avoid-obstacles} inhibits {SB-eat}, focusing the
agent attention on obstacles because of {SB-eat} behavior has a lower
priority and is less reactive than {SB-avoid-obstacles} behavior.

6.2 Learning Convergence of the Co-Evolution
Process

This experiment examines if the fitness of every separate behavior
pool increments gradually until it reaches a convergence point while
evolution takes place. The experiment was carried out with the parame-
ters on Table 1. Three behavior pools were selected for the experiment:
avoiding-obstacles, looking-for-food, and escaping-from-predators. The
results are depicted in Fig. 3.

Table 1. Co-evolution learning parameters

Parameter Value

Epochs 50
Number of epochs per run 50
Crossover probability 0.7
Mutation probability 0.3
Mutation rate η 0.85
Mutation rate θ 0.25
Mutation rate κ 1.03
Mutation rate γ 0.01

Figure 3 depicted some differences in each learning curve, because of
environmental conditions, however the pools always tried to converge
and reach certain knowledge stability at the same number of epochs
(approximately after 30 epochs), that means the evolution has been
effective and each behavior pool has established a coherent knowledge
base getting a consensus among its own behavior instances and about
what the “behavior category” should do.
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Figure 3. Evolution convergence rate in 3 behaviour pools.

7. Conclusions

The evolutionary mechanisms used in this work, provided a plasticity
feature allowing the agent to self-configure its own underlying architec-
ture; thus, it can avoid creating exhaustive and extensive knowledge
bases, pre-wired behavior structures of behaviors, and pre-constrained
environments. Instead of this, the cognitive agents which use our ar-
chitecture only need to interact with an arbitrary environment to adapt
to it and take decisions in both a reactive and deliberative fashion. In
the experimentation, the emergent properties were difficult to discover
because it took a lot of time to evolve the overall system despite of us-
ing a multi-agent platform with a distributed configuration. Maybe, it
can be similar to the natural evolution where adaptation occurs slowly
and sometimes produces poor adapted creatures. In our future work
we expect to continue working on designing more adaptive and self-
configurable architectures, incorporating intentional and meta-cognition
modules. One concrete application of this research will be the devel-
opment of a cognitive module for Emotive Pedagogical Agents where
the agent will be able to self-learn of perspectives, believes, desires, in-
tentions, emotions and perceptions about itself and other agents, using
the proposed approach which will be responsible of driving the cognitive
architecture.
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Abstract We present a Multi Objective Genetic Algorithm called Magnifying
Front Genetic Algorithm (MFGA) designed in order to treat complex
real-world optimization problems. A first source of complexity is the
presence of different classes of input variables (real, discrete and cate-
gorical). MFGA is able to treat appropriately each of them as well as
any combination. Moreover, real-world applications often require a long
time to evaluate objective values from input variables. Therefore two
issues arises: (i) to control and to tune properly the balance between
exploration and exploitation capabilities of the algorithm and (ii) to ex-
ploit as much as possible computing resources. We deal with the first
issue working on elitism and we introduce parallel steady-state evolution
schemes to leave idle as few computational resources as possible. We
test the algorithm on a problem arising in Multi-Processor System-on-
Chip (MP-SoC) design. This field is characterized by discrete and more
often categorical variables. We consider a problem with 18 categorical
variables and a search space of 35 · 43 · 910 ≃ 5 · 1013 points.

Keywords: Elitism, Genetic algorithms, MP-SoC design, Parallel computing

1. Introduction

The acronym MFGA of this algorithm stands for Magnifying Front
Genetic Algorithm since its main purpose is to work iteratively on the
non-dominated front obtained so far in three directions: towards (ap-
proaching the true Pareto front), laterally (obtaining a wider front) and
internally (enhancing the uniformity of the front samples).

With the introduction of elitism, genetic algorithms such as NSGA-II
[6] and SPEA2 [11] found a very good answer to the problem of fast
convergence. The question we try to answer in this paper is how to
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converge better, without slowing down. Elitism indeed is also considered
[3, 7] as the main cause of the generation of fronts too concentrated in
certain regions leaving holes in others. However, avoiding this kind of
strategies, the request for quality cannot even be addressed, since the
algorithm would converge too slowly.

The paper presents also an application to a real-world categorical
problem with a large design space. We study a mapping problem re-
lated to System-on-Chip design [10]. This problem is a severe test for
optimization algorithms and it shows the reliability of MFGA: we en-
hance the results presented in [10] and we manage to perform better
than NSGA-II [6] which is widely accepted as the state of the art for
general purpose GA. Moreover, we chose this application since any new
result in the expanding field of chip design contributes to encourage con-
fidence towards algorithmic optimization, which has been only recently
accepted as a necessary tool [2].

The paper is organized in sections. Section 2 contains a description
of MFGA with a particular attention to the implementation of elitism
(Section 2.1), genetic operators (Section 2.2) and of the steady state
evolution (Section 2.3). The mapping problem is described in Section 3,
while the results of the optimization are collected in Section 4. Some
conclusions (Section 5) and acknowledgments conclude the paper.

2. Algorithm Description

MFGA is designed to solve the classical multi-objective optimization
problem, with M objectives and N input variables, in the form:

min(f1(x1, . . . , xN ), . . . , fM (x1, . . . , xN )),

possibly subject to variable bounds, J inequality constraints and K
equality constraints of the type:

gj(x̄) ≥ 0 j = 1, 2, . . . , J ;

hk(x̄) = 0 k = 1, 2, . . . ,K;

xLi ≤ xi ≤ xUi i = 1, 2, . . . , N.

The input variables vector x̄ = (x1, . . . , xN ) can contain different
kinds of values: the algorithm can deal with continuous, discrete and
categorical variables. In the latter case a fictitious integer value is as-
signed to each choice available in the catalog. MFGA uses binary en-
coding for discrete variables, while it keeps the continuous form (up to
machine precision) for the remaining case.

The backbone of the algorithm is the classical generational genetic
scheme. We use different selection methods, but each of them requires
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the computed points to be sorted according to the same criterion. We
use constraint-dominance sorting [6]. This criterion induces only a par-
tial ordering and the sorting procedure simply divides the points into
different fronts. In order to select the best points within a front a se-
cond sorting procedure is required: we use crowding distance [6], which
helps in maintaining diversity.

2.1 Elitism

Elitism is the key to speed up convergence within a GA [11]. Al-
though crossover and mutation operators can in principle explore the
entire design space, their implementation usually generates children not
too different (with respect to input variables) from parents with a high
probability. For example, one point binary crossover and SBX [5] act in
this manner. Hence, if the best points found so far are kept in the parent
population, their good properties can be exploited by the children. An
elitist procedure performs exactly this task.

The state of the art for GA is NSGA-II [6], which implements a very
efficient elitism preservation. The population size is kept fixed and the
new parent population is chosen taking every point in the sorted fronts,
starting from the best one. When the inclusion of an entire new front
would exceed the population size, only a fraction is selected according to
the crowding distance computations. This procedure is very robust and
it promotes, in a wide range of problems, a fast convergence towards
the Pareto front. However, if only a few points manage to reach it,
they became a sort of attractors for the subsequent generations since
crowding distance will act only on less effective fronts.

Controlled elitism [7] is a routine which sorts points according to the
NSGA-II procedure, but then it performs a different selection. The
idea is to assign a geometrically decreasing percentage of new parents to
each front, choosing the individuals with better crowding distance values.
The starting percentage can be arbitrary chosen, the remaining ones are
scaled in order to sum up to 100%. If a front contains less points than
required, the subsequent front will fill the gaps. The resulting algorithm
shows very good convergence properties as well as improved exploration
capabilities.

Another criticism to standard elitism is addressed in [3]. Here the
problem is once more the quality of the best obtained front, but they
consider the opposite situation of an overcrowded front. In this case,
the crowding distance sorting may promote exploitation towards fewer
directions than existing ones. The proposed solution, called variable
population size updating, consists in allowing increments (over a fixed
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lower bound) of the population size, since all the points in the first front
will become parents of the next generation. In this way both accuracy
and uniformity of the front are improved.

MFGA combines these two strategies focusing on the ratio between
exploration and exploitation phases of the algorithm. A maximum po-
pulation size Lmax is identified according to the complexity of the pro-
blem and the number of evaluations we are allowed to execute. Every
time the elitism operator is invoked, the actual population (parents plus
children) is sorted by constraint domination and crowding distance. The
choice of the new parents is performed according to the number of points
present in the first front, say l:

If l < 1
3L

max, the new population size will be exactly the integer

value nearest to 1
3L

max and the new parents will be selected ac-
cording to the controlled elitism operator. This situation is typical
of the first stages of the optimization process and it can also oc-
cur working with high complexity problems. In both cases a more
explorative algorithm can help and controlled elitism guarantees
better performances than classical choices.

If the actual best front is composed by 1
3L

max ≤ l ≤ 2
3L

max points
we switch to the variable size routine. All l first-front points (and
only them) become parents for the subsequent generation. This
happens usually in the middle stage of the run, when the algorithm
found some good solutions sufficiently spread along the front. The
balance should now move towards exploitation in order to converge
faster to the Pareto front and the variable size routine can achieve
this result without loosing uniformity and extent of the front.

Finally, when l exceeds 2
3L

max, it is expected to be in an advanced
stage, almost near the solution, so the controlled elitism strategy
is restored keeping Lmax as population size. This should refine the
computed front in terms of both convergence and uniformity.

The hypothesized relationship between the number of points in the first
sorted set and the converged stage of the optimization run may not
always be true. For example, at an early stage the first front can be
composed by many far from optimal points, since exploration tends to
wider the sampled region. Also the converse may happen, if the Pareto
front is very small: the optimization run can be at the end of the con-
vergence history having only few points in the first front.

However, the proposed scheme is able to self repair thanks to the
efficiency of both elitism algorithm: they can favor exploration or ex-
ploitation, respectively, but they are sufficiently balanced in order to



MFGA: A GA for Complex Real-World Optimization Problems 111

work well also in difficult situations, as demonstrated in [3, 7]. The re-
liability of the proposed mixed strategy is analyzed in Sections 4 and
5.

2.2 Operators

Starting from [8], it is a common practice in GA to treat mixed-integer
problems using variable-wise operators. MFGA uses one-point crossover
and bit-wise mutation for discrete variables. Continuous one are treated
with SBX [5] and the classical probability-based mutation [8]. Catego-
rical variables can be treated as discrete ones after having assigned an
integer value to each choice allowed by the catalog. However, locality
loses its meaning in this case and a larger and fairer exploration can
be very useful (see Section 4 for a concrete example of that). MFGA
keeps using one-point crossover also for these special variables, but it
implements a different mutation operator: the new value is chosen among
the possible ones with uniform probability.

The algorithm is designed in order to accept a single mutation prob-
ability parameter pmut for both discrete and categorical variables. In
the discrete case, each bit of the variable binary representation has a
probability pmut to be switched from 0 to 1 or vice versa. Hence the
probability to observe a mutation on a single variable, encoded with n
bits, is equal to 1 − (1 − pmut)

n. The number l can be computed also
for categorical variables, even if they are not encoded in binary form;
it will be an indicator of the dimension of the catalog. Knowing this,
we assign a mutation probability of n · pmut to each categorical variable.
For reasonably small values of pmut this choice provides a wider, but not
excessive exploration.

2.3 Steady-State Evolution

The computational cost of a GA algorithm can become relevant on
large problems, since sorting is an expensive task. However real-world
applications usually are orders of magnitude more demanding. Therefore
the efficiency of an algorithm is not measured on its internal routines,
but instead considering the usage of the external solver which produces
output (objectives and constraints) values from input parameters.

MFGA tries to optimize this effort working in two directions. (i)
The improved elitism procedure and the specialized operators reduce
the number of points to be sampled in order to converge to a good
representation of the true Pareto front. (ii) The proposed steady-state
evolution enhances the exploitation of the available computing resources.
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Although different kind of solvers may exist, a large part of the ap-
plications requires another computer program as solver. Therefore it
is natural to speak of queuing systems, grid computing, etc. However,
these concepts can be generalized and the proposed algorithm can be
applied equivalently. Within a steady-state evolution a new evaluation
is launched as soon as an idle solver is found [9]. MFGA implements
a moderately-expensive steady-state evolution as well as an expensive,
but more efficient one.

In the first case, the same parent population generates new children
until the required number of evaluations has been completed. Then the
update is performed according to the selected elitism procedure, combin-
ing the parent population and all the points evaluated after the previous
update (and while some other points are still being evaluated, without
leaving any solver idle). In the second case the parents population is up-
dated inserting the new obtained information, every time a solver ends
its computation (hence the elitism procedure is applied to the union of
the parent population and the new individual). This results in a more
expensive algorithm, which however has better convergence properties
since new data are exploited as soon as they are obtained.

The dimension of the problem and the availability/capabilities of the
solvers should determine the choice between the two possibilities. The
problem discussed in Section 3 is borderline, but since we are trying to
solve it using as fewer evaluations as possible, we used the second version
of the steady-state evolution.

3. A Mapping Problem in MP-SoC Design

We test MFGA against NSGA-II on a large, complex problem invol-
ving 18 categorical variables (ten with a catalog of 9 values, three with 4
and five with 3), 3 objectives and many constraints. We choose this kind
of problem considering it, from the mathematical point of view, as one of
the worst possible cases, in order to prove once more the reliability of GA
and to show the capability of the proposed implementation. Moreover,
the research field of MP-SoC design met optimization only recently and
it still needs to increase confidence. There is the need of more research
on optimization algorithms involving discrete and categorical variables,
as well as empiric but strong proofs of the capabilities of algorithmic
optimization in the field [2].

A detailed description of the chosen problem can be found in [10].
The authors describe a mapping problem for the allocation of work
loads within a Multi Processor System-on-Chip, which can be simu-
lated through the Sesame [4] framework. The application replicated is a
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Motion-JPEG encoder. The problem is solved using CPLEX [1], NSGA-
II [6] and SPEA2 [11] and the results are compared highlighting the good
performance of both GA employed. The algorithms are compared using
standard evaluation metrics (D-metric, ∆−metric, ∇−metric [10]) and
choosing the 18 solution points obtained by CPLEX as reference set.
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Figure 1. Number of reference points found at given number of evaluations.

We cannot compare directly MFGA with the results proposed in [10]
since they do not provide the reference set. They list only two points
coming from the set, but our best computed front dominates both. Hence
we rerun NSGA-II simulations and compare the results with MFGA
considering as reference front the set of non-dominated points among all
the computed ones. This front consists of 1688 different points on the
design space, but they represent only 88 points on the objective space.
We perform the comparison looking only at the objective space, which
is more relevant from the applicative point of view.

Another reason for rerunning the test is related to the constraint han-
dling. This mapping problem has a high number of constraints which
simply determine if an input configuration is feasible or not. Constraints
violations do not exists: a design can either be feasible or its objective
values cannot be computed. Therefore in [10] different repair mecha-
nisms are tested in order to transform efficiently unfeasible designs. We
want to show that this procedure can be avoided. The fact that our
front outperforms the two given points is a first proof together with the
higher number of solution points found. Moreover, the evaluation of the
constraints is done before entering the (relative) long evaluation process
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and therefore we can wait the algorithm to produce directly a feasible
point, with the additional advantage to sample a wider region.

We choose NSGA-II, although not explicitly designed for categorical
variables, since it is widely accepted as the reference state of the art
implementation among GA. The comparison is therefore unfair from this
point of view, but performing better than NSGA-II can be considered as
the necessary condition for an algorithm to be scientifically interesting.

4. Test Results

We run each algorithm 30 times and we compare only mean values.
We consider the already cited evaluation metrics in order to test the ac-
curacy, the uniformity and the extent of the computed fronts. However,
since the problem is discrete, the uniformity metric, ∆−metric, loses
part of its meaning. A clearer indicator of the quality of a tentative
front is the number of reference points found.

NSGA-II requires only a few parameters. The crossover probability
was set to 0.7. We followed the standard choice for the mutation pro-
bability: one divided by the bit-length of the encoding (i.e. ≃0.02). As
a further comparison we run 10 repetitions of NSGA-II using a muta-
tion probability of 0.1. MFGA uses pmut = 0.05 and the same crossover
probability. We assigned 5 parallel computation to the steady state evo-
lution. The initial population is 100 Sobol points for both algorithm, for
MFGA Lmax = 100. The label MFGA-ord refers to the results obtained
by MFGA considering all the variable as discrete but not categorical.

Table 1 contains the mean values obtained by the four implementa-
tion and Fig. 1 highlights the data relative to the number of reference
points found. We compute all the values at intermediate steps: 5 000,
10 000, 25 000, 50 000, 75 000 and 100 000 requested points. These num-
bers consider also unfeasible points as well as possibly repeated requests.
The table reports the number of truly evaluated points, which is another
interesting indicator of the explorative capabilities of the algorithms.

5. Discussion and Conclusions

We presented MFGA a genetic algorithm designed to deal with com-
plex real-world problems. We cared the balance between exploration
and exploitation and the efficiency of the parallel implementation. We
tested it on a mapping problem related to MP-SoC design improving
existing results.

The test shows the reliability of the proposed algorithm and it demon-
strates that categorical variables need a particular attention. Indeed,
MFGA performed globally better than NSGA-II, but it makes the dif-
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Table 1. Results for the quality evaluation of the computed fronts (mean values)

Step Ev. Points # Solutions found D-metric ∆−metric ∇−metric

NSGA-II mut≃0.02

5000 1681.4 13.0 0.0984 0.0795 1.48e9
10000 2609.9 29.3 0.0749 0.0552 1.69e9
25000 4886.1 44.8 0.0393 0.0489 1.70e9
50000 7885.5 56.6 0.0126 0.0536 2.23e9
75000 10435.0 64.4 0.0036 0.0532 1.96e9
100000 12788.8 72.8 0.0023 0.0499 2.15e9

NSGA-II mut=0.1

5000 1800.6 0.5 0.1034 0.124 2.85e9
10000 3141.9 6.6 0.0724 0.0859 2.47e9
25000 6010.9 32.8 0.030 0.0511 2.21e9
50000 9595.4 53.2 0.0068 0.0481 1.62e9
75000 12395.3 65.7 0.004 0.0493 2.03e9
100000 14808.6 70.1 0.0017 0.0478 2.11e9

MFGA

5000 1744.0 12.9 0.0659 0.0908 1.61e9
10000 27.65.8 27.9 0.0336 0.0701 1.59e9
25000 5222.9 47.7 0.0173 0.0583 2.25e9
50000 8594.1 63.4 0.0076 0.0518 2.18e9
75000 11471.5 71.6 0.0061 0.0509 2.17e9
100000 14007.7 76.5 0.0013 0.0501 2.28e9

MFGA-ord

5000 1704.0 13.3 0.0861 0.0744 1.43e9
10000 2652.1 27.9 0.0601 0.0606 1.68e9
25000 4990.7 43.4 0.0353 0.0517 1.94e9
50000 8155.2 58.3 0.01 0.0521 2.15e9
75000 10803.1 66.3 0.0045 0.0528 2.08e9
100000 13143.1 71.3 0.0034 0.0514 2.20e9

ference only if the special operators for unordered discrete variables were
turned on.

We consider this work a starting point rather than a final landing-
stage. Research in chip design needs optimization and only ad hoc im-
plementations can provide the definitive proof of this (it is particularly
remarkable in this direction noting that in [10] the 18 points found by
a classical algorithm were chosen as reference set, while NSGA-II and
MFGA in our tests could find many more). Moreover, a lot of work can
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be done on the algorithmic point of view, for example working on the
crossover operator or again on elitism.

The algorithm will be tested on new real-world problems in industry
for the design of multi-core, low-power processors and advanced plat-
forms for embedded multimedia applications.
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Abstract Traditional evolutionary multi-objective optimization (EMO) algorithms
typically return several hundred non-dominated candidate solutions.
From a practical point-of-view, a small set of 5-10 distinct candidates
is often preferred because post-processing of several hundred solutions
may be too costly, too time-consuming, too difficult to compare design
differences, or similar solutions may turn out to be statistically equal in
prototyping and manufacturing. Interestingly, these limitations apply
to most if not all real-world problems. In this paper we introduce a
novel approach to incorporating preferences in order to make an EMO
algorithm return a small set of clearly different solutions with respect to
performance and design. Here, we distinguish between generalized and
domain-specific preferences, where generalized preferences address the
aforementioned limitations and the domain-specific preferences cover
the wishes of the decision maker. We further suggest the General
Cluster-Forming Differential Evolution (GCFDE) algorithm complying
to the approach of returning a small, diverse result set. The algorithm is
tested on five well-known mechanical engineering problems and a real-
world many-objective problem from electrical engineering. On all test
problems, GCFDE located distinct optimal solutions, which shows that
this is a promising approach for handling preferences in both multi- and
many-objective settings.

Keywords: Decision making, Distinct candidates, Diversity management, MCDM,
MODCO, Multi-objective optimization, Many-objective optimization
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1. Introduction

The application of multi-objective evolutionary algorithms (MOEAs)
on a real-world problem typically consists of two steps. First, the op-
timization step where the problem is set up, the MOEA is run and all
non-dominated solutions are gathered. Second, the decision making step
where a few solutions to further investigate and perhaps implement are
chosen among the non-dominated solutions found in the first step. In
this process, the decision maker (DM) has to apply his preferences among
the objectives to select the final solutions. Three popular approaches of
doing this are:

1 Aggregating multiple objectives into one.

2 Incorporating decision support systems into the MOEA.

3 Pruning the result set of the MOEA.

However, there are several challenges connected to each of these ap-
proaches. For algorithms using approach 1, aggregating several objec-
tives into one omits the possibility of exploring trade-offs between objec-
tives by collapsing a population to a single point. For algorithms using
approach 2, it can be hard for a DM to express preferences as decision
support systems, as well as it is near impossible to distinguish between
several hundred non-dominated solutions, which is necessary for a DM
using algorithms complying to approach 3. Thus, these authors are in-
spired by approaches for evaluating non-dominated solutions, see [2].

In this paper, we introduce a novel approach for EMO algorithms
addressing the aforementioned problems by directly incorporating dif-
ferent preferences into the algorithm. We deal with the challenges just
described in the following ways:

1 Return only a low number of solutions.

2 Enable easy incorporation of domain-specific preference functions.

3 Ensure performance and design distinctiveness of solutions.

The small branch of MO termed Multi-Objective Distinct Candidates
Optimization (MODCO) incorporates both generalized preferences and
domain-specific preferences into the algorithm with the goal of finding a
small set of 5–10 distinct candidates to make step 2 of the optimization
process manageable. See [10] for extensive practical motivation, problem
formulation and a survey of related research on the MODCO approach.

In MODCO, the concept generalized preferences ensures that the algo-
rithm returns a low-cardinality result set with distinct solutions, which is
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desirable for most if not all real-world applications. In addition, domain-
specific preferences covers indicator functions, directing the search to-
ward preferred areas of the objective space.

The MODCO parameters KNC, KPD and KDD constitute the gener-
alized preferences, and must be implemented in MODCO algorithms to
control result set cardinality and distinctiveness in objective and design
space. Setting KPD or KDD to 0 express no demand for distinctiveness,
while setting KPD or KDD to 1 express a wish for maximal distinc-
tiveness in either objective or design space, respectively. For inbetween
settings, KPD and KDD may express a demand for an intermediate level
of distinctiveness.

1 Number of candidates: KNC ∈ [1 : ∞] ⊆ N

How many candidates is it practically and economically feasible to
inspect, analyze, and compare in post-processing?

2 Performance distinctiveness: KPD ∈ [0.0 : 1.0] ⊂ R

How different should the candidates be in performance space?

3 Design distinctiveness: KDD ∈ [0.0 : 1.0] ⊂ R

How different should the candidates be in design space?

This paper present a novel algorithm complying to the MODCO goal
of returning a few distinct candidates for constrained multi-objective
problems. The algorithm is tested on five well known multi-objective
constrained benchmark problems from mechanical engineering, as well
as one many-objective real world problem from electrical engineering.

This paper is structured as follows. Section 2 introduces the General
Cluster-Forming Differential Evolution algorithm (GCFDE), which is an
extension of our earlier published CFDE [6]. In Section 3, we describe
test problems and provide performance comparison. Finally, Section 4
concludes the paper.

2. The General Cluster-Forming Differential
Evolution Algorithm

The General Cluster-Forming Differential Evolution (GCFDE) algo-
rithm is based on evolving KNC subpopulations using Differential Evo-
lution, each defining an objective and a design space centroid.

The search is based on a primary selection criterion (PSC) and a
secondary selection criterion (SSC), which together defines a total or-
dering of individuals. The primary fitness is based on discrete Pareto-
ranking, while the secondary fitness is applied according to diversity.
The GCFDE algorithm variants are named as GCFDE/PSC/SSC, with
SSC denoting the domain-specific preference based function.
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GCFDE extends the first concrete algorithm complying to the goals of
MODCO, CFDE [6], which was tested on unconstrained multi-objective
problems with two and three objectives. To address the challenges of
constrained many-objective optimization GCFDE differs from CFDE on
a few accounts. All calculations now takes place in normalized objective
and design space to ensure interval-independence. Further, we have:

1 An alternate centroid definition is introduced.

2 Primary selection now incorporates constraint handling.

3 Secondary selection now also handles design distinctiveness.

Algorithm 1 lists the pseudocode of the GCFDE algorithm, and nomen-
clature is found in Table 1. In pseudocode, minObjDist(COi) denotes
the function returning the minimum Euclidean distance from centroid
COi to the nearest other centroid in normalized objective space, and
minDesDist(CDi) denotes the corresponding function for normalized
design space.

Table 1. Nomenclature for GCFDE

Symbol Meaning Symbol Meaning

P Population Pi Subpopulation i

COi Objective space CDi Design space
centroid of Pi centroid of Pi

f(x) Objective vector of x d(x) Design vector of x

x Individual xi,j x at the j’th index in Pi

2.1 Centroid Definition

To enhance convergence in a many-objective setting, an average of
the non-dominated individuals with the best secondary fitness in Pi now
defines the centroids both wrt. objectives and design parameters. Thus,
when solving many-objective problems, we use the single individual with
the highest secondary fitness in Pi to define centroids COi and CDi, by
setting COi = f(xi,1) and CDi = d(xi,1) after truncation in the main
loop. For multi-objective problems, we use the average placement of all
N/KNC individuals in each Pi as objective and design centroids, see [6].
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2.2 Primary Selection Criteria

The primary selection criteria (PSC) assigns a rank to the individuals
and it thereby determines the individuals to place in the highest ranked
front, i.e., those individuals that are selected wrt. the SSC.

In this paper, we use the global constraint-domination (GCD) re-
lation from GDE3 [7], which states that an individual x constraint-
dominates individual y iff:

x is feasible and y is not.

x and y are infeasible and x dominates y in constraint space.

x and y are feasible and x dominates y in objective space.

2.3 Secondary Selection Criteria

The secondary selection criteria (SSC) determines which individuals
are chosen from the highest ranked front to be included in the next gen-
eration. In GCFDE, the SSC firsts ensures performance distinctiveness,
and then design distinctiveness. However, if both performance and de-
sign distinctiveness is achieved, GCFDE performs domain-specific pref-
erence based search. This allows concurrent application of both general-
ized and domain-specific preferences with MODCO parameters control-
ling the balance between the two. It is important to realize that the pref-
erence based search may be defined by any domain-specific preference
criterion without violating the desire for returning distinct candidates.

As seen in Algorithm 1, the secondary fitness assignment may differ
from subpopulation to subpopulation. Subpopulations that are partly
overlapping in objective space selects next generation based on perfor-
mance distinctiveness, while subpopulations not violating neither per-
formance nor design distinctiveness performs preference based search.

GCFDE uses the secondary fitness assignment to fulfill distinctiveness
requirements using the centroid distance measure introduced in [6]:

SF (x) = min({dist(f(x), COj), j = 1..KNC , j 6= i}) (1)

That is, we assign the minimal Euclidean distance in normalized ob-
jective space to another centroid to each individual in Pi. As this mea-
sure is to be maximized, individuals close to another subpopulation cen-
troid will be penalized, guiding subpopulations away from each other if
they are too close wrt. KPD. This also enhances clustering as individu-
als far away from their own centroid are more likely to be penalized.

If performance distinctiveness is achieved, but design distinctiveness
is not, the procedure is performed in design space, assigning secondary
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Algorithm 1 General Cluster-Forming Differential Evolution

Require: Population size N , KNC , KPD, KDD

Ensure: KNC distinct, feasible, non-dominated individuals.
1: Initialize KNC subpopulations with N/KNC random individuals.
2: Assign to all individuals their rank as primary fitness.
3: Assign to all individuals SF (x) given by preference based function.
4: while Halting criterion has not been met do
5: Calculate all subpopulation centroids COi, CDi

6: Perform global DE/rand/1/bin mating with replacement
- store incomparable offspring.

7: Migrate incomparable offspring to nearest subpopulation
wrt. Euclidean distance to objective space centroids.

8: Assign to all individuals their rank as primary fitness.
9: for All Pi ∈ P do

10: if minObjDist(COi) < KPD/KNC then
11: ∀ xi,j ∈ Pi assign SF (x) according to Equation 1.
12: else if minDesDist(CDi) < KDD/KNC then
13: ∀ xi,j ∈ Pi assign SF (x) according to Equation 2.
14: else
15: ∀ xi,j ∈ Pi assign SF (x) given by preference based function.
16: end if
17: end for
18: Truncate subpopulations to a size of N/KNC by sorting wrt. rank

first, then secondary fitness.
19: end while
20: Return KNC distinct solutions, by making a final sorting of each Pi

wrt. rank, then preference based secondary fitness, and returning
xi,1 for i = 1...KNC .

fitness to each x ∈ Pi according to Equation 2. Along with ensuring
design distinctiveness, KDD also controls in which extent the DM wishes
a 1:1 correspondence between result set design and performance, by
guiding individuals towards clusters in both objective and design space,
if both KPD and KDD are high. Note, that these divergent SSCs are
analogous, working in objective space and decision space, respectively.

SF (x) = min({dist(d(x), CDj), j = 1..KNC , j 6= i}) (2)

If both performance and design distinctiveness wrt. KPD and KDD is
achieved, GCFDE performs preference based search. In this paper, we
experiment with two well known domain-specific preference functions.
The first such is the weighted sum (WS) function, aggregating multiple
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objectives into one fitness, by summing the weighted contribution of each
using a weight vector supplied by the DM. The WS function guides the
search towards the areas of objective space which are the most biased
wrt. the weight vector supplied by the DM.

Another preference based utility function is the knee utility (KNEE)
function proposed by Branke et al. [1], which is designed to discover
knee regions by calculating an average fitness value for a large number
of randomly sampled weight vectors, 100 vectors in our experiments. If
the average fitness is good, the individual is more likely to reside in a
knee-region. The knee utility function is generally applicable, and guide
the search towards regions with good trade-offs between objectives.

3. Experiments and Results

In our introducing article [6], the CFDE algorithm was tested on a
large suite of standard benchmark problems, including ZDT [3], DTLZ
[5] and knee problems [1]. On these problems, CFDE showed superior
convergence compared to DEMO versions [8]. Further, parameter usage,
diversity of results, and knee search were demonstrated.

In this paper, we compare GCFDE with GDE3 on a set of well-known
benchmark problems from mechanical engineering and on a many objec-
tive real world problem from electrical engineering. This problem models
a part of the control circuit for the Grundfos Alpha Pro pump, which is
a small circulation pump for heating in private houses. This circuit is
also used in the Alpha2 pump, see more at www.grundfos.com/alpha2.

3.1 Mechanical Engineering Problems

To investigate the convergence capability of GCFDE on constrained
multi-objective problems, we use the TwoMember Truss Design (TMTD),
the Gear Train Design (GTD), the Multiple Disk Clutch Design (MDCD),
the Spring Design (SD) and the Welded Beam Design (WBD) problem
from [4]. These are all constrained and bi-objective.

To compare convergence performance, we investigate to which extent
the GCFDE/GCD/KNEE result sets dominate the most similar solu-
tions from the returned populations of GDE3. 20 runs have been per-
formed for both GDE3 and for GCFDE on each test problem. For each
generated result set of GCFDE, we compare each of the KNC GCFDE
individuals to their most similar counterpart from each of the GDE3 pop-
ulations, i.e. the GDE3 individual being closest in normalized Euclidean
objective space. This yields KNC · 20 · 20 comparisons per problem, e.g.
2000 for KNC = 5. This gives a percentage of the amount of dominating,
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dominated, incomparable and equal individuals produced by GCFDE,
with relations defined as in [3]. Results are shown in Table 2.

For all problems and on both algorithms, we used a population size
N = 100 along with DE parameters F = 0.5 and CF = 0.3. On all
problems except the GTD problem, we have performed only 100 genera-
tions of both algorithms, whereas for the GTD problem 200 generations
were performed to ensure convergence. For the GCFDE algorithm, we
have used KNC = 5, KPD = 0.5 and KDD = 0.0 on all runs.

Table 2. GCFDE/GCD/KNEE versus GDE3.

GCFDE vs. GDE3 TMTD GTD MDCD SD WBD

Dominates (%) 27.5 0.0 2.0 55.5 14.5
Variance (%) ± 5.0 ± 0.0 ± 5.0 ± 4.8 ± 8.3

Dominated (%) 3.0 5.7 0.0 32.4 18.0
Variance (%) ± 2.1 ± 5.5 ± 0.0 ± 6.4 ± 3.3

Incomparable (%) 69.5 1.3 8.4 12.1 67.5
Variance (%) ± 4.4 ± 3.8 ± 5.4 ± 4.4 ± 8.0

Equal (%) 0.0 93.0 91.4 0.0 0.0
Variance (%) ± 0.0 ± 8.0 ± 5.5 ± 0.0 ± 0.0

As seen in Table 2 the GCFDE algorithm outperforms the GDE3 al-
gorithm on the TMTD and SD problems with the highest percentage
of solutions dominating the GDE3 counterparts. Due to the continous
objectives of these problems, there is also a high percentage of incom-
parable solutions on the TMTD problem.

For the problems with some discrete objectives, GTD and MDCD,
the two algorithms find roughly identical solutions, and only few are
incomparable. Here, the two algorithms seems to have equal perfor-
mance. Taking variance into account, this also goes for the WBD prob-
lem with a similar percentage dominating/dominated solutions produced
by GCFDE, along with a high percentage of incomparable solutions.

Overall, the GCFDE algorithm appears to perform equal to or better
than the GDE3 algorithm on the problem set, giving confidence in the
ability of GFCDE to converge to the true Pareto-front of constrained
multi-objective problems.

To illustrate the diversity of the result sets of GCFDE wrt. KPD, the
GCFDE algorithm was run with different KPD settings on the TMTD
problem, see Fig. 1. As expected, the distance between candidates de-
creases when KPD is lowered, while extreme solutions are found and
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Figure 1. GDE3 and GCFDE/GCD/KNEE result sets on the TMTD problem.

maintained when KPD is maximal, confirming our earlier observations
from thorough diversity tests on artificial benchmark problems, see [6].

3.2 Circuit Design for the Alpha Pro Pump

The objective in the circuit design problem is to find component values
for a number of resistors and capacitors resulting in a circuit matching
the desired functionality. The subcircuit being optimized is a low-pass
filter with DC rescaling functionality. It may be possible to address this
problem analytically. However, this will most likely produce a solution
having component values not available in the standard rows for resistors
and capacitors. Rounding such an analytical solution to standard row
values will typically decrease circuit performance making this approach
less attractive. Instead, optimization may directly find the component
values from the standard rows.

The circuit is illustrated in Fig. 2. The components R1, R3, R4,
R5, R6, R7, R8, R9, C1, and C6 are subject to optimization. In this,
the available resistor and capacitor values are limited to those in the
Grundfos stock, i.e., components used in other Grundfos products.

The part of the circuit subject to optimization has both AC and DC
functionality. The AC-functionality of the sub-circuit is to provide low-
pass filtering of Idc=0.3A with at least -40dB dampening at 125Hz. The
DC-functionalities of the circuit are to attenuate VDC as much as possible
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Figure 2. Circuit layout for the low-pass anti-aliasing filter.

and to amplify simultaneously the DC-component, i.e., the average value
of the signal as much as possible.

It is out of the scope of this paper to describe the problem in full
details. However, a complete description with figures is available in a
technical report [9]. The circuit is simulated using the Saber simulator
from Synopsys. In the following, the M(fi) is the Saber magnitude
function (in dB) at frequency fi. The optimization problem has five
objectives and five constraints, which are mainly for ensuring that valid
component values are selected.

The first objective F1 captures the deviation from the desired AC
functionality on three frequencies, fi = (0.01, 2.0, 5.0).

F1 =
∑

fi





20 log (M(fi))− vi,max 20 log (M(fi)) > vi,max

vi,min − 20 log (M(fi)) 20 log (M(fi)) < vi,min

0 otherwise

(3)

The second objective F2 models the dampening at 125Hz and it is
achieved by minimizing the slope around 40–50Hz.

F2 =
20(log(M(50Hz))− log(M(40Hz)))

50Hz − 40Hz
(4)
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Third, fourth and fifth objectives models the DC-functionality.

F3=

∣∣∣∣1.0−
R6

R5
· RTOT

R4

∣∣∣∣ RTOT = R3 +
R7 · R8
R7 + R8

(5)

F4= |4.6−∆V 1−G · 2.603| G =
1.0 + R4/RTOT

1.0 + R5/R6
(6)

F5= |0.15 + ∆V 2−G · 1.301| (7)

The variables ∆V 1 = 0.12 and ∆V 2 = 0.10 in the above equations
provide the necessary six-sigma margins for component variations.

The a priori analysis of the circuit design problem resulted in the
following generalized preference values:

KNC = 4 – the project manager told us how many prototypes
could be built.

KPD = 0.0 – the domain expert (electrical engineer) told us that
all objectives could obtain a very low value simultaneously, but
this was close to impossible with traditional design methods.

KDD = 0.5 – the domain expert told us that similar performance
could be obtained with highly different solutions.

To compare the convergence capability of GCFDE and GDE3 on this
problem, we use the same procedure as for the benchmark problems.
However, the original GDE3 fails due to the absent selection pressure
given only by Pareto-classification and a divergent secondary fitness. To
enable comparison, we have exchanged the Crowding-distance measure
of NSGA-II [3] used as secondary fitness in GDE3 with the convergent,
preference based secondary fitness functions presented in Section 2.3.

In simulation, we used population size N = 200, F = 0.35, CF = 0.2,
and the number of generations was 2000 for both algorithms. In scaling,
[0.0,−1.0, 0.0, 0.0, 0.0] was used as best point and [1.0, 0.0, 1.0, 1.0, 1.0]
was nadir point. [1.0, 1.0, 3.0, 1.0, 1.0] was used as weight vector in WS.

In Table 3, we present a comparison between GCFDE variants and
GDE3 variants, both using GCD as PSC. In the top row we denote
the GCFDE SCC in the top and the GDE3 SSC below, while the left-
most column denotes relations. As no equal solutions were produced in
this many-objective setting, this relation is omitted. As simulating the
circuit in question takes much more time than calculating the fitnesses
of benchmark problems, only 10 runs were performed for the two algo-
rithms, however on two different versions of both. With KNC = 4, this
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Table 3. GCFDE versus GDE3 on the Circuit Design for the Alpha Pro problem.

GCFDE KNEE KNEE WS WS
GDE3 KNEE WS KNEE WS

Dominates (%) 22.75 17.25 23.25 19.25
Variance (%) ± 20.64 ± 17.92 ± 20.08 ± 18.65

Dominated (%) 0.50 0.50 0.25 0.50
Variance (%) ± 3.50 ± 3.50 ± 2.49 ± 3.50

Incomparable (%) 76.75 82.25 76.50 80.25
Variance (%) ± 20.69 ± 17.78 ± 20.25 ± 18.47

amounts to 400 comparisons per column in Table 3. The high variance
in this is due to the low cardinality of the GCFDE result sets.

Table 3 demonstrates that even using the same preference based utility
functions as guide, the GCFDE algorithm clearly outperforms the GDE3
algorithm on this many-objective problem, with around 20 % GCFDE
solutions dominating GDE3 solutions and below 1 % of GDE3 solutions
dominating GCFDE solutions, for all algorithm variants. Thus, GCFDE
performs well independently of the convergent SSC used.

The main reasons for this performance are most likely the more fo-
cused search using subpopulations with migration, as well as the ap-
plication of both divergent and convergent SSCs in the GCFDE al-
gorithm. The GDE3 algorithm using GCD ranking and a divergent
SSC fails in a many-objective setting, because it relies to heavily on
Pareto-classification, whereas it seems to converge prematurely using
GCD ranking and a convergent SSC due to lack of solution diversity.

Overall, this shows that the approach of returning few, distinct so-
lutions from the true Pareto-front of a many-objective problem is more
feasible than trying to cover the full front, but also that maintaining
diversity is necessary in achieving optimality. Thus, both diversity and
optimality should be considered in many-objective optimization.

4. Conclusions

In this paper, we have introduced the Cluster-Forming Differential
Evolution (GCFDE) algorithm, which is able to handle both multi- and
many-objective constrained problems. Convergence was demonstrated
on five well known constrained problems from mechanical engineering
and a real-world many-objective problem from electrical engineering.
GCFDE was found to perform equal or slightly better than GDE3 on
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multi-objective problems, whereas for the many-objective problem, the
GCFDE algorithm clearly outperformed the GDE3 algorithm.

In summary, the solutions produced by GCFDE are both distinct and
more than competitive to solutions found with GDE3, even when using
the same preference functions to guide the optimization, which shows
the ability of GCFDE to converge to a low number of distinct optimal
solutions – even when solving a many-objective problem. This further
shows that diversity and optimality can be maintained in synergy.
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[8] T. Robič and B. Filipič. DEMO: Differential Evolution for Multiobjective Op-
timization. Lect. Notes Comput. Sc., 3410:520–533, 2005.

[9] R. K. Ursem. A many-objective circuit design problem: The anti-alliasing fil-
ter. Grundfos technical report, 2009-01. Download: www.daimi.au.dk/~ursem/
publications/TR-09-01.pdf.

[10] R. K. Ursem, P. D. Justesen. The multi-objective distinct candidates opti-
mization approach. In Proc. Fourth International Conference on Bioinspired
Optimization Methods and their Applications (BIOMA), pages 55–66, 2010.





APPLICATIONS OF EVOLUTIONARY
ALGORITHMS IN CHEMICAL
ENGINEERING:
A CASE STUDY ON FITTING
SOVOVA’S MASS TRANSFER MODEL
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Abstract In chemical engineering reliable models are necessary to reduce the cost
of process design. An evolutionary algorithm with resizable population
was used to estimate coefficients of Sovova’s mass transfer model and
was compared with a global optimizer found in the literature. Compar-
ison of the evolutionary algorithm to the global optimization technique
proved that the evolutionary algorithm is more robust, efficient, and sig-
nificantly better than the global optimizer in regards to the deviation
of the model from experimental data.
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model

1. Introduction

Evolutionary Algorithms (EAs) [6] are useful for solving realistic che-
mical engineering problems because they are robust, give optimal or
semi-optimal solutions, and can easily be adapted for different prob-
lems. They do not require any additional information about objective
functions such as differentiability or continuity. In other words, they
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do not make any assumptions about the underlying fitness landscape.
Therefore, they are often used to solve hard, real world problems where
other heuristic algorithms fail.

Several applications of EAs in chemical processes for parameter esti-
mation can be found in literature. Authors in [7] estimated parameters
of heterogeneous catalytic reaction with the combination of an EA and
Levenberg-Marquardt method. In [1], an EA, with a local convergence
method, was used to simultaneously estimate the kinetic and energetic
parameters on a real and complex chemical system. The estimation of
kinetic parameters of multi-component photocatalytic process was done
in [9], also with the combination of an EA and Nelder-Mead simplex
local optimization. All mentioned approaches use the combination of
EAs with a local search technique. To the best of our knowledge, there
are not any papers that use EAs in the field of extraction models.

In this paper, parameter estimation of Sovova’s mass transfer model
[8] with EA is presented. This model is used to describe extraction
kinetics curve of vegetable oils and it is a commonly used model found in
literature. The model parameters are mostly fitted with the use of local
optimization tools. However, in [5] the parameter fitting was also studied
using global optimization tool, that uses lexicographical grid method
(LGM) with local variation algorithm (LVA) to obtain the near global
optimum point on which the Nelder-Mead method was used to find the
global optimum. This global optimization algorithm was compared with
EA, presented in this paper, and the results are shown in Section 5.

In the following section, the supercritical fluid extraction (SFE) is
briefly explained. Section 3 presents the Sovova’s mass transfer model
and Section 4 presents the EA for fitting the model to experimental
data. The results and comparison between proposed EA and global op-
timization tool are presented in Section 5. Key findings and concluding
remarks are summarized in Section 6.

2. Supercritical Fluid Extraction

The first industrial processes in chemical engineering for production
of various substances were operated within a human living environment,
at atmospheric conditions. But demands for new products, with spe-
cial properties, in 20th century introduced new techniques in industrial
processes, especially for obtaining high value products. Some of those
techniques apply high pressure.

High pressure is used in different processes such as extractions, im-
pregnation of wood and textile, small particle production in pharmacy,
as solvent for chemical and biochemical reactions, etc [2].
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One of the important processes that use high pressure are supercritical
fluid extractions (SFEs). They are applied in food and flavoring industry
(e.g., decaffeination of tea and coffee) and as a residual solvent removal.
They are also used in petrochemical industry, pharmaceutical industry
and lately also in environment protection processes for elimination of
residual solvents from wastes and for purification of contaminated soil
and water.

In SFE the feed material is contacted with a supercritical fluid (SCF)
as solvent. SCFs are solvents at or above critical temperature and/or
pressure. They are used because of their environmental, health, safety
and chemical benefits [2]. As environmental benefits, the conventional
organic solvents, which are replaced with SCFs, are environmentally
far more damaging than most of the SCFs. Most important SCFs (SC
CO2 and SC H2O) are non-cancerogenic, non-toxic, non-mutagenic, non-
flammable and thermodynamically stable. This properties assure the
health and safety benefits. At last one of the major process benefits
is derived from the thermophysical properties of SCFs (high diffusivity,
low viscosity, high density and varying dielectric constant), which can be
fine-tuned by changes of operating pressure and/or temperature. The
material extracted in SFE can be either in liquid or solid state.

This work takes a closer look into extractions solid-SCF, where the
soluble components are separated from the solid material with SCF as
a solute. For design of apparatus, for SFE, the data from phase equi-
librium, energy balances and mass transfer is required. From the phase
equilibrium data, the solubility of compounds in SCF at different process
conditions (pressure and temperature) is obtained, therefore the operat-
ing conditions, the type and quantity of the solvent can be determined.
Energy balances are the basis for determining the energy consumption of
the process. From mass transfer data, which has an enormous influence
on the economy of extraction process, the time used for high pressure
process run is determined.

The flow sheet of the extraction process is shown in Figure 1. The
CO2 is compressed and heated to the operating conditions (supercritical
state). The extraction step follows and here the soluble compounds are
separated from the material. In this step the solubility of compound or
mixture of compounds has to be the highest while in the next separation
step the solubility of compound in SCF has to be the lowest. The picture
of extractor is shown in Figure 2.

The phase equilibrium and mass transfer data are usually obtained
with research and measurements, which takes a lot of time and money.
Extended research on this field is in progress. One of the major activities
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Figure 1. Simple flow sheet of extraction process.

Figure 2. High pressure extraction unit (Faculty of Chemistry and Chemical
Engineering, University of Maribor, Slovenia).

is kinetic modeling, whose goal is to reduce the time used for measure-
ments and to cut the experimental cost.

3. Sovova’s Mass Transfer Model

Mass transfer data are obtained from the extraction curve that shows
a plot of total mass of oil extracted vs. the time or total mass of solvent
used. The Sovova’s model is used to describe extraction kinetics curve
for SFE of substances for plant materials [8]. It extends Lack’s plug-flow
model [3]. It separates the extraction curve into three periods (Figure
3). In the first period the easily accessible solute is linear with a slope
close to the value of oil solubility in solvent. In the second period, rate
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of extraction drops rapidly and continues with a third period where the
extraction is almost linear but with much smaller extraction rate than
in the first period.

Figure 3. Extraction curve separated into three periods.

Sovova’s model is described with the following equations, where ex-
traction curve is defined as a function of time (y(t)).

y(t) =





QCO2yr[1− exp(−Z)]t for 0 ≤ t ≤ tCER
QCO2yr[t− tCERexp(zw − Z)] for tCER < t ≤ tFER

mSI [x0 − yr
W
ln{1 + [exp(Wx0

yr
)− 1]exp[

WQCO2
mSI

(tCER − t)]xk
x0
}]

for t > tFER
(1)

where QCO2 represents solvent flow rate, yr solubility of compounds at
operating conditions, mSI mass of non-extractable material (extract-
free), x0 the initial mass of extractable material, relative to mass of non-
extractable material and xk initial mass of extractable material in intact
cells, relative to mass of non-extractable material. The axial coordinate
zw, in the second extraction period, is calculated using equation (2).

zw =
Zyr
Wx0

ln
x0exp[WQCO2(t− tCER)/mSI ]− xk

x0 − xk
(2)

Times tCER and tFER represent the transition between the fast- and
slow-extraction periods and are calculated using equations (3) and (4).

tCER =
(x0 − xk)mSI

yrZQCO2

(3)

tFER = tCER +
mSI

WQCO2

ln
xk + (x0 − xk)exp(

Wx0
yr

)

x0
(4)
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Parameters Z and W are directly proportional to mass transfer coef-
ficients by equation (5) and (6).

Z =
kfa0ρ

QCO2(1− ǫ)ρs
=

F

QCO2

(5)

W =
ksa0

QCO2(1− ǫ)
=

S

QCO2

(6)

The kf and ks are mass transfer coefficients in CO2 and solid phase,
respectively. Value a0 represents a specific interfacial area, ρ is density
of the solvent phase, ρs is density of the material and ǫ represents void
fraction in bed. In this paper, parameters Z, W and xk were chosen to
be optimized with EA, similar to parameters F , S and xk fitted in [8].

4. The Evolutionary Algorithm for Sovova’s
Model

To solve the parameter fitting problem, the EA has been designed
with properties borrowed from different EAs. The proposed EA could
be classified as (µ + λ)-ES (Evolutionary Strategies), where λ, number
of offspring is not fixed, but variable parameter during the evolutionary
cycle. Despite ES has no crossover operator, in this case the crossover
operator was used. Moreover, the difference between the proposed EA
and ES is also in the selection process. ES uses deterministic selection,
while the proposed EA uses tournament selection (k = 2).

The individual of population is represented with a vector of float val-
ues [Z, W , xk], which represent estimating parameters of the model.
Exploration and exploitation of search space [4] is achieved with imple-
mented crossover and mutation operators. The 1-point crossover was
selected, because of small individual size. The probability of crossover
pc is fixed throughout algorithm run. For every value (gene) in the in-
dividual, the mutation operator determines if it will be mutated, based
on the probability of mutation pm. To calculate mutated value equation
(7) or (8) are used.

vn = v + r3(vmax − v) (7)

vn = v − r3(v − vmin) (8)

where vn represents value that replaces the old value v, r is the random
value between 0 and 1, vmax is the maximum value and vmin the min-
imum value, both defined by user for every parameter separately. To
achieve that the smaller value happened more often, the power of three
on the random value was used. Individual fitness value is calculated
using equation (9).
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φ(y, yobs) =
m∑

i=1

|y(ti)− yobs(ti)|
yobs(ti)

(9)

where y(ti) represents the calculated amount of extract at time ti and
is calculated using equation (1), while yobs(ti) represents the experimen-
tally obtained amount of extract.

In global optimizer [5] the upper and lower boundaries of the model
parameters estimated (Z, tCER and tFER) were studied in detail and
limited to very small intervals. In contrast the boundaries of parame-
ters estimated in proposed EA were not dependent of each other. For
parameters Z and W the minimum value was 0 and the maximum was
10, while the boundaries for parameter xk were between 0 and x0 (which
fits with the description of xk).

5. Results

To make the comparison between global optimizer [5] and EA, pro-
posed in this paper, the same data for SFE with CO2 of vetiver roots at
40◦C and 200 bars, were used. Six experiments were made at different
process conditions. The first three problems are small pilot scales and
the next three are the large production scales. The values equal for all
problems are initial mass of extractable material x0 = 0.0619 and extract
solubility yr = 0.06. Other conditions are given in Table 1.

Firstly, the control parameter tuning was performed for parameters
pop size (1000, 5000, 10000), pc (0.1, 0.2, 0.3) and pm (0.05, 0.1, 0.2).
From the results of control parameter tuning, the following parameter
values were used on all six problems and for comparison with global
optimizer: pop size = 5000; max gen = 300; pc = 0.1; pm = 0.2.

For each problem, 100 runs of the algorithm was performed. Com-
monly, the results obtained from EA runs are averaged and show the
expected value, if the user makes a random run afterwards. In this case
average value of results is not of much help, because the comparison of
estimated model parameters values between proposed EA and global op-
timizer is also needed. Therefore, the best and the worst solutions with
model parameters values are presented in Table 1. For the comparison of
results, the percentage of average absolute relative deviation (AARD),
calculated using equation (10), was used. It shows the deviation of the
model from experimental data.

φ(y, yobs) =
100

m

m∑

i=1

|y(ti)− yobs(ti)|
yobs(ti)

(10)

Results from our EA, regarding AARD measure, have been statisti-
cally compared against the results from global optimizer. One sample
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Table 1. Comparison of AARD and estimated model parameter values between
global optimizer and proposed EA. *Calculated from Z, W and xk using equations
(3) and (4).

Conditions Global optimizer Best run of EA Worst run of EA

Problem 1: AARD = 2.09499 AARD = 2.09151 AARD = 2.09178
QCO2 = 0.85 Z = 0.083382 Z = 0.0833816 Z = 0.0833820
mtotal = 3.53 W = 0.012494 W = 0.0124254 W = 0.0124398

tCER = 24.372 xk = 0.0307196 xk = 0.0307221
tFER = 26.411 tCER∗ = 24.374312 tCER* = 24.372241

tFER* = 26.413146 tFER* = 26.410919

Problem 2: AARD = 1.95147 AARD = 1.9178 AARD = 1.91955
QCO2 = 0.85 Z = 0.104925 Z = 0.0938798 Z = 0.0940318
mtotal = 3.53 W = 0.009490 W = 0.0074551 W = 0.0074529

tCER = 18.766 xk = 0.0298954 xk = 0.0298973
tFER = 20.740 tCER* = 22.220875 tCER* = 22.183639

tFER* = 24.310840 tFER* = 24.273479

Problem 3: AARD = 1.62209 AARD = 1.59072 AARD = 1.59073
QCO2 = 6.3 Z = 0.228515 Z = 0.2285151 Z = 0.2285151
mtotal = 26.2 W = 0.056783 W = 0.0552940 W = 0.0552929

tCER = 13.627 xk = 0.0141545 xk = 0.0141544
tFER = 16.762 tCER* = 13.637772 tCER* = 13.637800

tFER* = 16.774324 tFER* = 16.774359

Problem 4: AARD = 1.60608 AARD = 1.56185 AARD = 1.56249
QCO2 = 17 Z = 0.226704 Z = 0.2267038 Z = 0.2267038
mtotal = 71.68 W = 0.097600 W = 0.0943289 W = 0.0939244

tCER = 14.269 xk = 0.0129419 xk = 0.0129218
tFER = 17.537 tCER* = 14.291571 tCER* = 14.297438

tFER* = 17.563863 tFER* = 17.570886

Problem 5: AARD = 1.947 AARD = 1.84725 AARD = 1.84727
QCO2 = 17 Z = 0.259076 Z = 0.2590756 Z = 0.2590756
mtotal = 72.26 W = 0.087644 W = 0.0816559 W = 0.0816523

tCER = 12.182 xk = 0.0140226 xk = 0.0140224
tFER = 15.371 tCER* = 12.328726 tCER* = 12.328778

tFER* = 15.552807 tFER* = 15.552870

Problem 6: AARD = 3.10782 AARD = 3.07182 AARD = 3.07291
QCO2 = 6.3 Z = 0.283353 Z = 0.2833528 Z = 0.2833527
mtotal = 73.1 W = 0.220752 W = 0.2174639 W = 0.2168423

tCER = 24.083 xk = 0.0243632 xk = 0.0243396
tFER = 31.207 tCER* = 24.125243 tCER* = 24.140419

tFER* = 31.257685 tFER* = 31.276212
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t-test shows that our EA performs significantly better than global op-
timizer [5]. However, if the comparison between parameter values (Z,
W , tCER and tFER) is done, it can be seen, that they are in most cases
almost identical. The statistically significant difference is obtained be-
cause results from all EA runs were better than the result from global
optimizer, although they are not much different. This means that both
algorithms found the solution in almost the same search space loca-
tion. It can be concluded that proposed EA found reasonable solutions
with physical meaning without studying the connections between model
parameters that was done in [5]. The upper and lower boundaries of
parameter values were wider, although this did not affect the EA ef-
fectiveness. Therefore the proposed EA is more robust and with high
confidence it can be concluded, that random run of proposed EA with
given control parameter values, will give at least as good results than
global optimizer [5]. Model parameter values obtained with both algo-
rithms are almost equal, therefore the extraction curves are the same,
except for the second problem, where our EA found better fitting with
different model parameter values. Figure 4 shows both extraction curves
and experimental points for the second problem.

Figure 4. Difference between the extraction curve obtained with proposed EA and
with global optimizer for the second problem.

The computational time used in global optimizer is described with
equation t = 10−6n1n2n3nobs (s), where n1, n2, n3 represent the number
of grid points for each model parameter and nobs represents number
of experimental points. In case, when n1,n2,n3 are 100, this means
about 10 seconds for data with 10 experimental points. The average run
time for our EA of the same problem was 5 seconds. For testing, the
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Intel processor with 2.66GHz was used and the algorithm was written in
Java. Although the EA is population based technique, the time used for
computation was better then time mentioned in [5] for global optimizer.

6. Conclusions

In this work, an evolutionary algorithm was proposed for fitting the
SFE extraction data with Sovova’s mass transfer model. Obtained re-
sults through the proposed evolutionary algorithm were compared with
results from global optimizer. Our evolutionary algorithm proved suc-
cessful on all tested problems and the results were significantly better
than results obtained with global optimizer. The proposed evolutionary
algorithm also proved to be faster, although the search space was larger
because of parameter boundaries. The implemented evolutionary algo-
rithm can easily be adapted to any other model, with minor changes in
implementation (even with a higher number of model parameters and
therefore larger search space).
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Abstract This paper presents a parallel Differential Evolution algorithm for solv-
ing numerical multiobjective optimization problems and demonstrates
its performance on process parameter tuning in industrial continuous
casting of steel. It briefly introduces multiobjective optimization, and
presents the parallel algorithm designed for homogeneous computer ar-
chitectures. It further describes the considered problem and the ex-
perimental setup, and reports the results in view of their effectiveness
and efficiency. The results indicate the algorithm is a suitable plat-
form for parallel multiobjective optimization in case of problems with
time-consuming solution evaluation.
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1. Introduction

Practical optimization often has to deal with several objectives, which,
in addition, may be conflicting. In manufacturing, for example, perma-
nent efforts are taken to increase productivity and product quality, while
production costs and environmental degradation need to be reduced to
the lowest possible amount. Similarly, customers seek maximum per-
formance of products and services at a minimum price. Solving such
problems is known as multiobjective optimization. It radically differs
from traditional, single-objective optimization in that not only one, but
a number of optimal solutions exist, each representing a particular com-
promise among the objectives. The appearance of empirical population-
based search techniques, such as evolutionary algorithms [5], made it
possible to search for multiple trade-off solutions among which a user
can choose the most suitable one according to additional preferences
[1, 2, 3, 10].

A prerequisite for optimizing the performance of a device or processes
is its reliable numerical model which, linked with an optimization al-
gorithm, serves as an evaluator of candidate solutions. Such models
frequently rely on discretization of the application domain and involve
complex iterative solving procedures. If the optimization algorithm is
population-based and the problem involves multiple objectives, the num-
ber of evaluations needed to obtain acceptable results is usually high
and results in computationally demanding numerical procedures. To al-
leviate this difficulty, parallel population-based search algorithms have
been studied with an emphasis on multiobjective optimization in the
last decade [11, 17].

This paper contributes to these efforts by presenting a parallel ver-
sion of DEMO (Differential Evolution for Multiobjective Optimization),
whose original serial implementation has proved successful in solving
numerical multiobjective optimization problems [14, 16]. The paral-
lelization approach was master–slave that relies on the inherent paral-
lelism of evolutionary algorithms. The algorithm was primarily designed
to run on homogeneous parallel computer architectures. It is intended
to speedup time-consuming simulation-based optimization calculations.
We demonstrate its applicability in multiobjective parameter tuning of
industrial continuous casting of steel.

Further organization of the paper is as follows. Section 2 reviews the
concepts of and algorithmic approaches to multiobjective optimization.
Section 3 presents the proposed parallel algorithm, and Section 4 the in-
dustrial problem used to demonstrate the performance of the algorithm.
Section 5 describes the experimental setup, and Section 6 reports the
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results. In Section 7 the work is summarized and directions for further
work are outlined.

2. Multiobjective Optimization: Concepts and
Algorithms

In multiobjective optimization, the objective function c is a mapping
from an n-dimensional variable space X, also called the decision space,
to an m-dimensional objective space Z ⊆ Rm, m ≥ 2. In other words,
variable vectors are evaluated by a vector function comprising several
objectives, c : (x1, . . . , xn) 7→ (c1(x1, . . . , xn), . . . , cm(x1, . . . , xn)). The
objective vectors in Z are partially ordered according to the Pareto dom-
inance relation. Vector z1 dominates vector z2 (z1 ≺ z2) if and only if
z1 is better than z2 in at least one objective, and not worse than z2 in all
other objectives. If no objective vector from Z dominates the objective
vector z, z is said to be nondominated. All nondominated vectors from
Z form the set of optimal objective vectors, called the Pareto optimal
front. Each vector from the Pareto optimal front represents a specific
trade-off between the objectives, and without additional information on
preferences among the objectives optimal vectors cannot be preferred to
one another.

Traditionally, multiobjective optimization was carried out by first
transforming the problems into a single-objective form and then solv-
ing them using techniques of single-objective optimization. The trans-
formation was done either by applying the weighted sum of objectives,
or identifying the key objective for optimization and considering others
as constraints. Both approaches require additional information on rel-
ative importance of the objectives and return specific solutions. They
are nowadays referred to as preference-based multiobjective optimiza-
tion, while, on the other hand, recent population-based multiobjective
optimizers perform ideal multiobjective optimization where an approx-
imation of the Pareto optimal front, or the approximation set, is found
in a single execution of the algorithm.

An appropriate algorithmic basis to support ideal multiobjective op-
timization is evolutionary computing. Many evolutionary algorithms for
multiobjective optimization, including the well-known NSGA-II (Non-
dominated Sorting Genetic Algorithm) [4], employ genetic algorithms
to explore the decision space. Another evolutionary algorithm that has
been successfully adapted for multiobjective optimization is Differential
Evolution (DE) [12, 13]. An example of such adaptation is a DE-based
algorithm called DEMO [14].
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Both DE and DEMO are intended for numerical optimization and
encode solutions as n-dimensional real-valued vectors. New solutions
(candidates) are generated from the existing ones through vector addi-
tion and scalar multiplication. After the creation of a candidate in DE,
the candidate is compared to its parent and the best of them remains
in the population, while the other is discarded. In DEMO, on the other
hand, the candidate and its parent are compared using the Pareto dom-
inance relation. If the candidate dominates the parent, it replaces the
parent in the current population. If the parent dominates the candi-
date, the candidate is discarded. Otherwise, when the candidate and its
parent are incomparable, the candidate is added to the population. Af-
ter generating candidates for each parent individual in the population,
the population size possibly exceeds the predefined value. In this case
DEMO truncates the population to the original size using nondominated
sorting and the crowding distance metric known from NSGA-II [4]. A
detailed description of DEMO and its empirical evaluation are presented
in [14, 16]. Besides its original serial version, a parallel variant of the
algorithm has been implemented recently [7]. The next sections outlines
its characteristics.

3. Parallel Differential Evolution for
Multiobjective Optimization

The parallelization approach used in the parallel version of the dif-
ferential evolution for multiobjective optimization is single-walk paral-
lelization [11], which is aimed at speeding up the underlying sequen-
tial algorithm while its basic behavior is preserved. It implements the
master–slave parallelization scheme, the most straightforward way of
parallelizing the evolutionary algorithms that makes use of their inher-
ent parallelism [17]. Although designed to run on homogeneous parallel
computer architectures, it can also use heterogeneous architectures, but
with lower utilization of faster processors.

In the parallel algorithm, creation of the initial population, variation
of individuals and survivor selection are performed by the master, while
candidate evaluation is run in parallel by all processors. Each generation
starts with the master process holding a population of unevaluated indi-
viduals. These are then evaluated by the master and the slave processes
in parallel, which requires interprocess communication. The interpro-
cess communication is performed in two parts. The first part distributes
the data on the individuals to the slave processes, and the second part
returns the evaluation results to the master process. After the evalu-
ation results for all individuals are known, the master process applies
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the evolutionary algorithm operators and spawns the next generation.
The slave processes are idle at this time, waiting to receive the data on
individuals of the next generation. The master and the slave process are
shown in Algorithms 1 and 2, respectively.

Clearly, the highest efficiency of this parallel algorithm is achieved
on computers with homogeneous processors and in problem domains
where the solution evaluation time is long and does not vary with so-
lutions. The algorithm was designed for solving multiobjective opti-
mization problems with the candidate evaluation time much longer than
the time of executing the remaining algorithm steps. It is particularly
suitable for real-world simulation-based optimization tasks, such as the
production optimization problem discussed in the following section.

4. A Multiobjective Production Optimization
Problem

We deal with multiobjective optimization of industrial continuous
casting of steel. This process is used at steel plants worldwide to pro-
duce various steel semi-manufactures. It starts with pouring liquid steel
into the mold which is cooled by internal water flow. The cooling water
extracts heat from the molten steel and initiates the formation of a solid
shell. Exiting the mold, the solidifying steel slab enters the secondary
cooling area of the casting system where it is cooled by water sprays
positioned at the center and the corner positions along the slab. The
secondary cooling area consists of several cooling zones where coolant
flows at all positions can be tuned individually.

The coolant flows should be set in such a way that the resulting slab
surface temperatures approach the predefined target temperatures as
closely as possible. In metallurgical practice, satisfying this criterion
is known to increase the quality of the cast steel. For this purpose, a
minimization objective is defined in the form of the sum of differences
between the actual and target temperatures over the secondary cooling
zones:

c1 =

NZ∑

i=1

|T center
i − T center∗

i |+
NZ∑

i=1

|T corner
i − T corner∗

i |, (1)

where NZ is the number of zones, T center
i and T corner

i are the slab surface
temperatures at the center and the corner positions in zone i, and T center∗

i

and T corner∗
i the target temperatures in zone i.

Another empirical metallurgical criterion refers to the core length,
lcore, i.e. the distance from the mold exit to the point of complete so-
lidification of the slab. The target value for the core length, lcore∗, is
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Algorithm 1 Parallel differential evolution for multiobjective optimiza-
tion: The master process

1: create an empty initial population P
2: while stopping criterion not met do
3: create an empty population Pnew

4: if P empty then
5: fill P with random solutions
6: else
7: for each solution Pi, i = 1..pop size from P do
8: randomly select three different solutions I1, I2, I3 from P
9: create a candidate solution C := I1+F·(I2 − I3)

10: alter C by crossover with Pi
11: add C to Pnew

12: end for
13: end if
14: repeat
15: select unevaluated solutions C1..Cn from Pnew, where n =

min(num unevaluated, num slaves+ 1)
16: send C1..Cn−1 to slave processes for evaluation
17: evaluate Cn
18: receive evaluation results for C1..Cn−1 from slave processes
19: for solutions Ci from Pnew and their parents Pi from P, i = 1..n

do
20: if Ci dominates Pi then
21: leave Ci in Pnew

22: else if Pi dominates Ci then
23: replace Ci with Pi in Pnew

24: else
25: add Pi into Pnew

26: end if
27: end for
28: until all solutions from Pnew evaluated
29: if Pnew contains more than pop size solutions then
30: truncate Pnew

31: end if
32: copy Pnew into P
33: end while
34: send termination request to all slave processes

prespecified, and the actual core length should be as close to it as pos-
sible. Shorter core length may result in unwanted deformations of the
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Algorithm 2 Parallel differential evolution for multiobjective optimiza-
tion: The slave process

1: while termination not requested do
2: wait for a message from the master process
3: if the message contains an individual C for evaluation then
4: evaluate C
5: send the evaluation result for C to the master process
6: end if
7: end while

slab, while longer core length has to be avoided for safety reasons. This
results in another objective to be minimized:

c2 = |lcore − lcore∗|. (2)

Moreover, coolant flows cannot be set arbitrarily, but according to the
technological constraints. For each zone, minimum and maximum values
are prescribed for the center and the corner coolant flows.

As a result, we are faced with a constrained two-objective optimization
problem with conflicting objectives. To solve it by means of parallel mul-
tiobjective optimization, we employ a numerical simulator of the casting
process that, given the coolant flow values, calculates the temperature
field in the slab and returns the values of objectives c1 and c2. For this
purpose we use a numerical model of the process with Finite Element
Method (FEM) discretization of the temperature field and the corre-
sponding nonlinear equations solved with relaxation iterative methods.
The model has previously been used in a single-objective optimization
study of the casting process [6, 8], and in preliminary multiobjective
optimization studies carried out using the serial variant of the DEMO
algorithm [9].

5. Experimental Setup

Numerical experiments in optimizing the continuous casting process
were performed to analyze both the effectiveness and efficiency of the
parallel algorithm. The parallel computer architecture used in the ex-
periments is a cluster of 16 dual-processor nodes The cluster consists
of identical personal computers, each containing two AMD Opteron 244
processors, 1024 MB of RAM, a hard disk drive, and six Full-Duplex Gi-
gabit Ethernet ports. On each computer, there is an independent instal-
lation of the Fedora Core 2 operating system and the MPICH library, an
implementation of the Message Passing Interface (MPI) [15] supporting
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communication between the nodes. During the experiments, all nodes
were required to be running only the background system processes which
leaves nearly all capabilities available for the parallel optimization algo-
rithm.

The test optimization problem used in the experiments referred to
a casting machine comprising nine secondary cooling zones. In each
zone, cooling water is dispersed to the slab at the center and the corner
positions, therefore 18 coolant flows need to be tuned. The considered
target slab surface temperatures and coolant flow constraints are shown
in Table 1.

Table 1. Target temperatures and water flow constraints for the casting machine
considered in numerical experiments.

Slab Zone Target temp. Water spray Min. flow Max. flow
position number [◦C] number [m3/h] [m3/h]

1 1050 1 7.1 26.1
C 2 1040 2 22.8 57.5
e 3 980 3 13.3 39.9
n 4 970 4 1.5 7.9
t 5 960 5 2.7 10.0
e 6 950 6 0.8 6.5
r 7 940 7 0.7 5.9

8 930 8 1.0 5.8
9 920 9 1.2 6.2

1 880 10 7.1 26.1
C 2 870 11 22.8 57.5
o 3 810 12 13.3 39.9
r 4 800 13 1.2 3.5
n 5 790 14 2.4 4.4
e 6 780 15 2.4 2.9
r 7 770 16 0.7 5.9

8 760 17 1.0 5.8
9 750 18 1.2 6.2

Optimization calculations were performed for a particular steel grade
with the slab cross-section of 1.70 m × 0.21 m and the casting speeds of
1.6 m/min. The target core length, lcore∗, was 27 m.

Candidate solutions were encoded as real-valued vectors, representing
coolant flow values at the center and the corner positions in the zones
of the secondary cooling area. A single simulation-based evaluation of a
candidate solution took about 30 seconds. The population size of 32 was
chosen to perform load-balanced experiments on hardware configurations
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comprising 1, 2, 4, 16, and 32 processors. Moreover, the number of
generations was 300, resulting in 9600 evaluations per algorithm run,
which was sufficient for the algorithm to converge. For each number of
processors, the algorithm was run 25 times.

6. Results

The results produced by the parallel optimization procedure were
highly repetitive both over the runs at each number of processors and
over various numbers of processors used. These results also matched
perfectly with those obtained previously with the original serial variant
algorithm [9]. Since detailed results and their statistical evaluation can-
not be shown due to space limitation, we provide an illustrative example
of a nondominated front of solutions found by the algorithm (Fig. 1).
It confirms the conflicting nature of the two objectives: improving the
coolant flow settings with respect to the temperature differences makes
them worse with respect to the core length difference. Moreover, a sys-
tematic analysis of the solutions shows that the actual slab surface tem-
peratures are usually close to or higher than the target temperatures,
while the core length is shorter than or equal to the target core length.
For example, for a trade-off coolant setting from the center of the front
shown in Fig. 2, the sum of temperature differences equals 315◦C, the
core length difference is 1.1 m, and the resulting temperature differences
are shown in Fig. 3.
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Figure 1. Nondominated solutions found for the casting speed of 1.6 m/min.

On top of that, the execution times (wall clock times) spent by the
algorithm running on various numbers of processors (Fig. 4) show the
expected speedup with the increasing number of processors. Of course,
this is possible since the slave processors are load balanced, i. e. they are
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Figure 2. Optimized coolant flows in a trade-off solution.
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Figure 3. Temperature differences in a trade-off solution.

equally fast and performing the same number of evaluations per gener-
ation, and the evaluations take constant time. In practical simulation-
based optimization, these conditions can be met to a high degree. Given
a cluster of identical computers, and a problem with the solution evalu-
ation time independent of individuals, the population size should be set
equal to a multiple of the number of processors.

7. Conclusion

In evolutionary multiobjective optimization with time-consuming eval-
uation of solutions, parallelization is a valuable approach to reducing the
time needed to get acceptable results. For this purpose we parallelized
the Differential Evolution for multiobjective optimization and analyzed
its performance in tuning the coolant flows in industrial continuous cast-
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Figure 4. Execution time vs. the number of processors.

ing of steel. The objectives were defined empirically to ensure the high-
est possible product quality and process safety. The obtained fronts of
nondominated solutions confirm the conflicting nature of the objectives.
Allowing better understanding of the process behavior and providing a
clear picture of trade-offs in process parameter setting, the results are
useful both to the engineers operating such devices and the designers of
new casting devices.

In the future, the parallel algorithm will be adjusted to achieve the
best possible utilization of processors on heterogeneous computer ar-
chitectures, or on homogeneous architectures with varying background
load, or in solving problems with the solution evaluation time depending
on individuals. From the problem domain point of view, we will study
the effect of additional process characteristics, such as steel grade and
slab geometry, on the optimization results.
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Abstract Most, if not all, works from the literature dealing with minimum energy
broadcasting in wireless ad-hoc networks such as sensor networks con-
sider antenna models that allow the adjustment of the emission power
to any desired real value from zero up to the maximum sensing range.
However, looking at the currently available hardware shows that these
antenna models are not very realistic. In this work we therefore adapt
the currently best available algorithm for minimum energy broadcasting
for a more realistic antenna model which only offers few different levels
of emission power. The obtained results show that this ant colony opti-
mization algorithm performs well in comparison to a standard heuristic
known from the literature.

Keywords: Ant colony optimization, Broadcasting, Sensor networks

1. Introduction

Wireless ad-hoc networks—such as sensor networks—are being used
in practical scenarios such as the monitoring of certain events [8]. Sensor
nodes are generally equipped with omni-directional antennas for sending
and receiving information. They have a packet-forwarding capability in
order to communicate via shared and limited radio channels. In order to
transmit information, a sender node must adjust its emission power in
order to reach the desired receiver node. As network lifetime is limited
by batteries, energy saving is critical. A fundamental problem in sensor
networks arises when one node is required to transmit data to all other
nodes of the network. This scenario is known as broadcasting. Obviously,
for broadcasting to be energy-efficient, the emission powers of the sensor
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(a) A SunSPOT, c© Sun Microsystems (b) iSense sensor nodes, c© Coalesenses GmbH

Figure 1. Examples of popular sensor hardware using antennas with a limited
number of emission power levels.

nodes should be adjusted such that the sum of the energy spent by
all nodes is minimized. This problem is know as the minimum energy
broadcast (MEB) in the literature [9]. To our knowledge, most—if not
all—works from the literature use an antenna model where emission
powers can be adjusted to any real value between zero and the maximum
transmission range. However, available hardware such as SunSPOTs (see
http://www.sunspotworld.com/) or iSense sensor nodes (see http://

www.coalesenses.com/) are equipped with antennas that offer a limited
set of different emission powers; 200 in the case of SunSPOTs and 5 in
the case of the iSense hardware. Note that SunSPOTs are among the
most widely used sensor hardware, while iSense nodes are used by two
of the currently largest European projects on sensor networks, FRONTS
and WISEBED.

In this paper we will adapt the current state-of-the-art algorithm
for the MEB problem—proposed in [7, 6]—to the antenna model of
SunSPOTs and iSense nodes (see Section 3). Afterwards we will show an
experimental evaluation of the obtained algorithm in Section 4. Finally,
we will offer conclusions and an outlook to future work in Section 5.

2. Minimum Energy Broadcasting with Realistic
Antennas

Given a set of sensor nodes V , each node i ∈ V can choose an emission
power pi such that pi ∈ P = {tp1, . . . , tpm}, where P is a finite set of
m different emission powers such that tp1 = 0 and tpl < tpl+1 for all
l = 1, . . . ,m− 1. Signal power diminishes at a rate proportional to r−α,
where r is the distance to the signal source, and α is a parameter that,
depending on the environment, takes typically values between 2 and 4.



Ant Colony Optimization for Broadcasting in Sensor Networks 155

In our work we choose α = 2, as in most other works (see, for example,
[9]). A sender node i is able to successfully transmit a signal to a receiver
node j if pi ≥ k ·d(i, j)α, where d(i, j) is the Euclidean distance between
i and j, and k is the receiving node’s power threshold for signal detection
which is usually normalized to 1.

The minimum energy broadcast problem with realistic antennas (ME-
BRA), as introduced in the following, is NP -hard. This is because it is
a generalization of the standard MEB problem as defined in the litera-
ture [3]. It can be stated as follows. Given is a set V of nodes with fixed
positions in a 2-dimensional area. Introducing a directed link (i, j) be-
tween all (ordered) pairs i 6= j of nodes such that d(i, j)α ≤ tpm, where
d(i, j) is the Euclidean distance between i and j, induces a directed net-
work G = (V,E). Given a source node s ∈ V , one must find emission
powers for all nodes such that a broadcast from s to all other nodes is
possible, and such that the sum of all emission powers is minimal. This
corresponds to finding a directed spanning tree T = (V,ET ) with root
node s in G such that function f() is minimized:

f(T ) :=
∑

i∈V

max
(i,j)∈ET

pij (1)

where pij ∈ P is the emission power necessary to reach node j from node
i. Note that for all i ∈ V , pij ∈ P is defined such that:

pij ≥ d(i, j)α

Exists an l ∈ {1, . . . ,m} such that pij = tpl ∈ P and tpl−1 <
d(i, j)α.

Note that the emission power setting that corresponds to a solution
T is obtained by setting pi := 0 for all leaf nodes of T , and pi :=
max(i,j)∈ET

pij otherwise.

3. The Algorithm

As mentioned before, we present here the adaptation of the ant colony
optimization (ACO) algorithm proposed in [7, 6] to the MEBRA prob-
lem. This algorithm is a MAX–MIN Ant System (MMAS) in the
Hyper-Cube Framework [2], which works roughly as follows. At each
iteration each of na = 10 artificial ants construct a tree rooted at the
source node s. Local search is applied to each of these trees. The
pheromone model T used by our ACO algorithm contains a pheromone
value τe for each link e ∈ E. After the initialization of the variables T bs

(i.e., the best-so-far solution), T rb (i.e., the restart-best solution), and
cf (i.e., the convergence factor), all the pheromone values are set to 0.5.



156 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 ACO for the MEBRA problem

1: input: the network G = (V,E) and a source node s ∈ V
2: T bs := null, T rb := null, cf := 0, bs update := false

3: forall e ∈ E do τe := 0.5 end forall
4: while termination conditions not satisfied do
5: for j = 1 to na do
6: T j := ConstructBroadcastTree(G,s)
7: T j := LocalSearch(T j)
8: end for
9: T ib := argmin{f(T 1), . . . , f(Tna)}

10: Update(T ib,T rb,T bs)
11: ApplyPheromoneValueUpdate(cf ,bs update,T ,T ib,T rb,T bs)
12: cf := ComputeConvergenceFactor(T , T rb, T bs)
13: if cf ≥ 0.99 then
14: if bs update = true then
15: forall e ∈ E do τe := 0.5 end forall
16: T rb := null, bs update := false

17: else
18: bs update := true

19: end if
20: end if
21: end while
22: output: T bs

At each iteration, after the generation of solutions, some of them are
used for updating the pheromone values. The details of the algorithmic
framework shown in Algorithm 1 are explained in the following.

ConstructBroadcastTree(G,s): A solution construction starts with the
partial solution S = (VS , ES) where VS := {s} and ES := ∅. Remember
that s is the source node of the directed spanning tree to be constructed.
Henceforth we denote by VS the set of nodes which are not included in
the current partial solution, that is, VS := V \ VS . At each construction
step, one link (and one node) is added to the current partial solution.
The set Eadd of potential links that can be added to S is defined as
follows: Eadd := {(i, j) ∈ E|i ∈ VS , j ∈ VS}. In words, Eadd consists
of those links whose source node is in S and whose goal node is not
in S. From these links, one link is chosen according to the following
probabilities:

p(e) :=
τe · η(e)∑

e′∈Eadd
τe′ · η(e′)

, (2)
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Algorithm 2 Variable neighborhood descent (VND)

1: input: the network G = (V,E), a source node s ∈ V , a spanning
tree T = (V,ET ) of G rooted in s, a parameter rmax

2: r := 1
3: while r ≤ rmax do
4: T ′ := r-shrink(T )
5: if f(T ′) < f(T ) then T := T ′ and r := 1 else r := r + 1
6: end while
7: output: a (possibly) improved tree T

where η(e) is the heuristic information of a link e = (i, j) which is
computed as follows: η(e) := p−1

ij . In other words, the heuristic infor-
mation accounts for the increase of emission power. After choosing a
link e = (i, j) for the expansion of the current partial solution S, all the
other links of Eadd (if any) that can be added to S without any further
increase of emission powers are also added to S (in addition to e). This
concerns all links e′ = (i, l) ∈ Eadd with d(i, l) ≤ pij . Note that the
solution construction stops when VS = ∅.

LocalSearch(T j): Note that solutions constructed by the ants may con-
tain nodes whose emission powers can be reduced without destroying the
broadcast property of the solution. Therefore, we first apply the so-called
SWEEP procedure (see [9]) in order to detect and fix these cases. After-
wards that variable neighborhood descent (VND) algorithm [5] outlined
in Algorithm 2 is applied to further improve the given solution. VND is
based on the local search procedure r-shrink, which was originally de-
veloped by Das et al. in [4] for the MEB problem. The only difference
between our implementation and the one by Das et al. is the re-definition
of the emission power pij necessary to reach node j from node i. While
for the MEB problem, pij is defined as d(i, j)α, for the MEBRA prob-
lem this emission power is defined as in Section 2. After tuning by hand,
parameter rmax was set to |V | − 1.

Update(T ib,T rb,T bs): In this procedure T rb and T bs are set to T ib (i.e.,
the iteration-best solution), if f(T ib) < f(T rb) and f(T ib) < f(T bs).

ApplyPheromoneUpdate(cf ,bs update,T ,T ib,T rb,T bs): As usual, the pro-
posed ACO algorithm may use three different solutions for updating the
pheromone values: (i) the iteration-best solution T ib, (ii) the restart-
best solution T rb and, (iii) the best-so-far solution T bs. Their influ-
ence depends on the convergence factor cf , which provides an esti-
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Table 1. The schedule used for values κib, κrb and κbs depending on cf (the conver-
gence factor) and the Boolean control variable bs update.

bs update = false bs update = true

cf < 0.7 cf ∈ [0.7, 0.9) cf ≥ 0.9

κib 2/3 1/3 0 0
κrb 1/3 2/3 1 0
κbs 0 0 0 1

mate about the state of convergence of the system. To perform the
update, first an update value ξe for each link e ∈ E is computed:
ξe := κib · δ(T ib, e) + κrb · δ(T rb, e) + κbs · δ(T bs, e), where κib is the
weight of T ib, κrb the weight of T rb, and κbs the weight of T bs such that
κib+κrb+κbs = 1.0. The δ-function is the characteristic function of the
set of links in a tree T , that is, δ(T, e) = 1 if e ∈ E(T ), and δ(T, e) = 0
otherwise. Then, the following update rule is applied to all pheromone
values τe:

τe := min {max{τmin, τe + ρ · (ξe − τe)}, τmax} ,

where ρ ∈ (0, 1] is the learning rate, set to 0.1. The upper and lower
bounds τmax = 0.99 and τmin = 0.01 keep the pheromone values always
in the range (τmin, τmax), thus preventing the algorithm from converging
to a solution. After tuning, the values for κib, κrb and κbs are chosen as
shown in Table 1.

ComputeConvergenceFactor(T , T rb, T bs): This function computes, at each
iteration, the convergence factor as

cf :=

∑
e∈E(T rb) τe

(|E(T rb)| − 1) · τmax
, respectively cf :=

∑
e∈E(T bs) τe

(|E(T bs)| − 1) · τmax
,

if bs update = false, respectively if bs update = true. Here, τmax is
the upper limit for the pheromone values. The convergence factor cf
can therefore only assume values between 0 and 1. The closer cf is
to 1, the higher is the probability to produce the solution T rb (or T bs

analogously).

4. Experimental Evaluation

We implemented our algorithm in ANSI C++ using GCC 3.2.2 for
compiling the software. Our experimental results were obtained on
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a PC with an AMD64X2 4400 processor and 4 GB of memory. We
used a set of 30 problem instances with 50 nodes that was introduced
in [1, 10] for the MEB problem. The 50 nodes per instances are ran-
domly scattered over a square of 1000 × 1000. Given these area re-
strictions we decided to solve the MEBRA problem for antennas where
P = {0, 100, 200, 300, 400, 500}. This corresponds, for example, to the
antennas of iSense sensor nodes. After a simple adaptation to the ME-
BRA problem, we used the popular broadcast incremental power (BIP)
algorithm presented in [9] as a benchmark algorithm for comparison.

We applied the ACO algorithm 30 times with a computation time
limit of 20 seconds to each of the 30 problem instances. The results
are shown in Table 2, in the following way. The first column provides
the instance name. Then the results of three algorithms are provided.
For BIP, which is a deterministic constructive heuristic, we provide the
result and the computation time. Note that a computation time of 0.00
means that the algorithm was faster than 0.01 seconds. The second al-
gorithm is BIP+VND, which is BIP with the subsequent application of
VND as outlined in Section 3. In the case of BIP+VND we also provide
the result plus the computation time. Moreover, we show the percentage
improvement (labelled deviation) over the results of BIP. Note that neg-
ative percentages indicate an improvement. Finally, the results of ACO
are given, for each instance, by the best result obtained in 30 runs (see
column best), the average result over 30 runs (see column average),
and the average computation time for reaching the best solution of each
run. As in the case of BIP+VND, we also show for ACO the percentage
improvement over BIP.

The results clearly show that BIP+VND is much better than BIP, and
that ACO is clearly better than BIP+VND. On average BIP+VND is
12.78 percent better than BIP, whereas ACO is on average 33.99 percent
better than BIP. This comes at the cost of an increased computation
time. However, the average computation time of ACO for all instances
is 4.28 seconds, which is not much time at all. Moreover, sensor networks
are rarely much larger than 50 or 100 nodes. Therefore, the increased
computation time is not a problem for practical purposes. Finally, in
order to give the interested reader a flavor of the nature of the solutions
obtained by ACO, the best solution obtained by ACO for instance p50.00
is shown in Figure 2.

5. Conclusions

In this work we have adapted an ant colony optimization published
earlier for the minimum energy broadcast problem in wireless ad-hoc
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Figure 2. Instance: p50.00, required power: 540000.00. The circles show the emis-
sion powers of the individual sensor nodes. Gray shades rings show the “wasted
energy” because the antenna model works with only 5 different power levels.

networks to the case of sensor networks with more realistic antennas.
The results show that our algorithm is largely superior to an adapted
popular constructive heuristic from the literature.

In the future we plan to do the following. It is important to realize
that minimizing the sum of the emission powers of all sensor nodes for a
single broadcast transmission does not necessarily imply a long network
lifetime. Imagine, for example, a single node with a very high emission
power. After repeated broadcast actions, this node will be the first one
to run out of battery, which will make the whole network un-operational.
Therefore, when network lifetime is concerned, it is important to balance
the energy spending of the nodes. We are currently working on an
extension of the algorithm in this direction.
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Peter Korošec, Gregor Papa, Vida Vukašinović
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Abstract Today, many algorithms are developed, evaluated, and compared on
test benchmark problems. Their drawback is that they can simulate
real-world problems up to some degree. Often, it turns out that there
are many specifics of the problem we are trying to solve. To make algo-
rithms efficient, constraints need to be considered and included in the
problem solving. In this paper a real-world production planning prob-
lem is addressed. A typical approach with genetic algorithm turned out
to be insufficient due to complexity with many constraints. To success-
fully solve this problem, a memetic algorithm, which uses specialized
local searches to improve solutions acquired by genetic algorithm, is
proposed. It is shown, that the use of specialized local searches can
significantly improve the convergence and efficiency of the algorithm.

Keywords: Application, Combinatorial optimization, Memetic algorithm, Schedul-
ing problem

1. Introduction

Today’s complex manufacturing processes have multiple types of prod-
ucts, each requiring many different steps, production processes, and
product parts for completion. The job of the expert for the manufac-
turing plan is to find a way to successfully manage resources in order to
produce products in the most efficient way possible. The expert must
design a production schedule, primarily such that it satisfies on-time de-
livery and minimizes production costs in terms of time needed to com-
plete the production process. There are also many specific constraints
that need to be considered. The main problem is the exchange delay,
caused by adapting production lines to different types of products and
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supplying the appropriate parts. Such problem is a typical member of
the family of job scheduling problems [3].

To solve the job scheduling problem there are many scheduling meth-
ods reported in the literature. They are all useful and efficient in some
aspect. One of the approaches is the use of genetic algorithm (GA). A
heuristic for the open job shop scheduling problem using GA to min-
imize makespan is developed in [16]. On the other hand a scheduling
method based on GA is developed considering multiple criteria in [5].
Other implementations of GA for job scheduling can be found in [18].
Furthermore, memetic algorithms (MAs) [14] represent a synergy of evo-
lutionary (or any population-based) approach with separate individual
learning or local improvement procedures for problem search. Various
MAs are developed [4, 9, 13] to obtain even better results than GA for
various job scheduling applications. With the use of local search tech-
niques the results are further improved. MAs do not only improve the
quality of solutions but also reduce the overall computational time [9].

The rest of the paper is organized as follows: in Section 2 we formally
define the problem; in Section 3 we describe the approach used for the
search of the best schedule; in Section 4 we show the user interface; in
Section 5 we describe the experimentation environment with results; and
in Section 6 we list our conclusions.

2. Planning Problem

As shown earlier our planning problem can be represented as job
scheduling problem. Job scheduling problem is NP-hard [3]. In gen-
eral, a job scheduling problem can be described in a following manner.
Let assume we have a finite set of n jobs, where each job consists of a
chain of operations. Then we have a finite set ofm machines, where each
machine can handle at most one operation at a time. Here each oper-
ation needs to be processed during an uninterrupted period of a given
length on a given machine. The purpose is to find a schedule, that is,
an allocation of the operations to time intervals to machines, that has
overall minimal length.

More formal definition would be as follows. Let assume job set J =
{j1, j2, . . . , jn} and a machine set M = {m1,m2, . . . ,mm} with opera-
tions O = {O1, O2, . . . , On}, where Oi = {oi1, oi2, . . . , oiqi},and qi is the
number of operaitons in the chain Oi, (i = 1, 2, . . . , n). Here, each op-
eration has its processing time {τi1, τi2, . . . , τiqi}. The goal is to find an
optimal feasible schedule with minimum length.
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Scheduling problems involve search for the optimal schedule under
various objectives, different machine environments and characteristics
of the jobs.

Our problem has additional constraints, which need to be considered.
MachinesM (production lines) have different capabilities. Each machine
has its own time schedule (when it is operational). Each job has its own
deadline, which must be met. In addition it can be done only on some
machines and on each of them the speed of manufacturing process is
different. Between jobs there can be an exchange delay, which depends
on previous job and machine used. There is also a stock of finished
products. If a job consists of these products, than it does not need to
be produced. We can use the stock.

Taking into account the above mentioned constraints the task is to find
the schedule, that minimizes the number of delayed orders (produced
after deadline), exchange delays and time to finish all the orders.

To tackle this problem we developed a adapted MA.

3. Memetic Algorithm

Our search approach bases on GA [1, 8], which is a population-based
evolutionary approach. It was chosen due to algorithm’s intrinsic par-
allelism that allows simultaneous search within a broad database of so-
lutions in a search space. The risk of converging to a local optimum
exists, but efficient results of various researches on different optimiza-
tion problems [7, 10, 11, 15, 17] encouraged us to consider GA approach.
We developed our own version of GA, to fully adapt it to the specific
problem of production planning. It is further enhanced with local search
procedures to improve the results of the search, which transforms GA
to MA. Such MA [14] possesses the ability of GA to find a good (near-
optimal) solution in a reasonable time, and the power of local search to
move quickly from the near-optimal solution to the optimal one. The
details of the MA, based on the directions in [2, 12] and the local search
procedures, is presented below and described in the following sections.

3.1 Production Schedule Encoding

The production schedule is encoded into one chromosome with a tu-
ples of values. Each tuple (gene) consists of the index of the enumerated
order and the production line.

Based on the given list of all orders, which are sorted according to
the deadlines, various orders of indexes that represent the given order
are encoded in chromosome. A chromosome, which includes encoded
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Algorithm 1 Memetic Algorithm

1: SetInitialPopulation(P )
2: Evaluate(P )
3: while not EndingCondition() do
4: ReproduceBetterSolutions(P, r)
5: Crossover(P, pc)
6: Mutation(P, pm)
7: if LSenable then
8: LocalSearch()
9: end if

10: Evaluate(P )
11: end while

production schedule of n orders, looks like

C = i11i12i21i22 . . . ij1ij2 . . . in1in2, (1)

where ij1 represents an index of the order, ij2 represents the production
line for that order, and j = 1, 2, . . . , n.

3.2 Population Initialization

The initial population P consists of N chromosomes. In each chro-
mosome the orders are randomly distributed, and also the assigned pro-
duction line is chosen randomly among possible lines for each order.

Since the numbers in the chromosome represent the indexes of orders
their values can not be duplicated and no index can be missed; therefore
both conditions must be considered during the initialization.

3.3 Genetic Operators

The elitism strategy is used in order to prevent losing the best found
solution by memorizing it.

The substitution of the least-fit chromosomes with the equal number
of the best-ranked chromosomes ensures better solutions to have more
influence on the new generation. The ratio of all chromosomes in the
population to be replaced is set by the ratio r.

The Crossover (P , pc) is performed with the interchange of positions
that store the ordered indices within the range (order-based crossover).
The order-based crossover randomly takes a part of two parents, swaps
genes of the parents in this part and orders the remaining genes in the
first parent in accordance with its order in the second parent. During
the optimization procedure four types of order-based crossover are used
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and are switched every 10 generations. The implemented crossovers are
order (OX), cycle (CX), partially-mapped (PMX) and PTL crossover.
OX, CX and PMX are more precisely explained in [12], while PTL is
explained in [6]. In OX, PMX and PTL two-point crossover scheme is
used, where chromosome mates are chosen randomly.

In the mutation process Mutation(P , pm) each value of the chromo-
some mutates with a mutation probability pm. However, since a high
mutation rate results in a random walk through search space, pm has to
be low. Three different types of mutation are applied: change of pro-
duction line; switching of two genes in the chromosome; and shifting of
a gene into some new position. Notice, that shifting of a gene into some
new position has an effect on larger part of chromosome.

Each new population is generally better than the previous one. To
overcome a possible disruptive effect of mutation at the later stages of
the optimization and speed up the convergence to the optimal solution
in the final optimization stages, crossover and mutation probability are
being decreased with each new restart of the algorithm. Moreover, the
lower number of mutated positions in the later stages presents some
kind of a local search with minor movements around current solution,
i.e. exploitation.

3.4 Local Search

Local search is enabled when new best solution is found. It locally op-
timizes the new best solution. Additionally, at every 300-th generation
it randomly selects 10% of solutions from population P , and locally opti-
mizes them. Local search is implemented with four different procedures,
which run sequentially in the following order:

Stock replacing. For each order filled from the stock it is checked,
if the order for the same product is scheduled for the production.
If the order, to be produced, is delayed, than this order is shifted
in front of the order from the stock, which was checked. In this
case some orders of the same product are possibly moved out of
the stock and placed into the production. If the number of the
delayed orders is increased, then the previously shifted order is
moved back to its previous position.

Deadline sorting. For each production line, all orders with delayed
deadlines are checked if they can be moved before some other order.
The delayed order is moved before each of the precedent order,
so that it is not delayed anymore, while ensuring that the total
number of delayed orders is not increased.
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Production line changing. For each production line, all orders
are checked if they can be placed on any other feasible production
line. If they can be placed on some other production line, then it is
further checked if they can be merged with some other similar order
on that new production line. The switch to another production line
should not increase the exchange delay on the new production line.

Similar product merging. For each production line, it is checked if
several orders can be merged together. The merging is performed
in four steps, according to different properties of the products.
First the orders for the products with the same height are merged,
then those with the same size are merged, after that the orders
with the same connectors, and finally those with the same power
characteristics. The idea of merging procedure is to decrease the
production time on each line, as result of decreased exchange delay
on the line.

3.5 Fitness Evaluation

After the variation operators modify the solutions, the modified part
of new population is ready to be evaluated. Here the evaluator is used
to evaluate solution according to number of delayed orders (norders),
exchange delay times in minutes (texchange), overall production time in
minutes (toverall), and number of days of delayed orders (ndays). The cost
function, which is calculated inside Evaluate(P ) was proposed according
to experts requirements and is set as follows:

f(P ) = 107 · norders + 104 · texchange + toverall + n2days.

From the cost function it is obvious that the most important item to
minimize is norders, then texchange and lastly toverall and ndays. The fac-
tors besides these items make sure that the first two digits of evaluation
function value represent number of delayed orders, next three digits rep-
resent exchange delay times in minutes and the last digits represent the
influence of toverall and ndays.

3.6 Ending Condition

The EndingCondition() function checks if a certain number of genera-
tions are without improvement. When that occurs the system is assumed
to be in a steady state, and the optimization ended. The currently best
solution is chosen as a final result.
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4. User Interface

When the algorithm is implemented for an industrial problem, we
have to be aware of many other aspects/components besides the algo-
rithm’s performance. The program will be used by engineers and other
staff on a daily basis. Therefore, it is important to make our optimiza-
tion program usable and user friendly without having the background
knowledge of the optimization algorithm. Since the end user requested
that the application is accessible from a web browser, we have chosen
Java as our implementation language.

Figure 1. The graphical user interface in Java.

Graphical user interface (GUI) is done as a java application (see Fig-
ure 1), which can be easily modified to run from any web browser on
any platform. The GUI provides a consistent appearance and intuitive
controls like push buttons, text fields, sliders, and so forth. The GUI
behaves in an understandable and predictable manner.

The algorithm optimizes the schedule of given list of orders. Every
time a new batch of orders is added to the list, the algorithm is being
rerun by the user. The GUI enables the user to visually observe the
simulation of the current optimal production schedule. By pushing the
start button the problem is loaded and the algorithm starts. The current
best schedule is drawn on the panel in the lower part of the GUI. The
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schedule refreshes every time the algorithm finds a better solution. It
stops when the user interrupts the optimization process by pushing the
stop button. During the optimization process, the information about the
currently best solutions is displayed in a text list in the upper right corner
of the GUI. The schedule is visualized by production lines with products
shown as colored boxes. Each product box has its own color and the size
corresponding to the duration of its production process. The product
information window opens with a mouse click on the product box. It
displays information on production line, production start and end time,
deadline, and other production properties. The products, which exceed
the deadline, are colored white with only borders in proper color. To
emphasize the fact that the production line exchange delay downtime is
minimized similar products are represented with different shades of the
same basic color. The slider above the time scale enables the user to
visualize up to 31 day schedule at once. The GUI also enables a moving
forward or backward through the schedule.

5. Performance Evaluation

5.1 The Experimental Environment

The computer platform used to perform the experiments is based on
AMD Athlon II TM 2.9-GHz processor, 4 GB of RAM, and the Microsoft R©

Windows R© 7 operating system. The MA is implemented in Sun Java 1.6.

5.2 The Test Cases

The GA and MA algorithms were tested on two different real order
lists from a production company. The first task (Task 1) consists of
n = 711 orders for 251 products, while the second task (Task 2) consists
of n = 737 orders for 262 products. Number of orders n represent the
problem dimension. In both tasks m = 5 production lines are available.
Each product can only be put on some production lines (depending on
the product characteristics).

We made 30 runs with each algorithm (GA and MA). The run time
of optimization is approximately 10 minutes for 1, 000, 000 number of
evaluations.

5.3 Parameter Settings

We must note that during the experimentation we did not fine-tune
the algorithms parameters, but only carried out a limited number of
experiments to find satisfying settings.
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The following parameters were used:

the population size N = 50;

the number of generations depends on the progress of the search.
After there is no improvement for 1, 000 generations the search is
restarted, and lasts until the number of evaluations limit is reached.
With each restart the crossover and mutation probabilities were
decreased by 50% of the current value;

the replacement rate r = 0.2;

the crossover probability pc = 0.7;

the mutation probability pm = 0.005.

5.4 Results

In Tables 1 and 2 best, mean, worst, and standard deviations of solu-
tions are presented. It is obvious that MA achieves consistently better
solutions than GA in both tasks. From Table 1 it is seen that the mean
solution obtained by GA consists of 22 delayed orders, while the worst
solution obtained by MA consists of only 13 delayed orders for Task 1.
The difference between the worst solution obtained by GA and MA are
even larger and the standard deviation obtained by GA is much larger
than standard deviation obtained by MA. The results of optimization
for Task 2 are similar to the results of optimization for Task 1 accord-
ing the difference between best, mean, worst and standard deviation of
solutions of both algorithms.

Table 1. Results of optimization for Task 1

Algorithm GA MA

Best 1.312× 108 1.308× 108

Mean 2.253× 108 1.340× 108

Worst 5.216× 108 1.610× 108

StD 1.015× 108 6.526× 106

To show how each of the components of the cost function behaves
during the search process, we present Figures 2 and 3. Here, only changes
to the evaluation function variables (norders, texchange, toverall, and ndays),
when new better solution was found, are shown. It can be visually seen
that the MA has better convergence with much more consistent and
stable behavior than GA. Note that local search, used by MA, requires
around 30% of all evaluations.
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Figure 2. Task 1: a) norders, b) texchange, c) toverall, and d) ndays for GA and
e) norders, f) texchange, g) toverall, and h) ndays for MA.

When comparing with the previous approach of production planning,
the expert’s manual plan for those two tasks had 53 delayed orders in
Task 1 and 61 delayed orders in Task 2. This is significantly worse than
results obtained by both of the algorithms. The details are presented in
Table 3.
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Figure 3. Task 2: a) norders, b) texchange, c) toverall, and d) ndays for GA and
e) norders, f) texchange, g) toverall, and h) ndays for MA.

6. Conclusions and Future Work

In this paper, we have shown an application of specialized memetic
algorithm on a real-world production planning problem. Since such a
problem is a member of the family of job scheduling problems, which are
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Table 2. Results of optimization for Task 2

Algorithm GA MA

Best 1.714× 108 1.611× 108

Mean 3.118× 108 1.748× 108

Worst 6.114× 108 1.914× 108

StD 1.009× 108 7.235× 106

Table 3. Comparison of delayed orders

Task 1 Task 2
manual GA MA manual GA MA

Best 13 13 17 16
Mean 53 22 13 61 31 17
Worst 42 16 56 19

known to be NP-hard, we have decided to use stochastic optimization
approach called genetic algorithm (GA). Due to the problem complexity
with many constraints it turned out that this is not sufficient. So we
added some specialized local searches and therefore made the memetic
algorithm (MA).

We have showed, that the use of both stochastic approaches greatly
improved the quality of production plans in respect to expert’s manual
solution. Between the GA and MA was also a noticeable difference in
favor of the MA. The convergence and efficiency of the algorithm has
drastically improved with the use of specialized local searches.

For future work, we are planning to add some more constraints, like
fixed order production days (the day when order has to be carried out),
etc. Another aspect of improvement will be to make the application work
on a client-server base. This means that the optimization algorithm will
run on a host server and the results can be accessed from any local client,
which is connected to the server.
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Abstract Staff scheduling has become increasingly important for both public sec-
tor and private companies. Good rosters have many benefits for an
organization, such as lower costs, more effective utilization of resources
and fairer workloads and shifts. The construction of optimized days-
off for the personnel is an important part of the process. This paper
presents a successful way to schedule days-off for the staff of a Finnish
bus transportation company. The algorithm is a variation of the coop-
erative local search method. The generated software is currently in use
in the company.

Keywords: Metaheuristics, Real-world scheduling, Staff scheduling

1. Introduction

Many new timetabling problems and algorithms have been introduced
in recent years. Still, most of the timetabling research concentrates on
educational timetabling, staff scheduling and sports scheduling. Staff
scheduling is the process of constructing optimized work timetables for
the personnel. Different variations of the problem are NP-complete
[2, 16, 13, 17] and thus extremely hard to solve. The first mathematical
formulation of the problem based on a generalized set covering model
was proposed by Dantzig [10]. A good overview of staff scheduling can
be found in [12]. Nurse rostering [7] is by far the most studied applica-
tion area of staff scheduling. Other successful application areas include
airline crews [11], call centers [4], postal services [1] and transport com-
panies [20]. Because of its economic scale, airline crew scheduling is
probably the most celebrated application area of staff scheduling. Most
of the cases in which academic researchers have announced that they
have closed a contract with an organization concern nurse rostering (see
e.g. [3] and [6]). This paper presents a new case: scheduling days-off for
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the staff of a Finnish bus transportation company. To the best of our
knowledge, this is one of the few papers focusing on days-off scheduling.

There are basically four reasons for the current interest in staff schedul-
ing. First, public institutions and private companies around the world
have become more aware of the possibilities of decision support technolo-
gies, and they no longer want to handle the schedules manually. Second,
human resources are one of the most critical and most expensive re-
sources for these organizations. Careful planning can lead to significant
improvements in productivity. Third, good schedules are very important
for the welfare of the staff. Besides increasing employee satisfaction, ef-
fective labor scheduling can also improve customer satisfaction. Finally,
new algorithms have been developed to tackle previously intractable
problem instances, and, at the same time, computer power has increased
to such a level that researchers are able to solve real-world problems.
One further significant benefit of automating the scheduling process is a
considerable time-saving for the administrative staff involved.

The focus of this paper is to solve a constrained days-off scheduling
problem. In Section 2 we define a staff scheduling problem and intro-
duce the necessary terminology. Section 3 presents the requirements and
the requests of the days-off scheduling problem and Section 4 details a
days-off scheduling problem in one of the Finnish bus transportation
companies. Section 5 presents our solution method. In Section 6 we de-
scribe the difficulty of the process of consulting with the problem owner.
Finally, in Section 7, we propose a set of test instances that we hope the
researchers of the days-off scheduling problem will adopt. It will be seen
that our solutions to the real-world problem and for the test instances
are competitive.

2. Staff Scheduling

The staff scheduling problem has a fairly broad definition. Most of the
studies focus on assigning employees to shifts, determining working days
and rest days or constructing flexible shifts and their starting times.

Staff scheduling consists of assigning employees to tasks over a period
of time according to a given timetable. The planning horizon is the time
interval over which the employees have to be scheduled. Each employee
has qualifications and skills that enable her/him to carry out certain
tasks. A skill category determines a group of employees who have a
particular level of qualification. Days are divided into working days
(days-on) and rest days (days-off ). A sequence of working days is called
a work stretch. Working days consist of shifts. A shift is a contiguous set
of working hours and is defined by a starting period and day along with
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a shift length in periods. Each shift is composed of a number of tasks.
A specific sequence of shifts for an employee is called a stint. A work
schedule for an employee over the planning horizon is called a roster. A
roster is a combination of shifts and days-off assignments that covers a
fixed period of time.

Cyclic schedules are such that all employees have the same basic
schedule but start with a different day. In cyclic scheduling the goal
is to find a schedule that is optimal for all employees. Non-cyclic sched-
ules are individual. In non-cyclic scheduling the goal is to find rosters
that fulfill the requests of most employees. Continuous schedules arise
in organizations that operate 24 hours a day and seven days a week,
otherwise a schedule is called discontinuous.

Table 1. An example of a staff scheduling problem

M1 M2 M3 W1 W2 M4 M5

Mon Day 1 2 3
Night 3 1 2

Tue Day 1 2 3
Night 1 3 2

Wed Day 1 3 2
Night 1 3 2

Thu Day 3 1 2
Night 1 2 3

Fri Day 1 3 2
Night 1 2 3

Sat Day 1 3 2
Night 2 3 1

Sun Day 1 2 3
Night 2 3 1

Table 1 shows a solution for a one-week staff scheduling problem with
seven employees (five men and two women), two shifts in a workday (day
and night) and three tasks to be carried out within a shift. In addition,
tasks one and two can only be carried out by men, and each employee
should have one day-off.

A good classification of a staff scheduling process is given in [12].
Figure 1 shows a modified version of their presentation. The first thing
is to determine how many employees are needed at different times over
some planning horizon. Demand modeling is the process of determining
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planning horizons, the shift structure, number of employees needed at
different times, tasks to be carried out in particular shifts and the level
of qualification needed in different shifts. The output is a mathematical
model of the problem at hand.

Figure 1. A staff scheduling process.

Days-off scheduling deals with the assignment of rest days between
working days to employees over a given planning horizon. Shift schedul-
ing deals with the assignment of employees to shifts. It can also specify
the starting time and duration of shifts for a given day; that is, days-off
scheduling deals with working days and shift scheduling with the work-
ing times of day. When days-off and shifts are scheduled simultaneously,
the process is called tour scheduling. The name comes from the fact that
we need to specify the hours of the day and days of the week through
which each employee must travel. Line of work construction ensures the
feasibility of each employee’s roster. It also ensures that all the rosters
together satisfy the work requirements at all times in the planning hori-
zon. Staff assignment involves the assignment of individual employees
to the rosters. In the case of cyclic schedules, this is usually performed
manually. In the case of non-cyclic schedules, line of work construction
and staff assignment are often done during shift scheduling. We adopt
this convention in this paper. Finally, a reporting tool should display
solutions and provide performance measures in such a way that a user
can easily evaluate his or her level of satisfaction. When necessary, the
demand modeling can be reprocessed and focused, and the whole staff
scheduling process restarted. We will see an example of this in Section 6.

3. Requirements and Requests

In this section we will outline the typical constraints of a days-off
scheduling problem. The hard and soft constraints of the problem vary
somewhat depending on the problem instance at hand. However, in most
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cases the hard constraints consist of coverage, regulatory and operational
requirements and the soft constraints consist of operational and personal
preferences (see e.g. [5]). The coverage requirement ensures that there
are a sufficient number of employees on duty at all times. The regulatory
requirements ensure that the employee’s work contract and government
regulations are respected. The personnel’s requests are very important
and should be met as far as possible; this leads to greater staff satis-
faction and commitment, and reduces staff turnover. An organization
can use a mixture of the following requirements and preferences as a
framework for its days-off schedule generation:

Coverage requirement

(C1) A minimum number of employees must be guaranteed for each
shift.

Regulatory requirements

(R1) The number of working days and days-off within a timeframe must
be respected.

(R2) The number of holidays within a year must be respected.

(R3) The number of special days for particular employees within a time-
frame must be respected.

(R4) Employees cannot work consecutively for more than k days (the
maximum length of a workstretch).

(R5) Some employees cannot work at weekends.

Operational requirements

(O1) At least k working days must be assigned between two separate
days-off.

(O2) A balanced assignment of weekdays must be guaranteed between
employees.

(O3) A balanced number of surplus employees must be guaranteed for
each working day.

Operational preferences

(E1) Single days-offs should be avoided.

(E2) The maximum length of consecutive days-off is k.
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(E3) A balanced assignment of single days-off and single working days
must be guaranteed between the employees.

Personal preferences

(P1) Try to assign given employees to the same shifts and try to avoid
assigning another given employees to the same shifts.

(P2) Try to assign a requested day-on or avoid a requested day-off.

4. The Problem in a Finnish Bus Transportation
Company

In our previous studies we have successfully scheduled the Finnish
major ice hockey league [14] and the Finnish 1st division ice hockey
league [15]. When Turku Transport Services Ltd. heard that we had
scheduled these leagues, they contacted us. Turku Transport Services
Ltd. is a bus transportation company in the City of Turku. They
have currently 58 full-time, 8 part-time and 4 retired-but-still-active bus
drivers. Two part-time drivers count as one full-time driver.

Prior to the year 2010, rosters for bus drivers were produced by a
cyclic shift scheduling software which was quite out-of-date. The current
number of employees and the current way of doing business had grown
beyond the limits of the current system. The old system had led to an
oversupply of bus drivers with too much idle time. Furthermore, the
old system also required far too much manual work. For example, the
days-off scheduling was done completely manually.

Staff scheduling is quite easy in many companies because the shifts are
invariant and no work takes place on weekends. But when the amount
of work varies from day to day and from week to week, and the com-
pany runs on every day, the scheduling process can be very complex
and difficult. That is the case at Turku Transport Services Ltd. Their
scheduling problem is non-cyclic and discontinuous, and can be divided
into two separate sub-problems: days-off scheduling and shift scheduling.
We concentrate on the days-off scheduling problem.

Table 2. The minimum number of employees needed on different days of week

Mon Tue Wed Thu Fri Sat Sun

Employees 47 47 47 47 50 27 10

Suppose we have n (62) employees. Over the planning horizon of one
year (13 timeframes with a timeframe of 4 weeks totaling 364 days), we
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must find n sequences of days-on and days-off that satisfy the following
hard constraints

(C1) A minimum number of employees must be guaranteed for each
working day (see Table 2).

(R1) Each employee should have 9 days-off in every 4-week timeframe.

(R4) Employees cannot work consecutively for more than 6 days.

(R5) Six employees cannot work at weekends.

(O1) At least 2 working days must be assigned between two separate
days-off.

(O2) The number of days-off per weekday between employees should
not differ by more than 10%.

(O5) A balanced number of surplus employees must be guaranteed for
each working day.

(P1) Exactly the same sequence for three employee groups with three
employees in each group must be guaranteed.

and the following soft constraints

(E1) Single days-off should be minimized (one violation for each single
day-off).

(E2) The maximum length of consecutive days-off is three (one violation
for each day more than three).

(E3) The number of single days-off and single working days between
employees should not differ by more than 25% (one violation for
each unit of percentage over 25).

The company has more employees working than is needed to cover the
minimum number of employees each working day. The surplus employees
are used to cover the expected sick days. In addition, retired-but-still-
active drivers can be used if necessary. The average number of surplus
employees is calculated as follows. The number of man-days that is
needed over the planning horizon is given as

man needed = pm
7∑

i=1

wi,

where p is the number of timeframes, m is the number of weeks in
the timeframe and wi is the number of employees needed on weekday i
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(see Table 2). Respectively, the number of man-days available over the
planning horizon is given as

man available = np(7m− d),

where n is the number of employees and d is the number of days-off that
must be respected within each timeframe (see R1). The average number
of surplus employees is now given as

avg surplus =
man available−man needed

7pm
.

In this case, man needed = 13 × 4 × 275 = 14300, man available =
62× 13× (7× 4− 9) = 15314 and avg surplus = (15314− 14300)/364 ≈
2.8. The average number of surplus employees needed on different days
of the week are calculated equally, giving values 3.33, 3.33, 3.33, 3.33,
3.55, 1.91, and 0.71. The constraint O5 can now be rephrased as “On
Mondays, Tuesdays, Wednesdays, Thursdays and Fridays either three or
four, on Saturdays either one or two, and on Sundays either zero or one
surplus employees must be guaranteed”.

The objective is to find a solution that has no hard constraint viola-
tions and that minimizes the weighted sum of the soft constraint viola-
tions. We use the adaptive penalty method for multi-objective optimiza-
tion (see Section 4). The importance of the soft constraints is handled
by giving them different constant weights. Hard constraint weights are
dynamically calculated according to the ADAGEN method. The values
of the weights, given in Table 3, were decided based on the negotiations
with the company. Note that the hard constraint C1 is not listed in the
table because the algorithm uses the exact number of employees given
in Table 2.

Table 3. The constant weights for the soft constraints and the maximum values for
the hard constraints (minimum is one)

E1 E2 E3 R1 R4 R5 O1 O2 O5 P1

1 10 5 50 50 50 20 30 50 70

We generated ten days-off schedules and selected the best one. The
schedule had no hard constraint violations and 886 single days-off. The
lengths of days-off sequences were between one and three, and the num-
ber of single days-off and single working days between employees did
not differ by more than 25%. As a result, the weighted sum of the soft
constraint violations was 886. The algorithm was run on an Intel Core 2
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Extreme QX9775 PC with a 3.2GHz processor and 4GB of random ac-
cess memory running 64bit Windows Vista Business Edition. The best
solution was found in 16 hours of computer time. The time may first
appear to be long. However, the point here is not to find a solution fast
enough and with sufficient quality. Instead, the main point here is to
find the solution of the best quality. The planning horizon is one year,
so it is worth running the algorithm overnight.

5. Solution Method

We believe that metaheuristics are best suited to solving the problem
at hand, because of the difficulty in finding even a feasible solution and
because of the number of constraints. In fact, our studies have shown
that in practical cases it is often possible to modify one’s view of what
is feasible and what is not.

The algorithm has features from many different optimization methods.
It was first introduced as a hybrid genetic algorithm with one mutation
operator and no recombination operators. Later, when the terminology
evolved, it could have been presented as a genetic local search method or
as a memetic algorithm. The algorithm uses features from tabu search,
simulated annealing, variable neighborhood search and hyper-heuristics.
Finally, the greedy hill-climbing mutation (GHCM) operator introduced
in [18] is based on similar ideas to ejection chains. We believe the best
way to describe our algorithm is to call it a cooperative local search
[8]. Here, we describe the components of the algorithm. The details are
further discussed in [19] and [14]. We believe the best way to describe
our algorithm is to call it a cooperative local search [8]. The outline of
the algorithm is given in Figure 2.

Marriage selection is used to select a schedule from the population of
schedules for a single GHCM operation. The GHCM operator moves an
object, o1, from its old position, p1, to a new position, p2, and then
moves another object, o2, from position p2 to a new position, p3, and
so on, ending up with a sequence of moves. In days-off scheduling, an
object is a day-off. A day-off can be moved between different employees.
A tabu list prevents reverse order moves in the same sequence of moves.
The simulated annealing feature uses the exponential cooling scheme.
We stop the cooling at a predefined temperature. Therefore, after a
certain number of iterations, we will continue to accept an increase in
the cost function with some constant probability, p (equal to 0.0015).
In addition, after a given number of iterations we shuffle the current
solution. We use five simple shuffling operations.
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Figure 2. The outline of the staff scheduling algorithm.
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The reproduction operation of the algorithm is based on the steady-
state reproduction to a certain extent: the new schedule replaces the
old one if it has a better or equal fitness. Furthermore, the least fit is
replaced with the best one when n better schedules have been found,
where n is the size of the population.

The ADAGEN method used is an adaptive penalty method for multi-
objective optimization. The method assigns dynamic weights to the
hard constraints instead of to the soft constraints. Finally, the current
production version of the algorithm for the presented staff scheduling
problems does not record and use the good parts of the previous solu-
tions. The parameters of the algorithm are the same as were found to
work best in [19]; that is, the population size equals 20, the maximum
move sequence in the GHCM equals 10 and the size of the tabulist is 5.

6. The Difficulty of the Process

An essential part of solving any practical problem is the process of
consulting with the various parties. We started by familiarizing our-
selves with different staff scheduling problems. We had previously solved
practical school timetabling and sports scheduling problems, but had no
clear understanding of staff scheduling. The first stage of the consulting
process was an interview with the CEO of the company. One important
thing to note is that he wanted to forget all the historical burdens to
start from scratch. After the interview we were quite pleased that the
literature we had read had given us the correct background we needed.
We were confident that we were being asked to solve a variation of the
shift scheduling problem.

We returned to the company after two months of further reading and
analyzing the given problem. This time we interviewed the transport
coordinator, who is responsible for the practical scheduling of the buses
and the bus drivers. She gave us new requirements and requests that
we were not aware of, and corrected some old ones. We were somewhat
surprised that she had a quite different vision of the future rostering
system than the CEO had. But still we were quite confident of what
we were doing, and decided to meet again within two months. Based
on this negotiation we made some final corrections and adjustments and
created the mathematical model of the given problem. We also had time
to design and code the first version of the algorithm. We then returned
to meet the CEO, the transport coordinator and her assistant to present
our current work.

What happened then was a total surprise. They were astonished that
we had not optimized the days-off. They claimed that it was the most
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important part of the scheduling process. We had thought they would
give the days-off to us, or to our algorithm as an input, and we would
then solve the monthly shift scheduling problem. But that was not the
case. We discovered that we should first solve the days-off scheduling
problem for the whole year. So, we went back home and started to
design another mathematical model for the new problem. Why we did
not understand that in first place is still a total mystery for us. But it
is worth noting that from the very beginning of the process they were
enthusiastic and not at all skeptical of us trying to beat the rosters they
had produced themselves.

It took another month before we could return to the customer. We
had done nothing to the shift scheduling problem, and had only designed
and coded an algorithm for the given days-off scheduling problem; just
to be surprised again. We were earlier told very complicated rules of how
to assign given employees to the same shifts. It had taken us a lot of
effort to model and code the given rules. In that meeting we found out
that it was not complicated at all: exactly the same sequence for three
employee groups with three employees in each group must be guaranteed
(see P1 in Section 4). Once more we went back home, simplified our
model and returned to the customer. We presented our software to the
CEO and the transport coordinator, and they were very pleased with the
results. What is the lesson learned? Researchers and customers speak
a somewhat different language; and it is the researchers’ job to learn a
new one. Customers tend to learn what they want not until they have
seen the outcome. That is why it pays off to first spend some time to
illustrate simple, easy and explicit problem instances and their possible
outcomes with customers. And even better if that could be done with
“paper and pencil”.

7. A Set of Test Instances

The generation of standard benchmark problems for staff scheduling
has received only some attention. The best test instances for employee
scheduling have been introduced in [9]. To the best of our knowledge, no
set of standard test instances has been published for days-off schedul-
ing problems. Researchers quite often only solve one real-world case.
The strength of artificial test instances is the ability to produce many
problems with many different properties. Still, they should be simple
enough for each researcher to be able to use them in their test environ-
ment. The strength of practical cases is self-explanatory. However, an
algorithm performing well on one practical problem may not perform
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satisfactorily on another practical problem. That is why we present the
first collection of artificial test instances for the days-off scheduling.

Table 4. Nineteen days-off scheduling test instances (n = the total number of em-
ployees, m = the exact number of employees needed each working day, t = the number
of timeframes, w = the length of a timeframe in weeks, d = the number of days-off in
a timeframe, smax = the maximum length of a work stretch, cmax = the maximum
length of consecutive days-off, eq = the number of identical days-off sequences be-
tween the employees, no = the number of employees who cannot work at weekends).
The solutions (sol) are the best of three runs.

# n m t w d smax cmax eq no sol

1 7 4 1 2 6 5 2 0*
2 14 9 1 2 5 5 3 1
3 14 11 1 2 3 6 2 14*
4 14 8 1 3 9 4 3 0*
5 15 10 1 3 7 5 3 0*
6 16 8 1 2 7 3 3 0*
7 28 19 1 4 9 5 3 6
8 28 20 2 2 4 5 2 32
9 42 27 2 4 10 6 4 0*

10 56 36 2 4 10 6 4 0*
11 28 14 4 4 14 4 4 0*
12 28 19 4 4 9 5 3 49
13 14 6 6 2 8 3 3 20
14 14 9 8 4 10 6 3 0*
15 32 16 8 2 7 3 3 0*
16 14 9 10 2 5 5 3 0*
17 14 9 5 2 5 5 3 3 10
18 14 9 5 2 5 5 3 2 6
19 14 9 5 2 5 5 3 3 2 15

Table 4 shows 19 test instances. The total number of employees (n)
varies between 7 and 56, and the number of total weeks (t×w) between
2 and 36. The exact number of employees (m) must be guaranteed for
each day. The maximum lengths of work stretches and consecutive days-
off are given. Their minimum lengths are two. Two instances require
a number of identical days-off sequences between the employees, and in
two instances a given number of employees cannot work at weekends.
The challenge is to find a feasible solution that minimizes the number
of single days-offs and single working days. The penalty for a single
days-off is one and the penalty for a single working day is two.

We were able to find the optimum solution (*) for eleven of the test in-
stances. For the other instances the optimum is not yet known. We hope
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these test instances will lay the foundation for the standard benchmark
instances for days-off scheduling problem.

8. Conclusions and Future Work

We scheduled days-off for the staff at a Finnish bus transportation
company. Our algorithm found a feasible and acceptable schedule for
their days-off scheduling problem. The generated days-off are currently
in use. We believe that the model and the algorithm presented in this
paper can be quite easily modified and transferred to solve other staff
scheduling problems. We also proposed a set of test instances that we
hope the researchers of the days-off scheduling problems will adopt.

We are currently solving the shift scheduling problem in the same
company. Our direction for future research will be to solve nurse roster-
ing problems occurring in major Finnish hospitals.
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Barbara Koroušić Seljak, Gregor Papa
Computer Systems Department
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Abstract Learning mathematics is like studying a foreign language. At first it is
hard, but eventually, it gets progressively easier. A lot of concepts in
mathematics are inter-related, so knowing one helps understand many
others. However, it has been known for a long time, through many de-
scriptive studies that have been undertaken since the 1970s, that math-
ematics has been unpopular and disliked. Namely, steps required for
learning mathematics, such as “Make sure you have at least an hour
a day to dedicate to learning mathematics. Progress through the lev-
els of mathematics. Practice with many problems.” are demanding for
many students. In this paper, we present a methodology for learning
elementary-school mathematics online. It is supported by a decision-
making system, based on evolutionary computation, which leads a stu-
dent in selecting an optimal subset of math items to effectively upgrade
the knowledge.

Keywords: e-learning, Evolutionary optimization, Web-based application

1. Introduction

The modern generation of students have grown up with technology
as a commodity for playing, social networking, obtaining many kind of
information and even for learning. Many of them act within virtual envi-
ronments and have developed virtual identities. They live in human and
technical networks that provide new opportunities for the presentation
of various experiments and knowledge. Learning within such networks is
based on concepts of aggregation, externalization, collective knowledge
creation and immersion [14].

In order to investigate the possibility of learning elementary-school
mathematics online, we developed a web-based application, called Mat-
Port (sinica.ijs.si/matport; Fig.e 1).1

193
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Figure 1. The MatPort system.

Although it is based on information and communication technologies,
it has a social dimension. Being part of a group and working as a collec-
tive enables students to share and discuss the mathematical knowledge.
On the other hand, online learning

is self-paced and gives students a chance to speed up or slow down
as necessary;

is self-directed, allowing students to choose content and tools ap-
propriate to their differing interests, needs, and skill levels;

is designed around a student.

It eliminates geographical barriers, opening up broader education op-
tions, and enhances other (e.g., computer) skills.

The rest of the paper is organized as follows: Section 2 describes the
content and the technology aspects of the web application. Section 3
outlines the concept of the decision-making system used to provide an
automatic search facility. The experimental work is presented in Sec-
tion 4, while conclusions and directions for future work are given in
Section 5.

2. Web-Based System

In Slovenia, there already exist web-based applications supporting
online learning of elementary school mathematics, e.g.,:



Bioinspired Online Mathematics Learning 195

Učiteljska.net (uciteljska.net), which is intended to support ex-
change of teacher experience and information;

e-um (www.e-um.si) that provides interactive online courses for
students.

However, there has been no system providing online courses on solving
verified mathematics problems.

2.1 MatPort Characteristics

There are two main characteristics that distinguish the web-based
application MatPort:

1 The system is based on the Slovenian curriculum for elementary
school mathematics;

2 It provides a set of verified mathematical problems for children
under 15 years of age [4].

In the pilot project, we have used a collection of verified sets of grades
6 to 9 (age group 12 to 15 years) mathematics problems published in the
form of flash cards. These problem-solving items are valuable because
they have been used for many years in the Slovenian schools, and have
already passed through many steps of evaluation. Of course, some of the
real-life items needed to be updated for the present time.

With the help of experienced teachers we classified the items into
subgroups with respect to the knowledge required for problem solving.
Items were classified by the content into three difficulty levels.

2.2 MatPort Modules

The web-based application provides modules for:

Entering math items, their solutions, and teaching instructions;

Solving math items;

Preparing the paper-and-pencil form of a test;

Providing other information relevant for teaching the elementary-
school mathematics.

While the first and the third module are aimed for teachers, the second
one is intended for students, and the last one for teachers and parents.
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2.3 MatPort Technology Aspect

The application was designed using state-of-the-art technologies. We
applied a UML (Unified Modelling Language) based model-driven metho-
dology (www.uml.org) to cover the life-cycle of the Web application
development. The MatPort’s data model was designed as a rational
database, consisting of tables that store data on user profiles, math
items, knowledge required for solving items, relations between the con-
tent areas, and history of items’ solving. In this stage we involved expe-
rienced teachers to design the application sympathetically with the way
students, teachers, and parents actually use the Web - not how we think
they should.

The application consists of the following modules:

modules for providing and solving math items;

a test-generator module;

an informer module; and

other modules, such as a forum and a download center.

The informer module has a static content that is managed by a content
management system, while the others may change their content in a
dynamic way. The application’s structure is shown in Fig. 2.

Figure 2. The MatPort’s structure.
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As the project’s budget was low and we needed to minimize the cost,
we decided to make good use of open-source and freely available software
applying:

Apache (www.apache.org) as a Web server that replies to Web
clients’ requests via HTTP (HyperText Transfer Protocol);

MySQL (www.mysql.com) as a database management system that
is based on the relational model;

PHP5 (HyperText Preprocessor) (www.php.net) as a server-side
technology;

JavaScript [3] as a client-side technology.

To support mathematical symbols, we integrated TinyMCE (tinymce.
moxiecode.com) as a platform independent JavaScript WYSIWYG ed-
itor. It has the ability to convert HTML TEXTAREA fields or other
HTML elements to editor instances. Because TinyMCE supports only
standard HTML math symbols, we extended its library with a mod-
ule for handling mathematical expressions. Once entered, these are
rendered into images using the LatexRender scripts (www.mayer.dial.
pipex.com/tex.htm). All MatPort printouts have the standard PDF
(Portable Document Format) format. The MatPort forum is based upon
the PHPBBTM (www.phpbb.com) open-source forum solution. Last but
not least, we set formatting MatPort visual options in a centralized doc-
ument that is referenced from PHP files by using CSS (Cascading Style
Sheets).

3. Decision-Making System

We are aware of the fact that only providing a dataset of math items
is not enough. We need to incorporate an extrinsic motivation system to
bribe 6th to 9th grade students to practice mathematics. There are rare
children who are intrinsically motivated to do repetitive, boring tasks.

3.1 How to Motivate Children?

A student who solves a MatPort math item receives information on
the progress through graphical symbols and stimulative words. Each
correctly solved math item, regardless of difficulty level, contributes to
the final score.

In addition, the application provides information on math items that
need to be further solved to receive a higher score. These can be supple-
mentary or additional items to help strengthen or increase knowledge,
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respectively. The information is provided by the MatPort decision sup-
port system, when the automatic search facility is used.

3.2 Evolutionary Computation

The MatPort decision-making system, aimed to motivate students to
continue solving exercises, is based upon an evolutionary computation
method, i.e., the genetic algorithm (GA) [1, 5]. The GA is based on a
heuristic method, which requires little information to search effectively
in a large search space. The algorithm employs an initial population of
chromosomes, which evolve to the next generation by probabilistic tran-
sition rules (randomized genetic operators), such as selection, crossover
and mutation. The objective function evaluates the quality (fitness) of
solutions coded as chromosomes. This information is used to perform
an effective search for better solutions. There is no need for other auxil-
iary knowledge. The GA tends to take advantage of the fittest solutions
by giving them greater weight, and by concentrating the search in the
regions of the search space with likely improvement.

The GA is a population-based evolutionary approach that allows search-
ing within a broad set of solutions from the search space simultaneously.
Namely, because there are

many math items (few hundreds or even more than thousand math
items per a grade), and

many interrelated content areas (more than 100 content areas per
a grade),

the student may continue solving items in many possible ways that may
or may not lead to a higher score. Moreover, math items are dynamically
generated by teachers (i.e., the item dataset expands with time) and
the student may start solving them anywhere in the dataset. In the
GA, there is a risk of converging to a local optimum, but good results
of various research work obtained in other optimization problem areas
[5, 8, 9, 11, 13] encouraged us to consider the GA as a promising approach
to the decision-making problem.

We developed our own version of the GA to fully adapt to the specific
problem. The details of the implemented GA, which takes into consider-
ation the directions introduced in [2, 10], are described in the subsections
below.

The main idea is to find a set of math items within different content
areas that, when solved correctly, improve the user’s knowledge and
increase his/her score as much as possible. The set of items should
consist of math problems from all poorly-scored content areas and the
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areas that precede these areas. Therefore, before starting a search, the
system identifies all feasible items, i.e., math problems from the poorly-
scored content areas. These items form some kind of a pool of relevant
items P for the current-score improvement.

Encoding The suggested list of math items needed to improve the
score is encoded into a chromosome, where each gene represents the
identification (ID) number of the item in the MatPort database. The
chromosome length has been fixed to 15, while this number represents a
reasonable number of items to perform, in order to significantly improve
the score.

Population Initialization The initial population consists of n chro-
mosomes. The initial chromosomes are set with randomly chosen items
from the pool of relevant math items. In case of identical initial chro-
mosomes some chromosomes are repaired by permutation to ensure ver-
satility.

The only requirement in this initialization stage is that no item is
repeated within each set (i.e., chromosome).

Genetic Operators The elitism approach is used - to store the best
found solution.

The substitution of the least-fit chromosomes with the equal number
of the best-ranked chromosomes ensures better solutions to have more
influence on the new generation. The ratio of all chromosomes in the
population to be replaced is set by the ratio r.

With the one-point crossover scheme, chromosome mates are chosen
randomly and with a probability pc all items after randomly chosen
position are swapped, which leads to two new solutions that replace
their original sources.

In the mutation process each item of the chromosome mutates with
a probability pm. If the item of the chromosome needs to be changed,
than some new item from the pool of relevant math items is chosen and
placed onto the mutated position of the chromosome.

There is no special repair function implemented to be used when two
identical items appear in the chromosome, either during the crossover
or mutation process. If this occurs then it leads to lower score of the
evaluation function, since not enough different items would be solved.
Consequently, such unrepaired chromosomes are removed from the pop-
ulation on the bases of evolution. Also, the items are not sorted within
the chromosome, therefore there is no need to check the position of some
item within the chromosome. The final order of the items is set at the
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end, after the GA finishes its search, and is set according to the levels
and dependencies of different items.

When enabled, the variable mutation probability pm is decreasing
linearly with each new population. Since each new population generally
fits better, we overcome a possible disruptive effect of mutation at the
late stages of the optimization, and speed up the convergence of the GA
in the final optimization stages. Moreover, the lower number of mutated
positions in the later stages presents some kind of a local search with
minor movements around current solution, i.e. fine-tuning.

Fitness Evaluation After the variation operators modify the solu-
tions, the whole new population of chromosomes is ready to be evalu-
ated. In the evaluation process the set of math items is assumed to be
solved correctly and the score improvement is calculated. The calculated
score improvement is used as a fitness value of each chromosome. Here
all the items are weighted with respect to

difficulty levels,

content areas, and

relations between content areas

to increase the diversity; the order of items is relevant when the problems
belong to different content areas that derive from each other.

Parameter Settings In order to ensure optimal solutions in a reason-
able response time robust parameter settings need to be found for the
population size, number of generations, selection criteria and genetic
operator probabilities:

If the population size and the number of generations are too small,
the GA converges too quickly to a local optimal solution and may
not find the best solution. On the other hand, a large population
and too much iteration require long time to converge to a region
of the search space with significant improvement. In our case, we
have used the population size n = 15 and number of generations
ng = 30;

With applying the elitism strategy, fitter solutions have greater
chance to be reproduced. But when the number of worse solutions
to be exchanged with better ones (the selection criteria) is too
high, the GA is trapped too quickly in a local optimum solution.
Our replacement rate r has been 20%;
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Too low crossover probability preserves solutions to be interchanged
and longer time is required to converge. This probability should
be large enough to crossover almost all mated solutions. In our
case, efficient setting for pc has been 70%;

Too high mutation probability may introduce too much diversity
and takes longer time to reach an optimal solution. Too low muta-
tion probability tends to miss some near-optimal solutions. Again,
the efficient setting for pm has been 5%.

When variable mutation was enabled the pm decreased linearly to
1%, from the first till the last generation.

Termination After a certain number of populations are generated
and evaluated, the system is assumed to be in a non-converging state.
A chromosome with the highest score improvement is chosen as a final
result.

On average, the GA finds an optimal selection of math items within all
the content areas that need to be further solved by the user to receive a
higher score (i.e., obtain a sufficient knowledge) in order of few seconds.
As it is implemented as a background process, it does not slow down the
application.

4. Experimental Work

We ran the GA to collect sufficient amount of results, which were then
subjectively judged by three experienced teachers. They estimated the
decision-making system as a reliable tool:

1 Math items were selected from content areas that really needed to
be further investigated;

2 Content areas were ordered in a meaningful way;

3 Selected math items could improve the student’s knowledge;

4 The results were generated in real-time, in order of seconds.

However, we still need to prove this by using statistics. We should
involve a group of students and their teachers, and statistically evaluate
the effectiveness of the MatPort system in different aspects, measuring
the success in terms of knowledge and joy of learning.

5. Conclusions

The main aim of the methodology presented in this paper is to pro-
vide a modern tool that would support education, which is more than
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acquiring information and knowledge, but is also about whether and how
these are memorized and used.

First, the instructional design of the MatPort Web application, which
is aimed for elementary mathematics online learning in the active way,
was presented. We upgraded this design by incorporating a high-perfor-
mance evolutionary computation method to support automatic search of
relevant math items. In this way, the MatPort may lead its users toward
higher scores in a thoughtful way. The main reason for selecting a heuris-
tic method has been that we wished to provide a non-deterministic be-
havior of the decision-making system to overcome the problem of cheat-
ing. Finally, we described the method for evaluation of the application’s
effectiveness.

After the pilot stage of the project, we are planning to expand the
dataset of math items to other elementary school grades. We will in-
crease its efficiency through additional motivation tools, such as winner
lists or computer games, which will be activated as soon as a student
will gain a certain score.

Much work needs to be done to find an adequate level of human
intervention. In cooperation with teachers, we will try to improve the
way of providing teaching instructions and intermediate solutions. Last
but not least, we will discuss the problem of cheating.

In addition, we will do some experimental work on the application of
the efficient parameter-less evolutionary search method [12] as a substi-
tution for the currently implemented genetic algorithm.

Notes

1. It has been known for a long time, through many descriptive studies that have been
undertaken since the 1970s, that mathematics has been unpopular and disliked [7].
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Abstract This paper presents an approach for recognition of procedural three-
dimensional models of woody plants (trees). The used procedural tree
model operates by building a three-dimensional structure of a tree by
applying a fixed procedure on a given set of numerically-coded input
parameters. The parameterized procedural model can later be used
for computer animation. Recognition of a parameterized procedural
model, from the photographic images, is done by differential evolution
algorithm which evolves this model by fitting a set of its rendered images
to a set of given photographic images. The comparison is done on a pixel
level of the images through the integration of distances to the nearest
similar pixels. The obtained results show that the presented approach is
viable for modeling of woody plants for computer animation by evolution
of the numerically-coded procedural model.

Keywords: Differential evolution, Numerical encoding, Procedural model, Self-adap-
tation, Structure recognition, Woody plant

1. Introduction

In this paper we present a new approach to design three-dimensional
geometrical models for woody plants (trees). The geometrical models
are expressed indirectly with the use of procedural models to reduce
the enormous data storage space needed for their representation. The
procedural models can also be easily animated and are suitable in com-
puter graphics and animation. Our new approach to design of woody
plant models is based on recognition of their procedural models [21],
from images using evolutionary algorithms [22]. The paper [2] presents
an approach for recognition of procedural models. However, the pro-
cedural models obtained in [2] were not as complex to express woody
plants. Also the recognized procedural models were two-dimensional.

205
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Therefore, we extend this approach to the domain of three-dimensional
procedural models suitable to model woody plants.

In the next section, the related work is presented. In the Section 3,
the proposed approach for procedural models recognition using differen-
tial evolution is described. In the Section 4, experimental results and
their discussion is given, which show that the given approach is suitable
for design of woody plant models. The Section 5 concludes with final
remarks and propositions for future work.

2. Related Work

In this section, we present the differential evolution algorithm and
one of its improvements, the jDE algorithm [4, 6]. Then, we list some of
the procedural models for modeling of trees and outline the numerically-
coded procedural model of the EcoMod framework [21, 23, 25].

2.1 Differential Evolution

Differential Evolution (DE) [18] is a floating-point encoding evolu-
tionary algorithm for global optimization over continuous spaces, which
can also work with discrete variables. Its main performance advantages
over other evolutionary algorithms [4, 11] lie in floating-point encoding
and a good combination of evolutionary operators, the mutation step
size adaptation and elitistic selection. The DE algorithm has a main
evolution loop in which a population of vectors is computed for each
generation of the evolution loop. During one generation G, for each vec-
tor xi, ∀i ∈ {0, NP} in the current population, DE employs evolutionary
operators, namely mutation, crossover, and selection, to produce a trial
vector (offspring) and to select one of the vectors with best fitness value.
NP denotes population size and G the current generation step.

Mutation creates a mutant vector vi,G+1 for each corresponding pop-
ulation vector. One of the most popular DE mutation strategies is
’rand/1/bin’ [14, 18]:

vi,G+1 = xr1,G + F (xr2,G − xr3,G),

where the indexes r1, r2, and r3 represent the random and mutually
different integers generated within the range {1,NP} and also different
from index i. F is an amplification factor of the difference vector within
the range [0, 2], but usually less than 1. Vector at index r1 is a base
vector. The term xr2,G − xr3,G denotes a difference vector which after
multiplication with F , is named amplified difference vector.

After mutation the mutant vector vi,G+1 is taken into recombination
process with the target vector xi,G to create a trial vector ui,j,G+1. The
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binary crossover operates as follows:

ui,j,G+1 =

{
vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand

xi,j,G otherwise
,

where j ∈ {1, D} denotes the j-th search parameter of D-dimensional
search space, rand(0, 1) ∈ [0, 1] denotes a uniformly distributed ran-
dom number, and jrand denotes a uniform randomly chosen index of the
search parameter, which is always exchanged to prevent cloning of target
vectors. CR denotes the crossover rate.

Finally, the selection operator chooses one of the vectors with a better
fitness value (for minimization problem):

xi,G+1 =

{
ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise
.

DE was proposed by Storn and Price [18] and since then, it has been
modified and extended several times with new versions proposed [14, 9].
We have used the jDE algorithm [4], which adds to the original DE, a self-
adaptation mechanism of F and CR control parameters. In this work,
only the original jDE algorithm [4] was used, although the algorithm
also has some extensions that have not been used in this work [5, 6, 7].

2.2 Woody Plants Procedural Models

The procedural modeling of trees has a thirty year tradition in com-
puter graphics. Manual editing of a tree structure and its leaves is a
tedious task, since each branch and leaf position, rotation, size, and
texture must be appointed. Therefore, procedural tree models are used
instead, and several techniques for procedural models are available to-
day. Different procedural models are based on various types of branching
structure construction [15]. These techniques differ in the level of de-
tail [1, 3, 16], the flexibility, and pretentiousness of modeling [10, 19],
space [13], and time complexity [13] in addition to the animation ability
and representation of the built three-dimensional model. The major-
ity of these models try to determine some visible properties of the final
three-dimensional model, such as the rotation of branches around their
central axes. These properties are usually biologically inspired by phyl-
lotaxis, i.e. the main influence on the tree’s architecture [17].

Holton [10] created trees with the use of biologically inspired strand
model. An upside of this model is that, thickness of branches and pro-
portions between branching angles are determined directly with internal
rules in the model. Strands flow along branches and are divided with-
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out splitting a single strand. Branches with single strands are carry-
ing leaves. Strand distribution determines branch thickness and their
lengths. User enters the number of strands along the tree, proportions
between branch lengths and branching angles to parametrize the proce-
dural model. Certain attractors influence the branching structure, e.g.
central trunk uprightness, gravimorphism, phototropism, planartropism,
and phyllotaxis. A downside of the model is that user still has to enter
a huge amount of numerical data, which diminishes the flexibility of the
model.

Weber and Penn [19] represented the tree model with the use of simple
geometry without a development of branching topology. For all branches
at the same levels, they entered branching angle, branch length propor-
tions and thickness for branches. They presented wind sway animation,
branch cutting to predetermined volume, and progressive level of detail
rendering.

The EcoMod framework incorporates a procedural model for woody
plants, based on the Holton and Webber-Penn models. The procedural
model and its modeler with woody plant models library was first in-
troduced in [25] and is in greater detail described in [21, 23, 24]. The
procedural model also helps to design the tree from a minimized set
of parameters that the user must set by automatically determined posi-
tions, rotations, sizes and textures for several thousand branch segments
and several thousand leaves. An individual tree species model is created
by parametrizing the procedural model. It generates a three-dimensional
structure [20] of a tree by recursively executing a fixed procedure over a
given set of numerically coded input parameters, such as branch thick-
ness, relative branch length and branching structure proportions. Each
step of the procedure adds a building block of a tree to the geometrical
model. The trees designed with this model can be foliage or coniferous
trees with very different branching structures. Each branch and each
leaf can be animated in real time to show the growth of a tree or its
sway in the wind. By slightly modifying the parameters of procedural
models, we can achieve computer animation of these models [24], thereby
creating several geometrical models from a single procedural model.

Parameters of EcoMod woody plant procedural model are distin-
guished as vectors (local) and scalars (global). Global parameters are
constant for all branch segments although local parameters vary along
Gravelius (g) and Weibull (w) branch order. Vector parameters design
the strand distribution, branching angles, branch segment proportions,
and gravity impact to tree geometry. Scalar parameters of the model are
height and thickness of base trunk, wind impact, and density and size of
leaves. Using listed vector and scalar parameters, geometrical model is
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Algorithm 1 Calculation of geometrical structure of the procedural
model tree. Recursive procedure is called using branchsegment(0, 0,

S, 1, l0,00 , I, I, I), I denoting an identity matrix.

1: procedure branchsegment(g, w, S0, L0, l0, M0, M
−1
m;0, M

−1
w;0)

Require: g, w - Gravelius and Weibull index of base branch; S0 - number of strands
in base branch; L0, l0 - base branch relative and actual length; M0 - base branch
coordinate system; M−1

m;0 - inverse matrix of rotations for gravimorphism in co-

ordinate system for base branch; M−1
w;0 - inverse matrix of rotations for directed

wind in coordinate system for base branch; global kd, kc, ltype, k
g,w
s , Mg,w, mg,w,

kg,w

l , αg,w
m , αg,w, t, kf , ws, wg

Ensure: rendered tree image
2: d := kd

√
S0; {thickness calculation from Mandelbrot}

3: render base branch(M0, l0, d);
4: if S0 = 1 then

5: render leaves(ltype); return;
6: end if

7: S1 := ⌈1 + kg,w
s (S0 − 2)⌉, S2 = S0 −S1; {number of strands in major and minor

subbranches}
8: r1 := max

{

min
{√

S1
S0

,Mg,w
}

,mg,w
}

{branch length proportions dependant on

strands}
9: r2 := max

{

min
{√

S2
S0

,Mg,w
}

,mg,w
}

;

10: L1 := r1L0, L2 := r2L0; {relative length of subbranches}
11: l1 := kg,w

l L1, l2 := kg,w

l L2; {active subbranch length}
12: α1 := kc

√

S2
S0

αg,w, α2 := αg,w − α1; {branching angles}
13: αx(t) := sin(t+Rx)ws(1− kf )l0; {animation of un-directed wind impact}
14: αz(t) := sin(t+Rz)ws(1− kf )l0;
15: αw := S0

S
wg; {animation of directed wind impact}

16: M1 := Rw0(αw)Rz(α1 + αz(t))Rx(αx(t))Ry(αp)Ry×ym(αg,w
m )Ty(l0)M0;

17: M2 := Rw0(αw)Rz(α2 + αz(t))Rx(αx(t))Ry(αp)Ry×ym(αg,w
m )Ty(l0)M0;

18: M−1
m;1 := Ry×ym(−αg,w

m )Ry(−αp)Rx(−αx(t))Rz(−α1−αz(t))M
−1
m;0; {refreshing

inverse matrix for construction of gravimorphism vector, without considering
wind impact}

19: M−1
m;2 := Ry×ym(−αg,w

m )Ry(−αp)Rx(−αx(t))Rz(−α2 − αz(t))M
−1
m;0;

20: M−1
w;1 := Ry×ym(−αg,w

m )Ry(−αp)Rx(−αx(t))Rz(−α1 − αz(t))Rw0(−αw)M
−1
w;0;

{refreshing inverse matrix for construction of directed wind vector}
21: M−1

w;2 := Ry×ym(−αg,w
m )Ry(−αp)Rx(−αx(t))Rz(−α2 − αz(t))Rw0(−αw)M

−1
w;0;

22: branchsegment(g+1, w+1, S2, L2, l2, M2, M
−1
m;2, M

−1
w;2); {minor branch devel-

opment}
23: branchsegment(g, w + 1, S1, L1, l1, M1, M

−1
m;1, M

−1
w;1); {major branch develop-

ment}
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built recursively. From a procedural model for a tree, a geometry model
is calculated using the briefly denoted Algorithm 1. Geometrical model
is rendered using photo textures for final look of a tree. This model
differs from many other models [1, 3, 10, 12, 16] since all of its param-
eters are fully numerically encoded and are fixed dimensionality. It is
therefore especially suitable for parameter estimation using differential
evolution.

2.3 Image-based Approaches to Modeling

Image-based approaches have the best potential to produce realisti-
cally looking plants, since they rely on images of real plants [8]. Also,
little work has been done to design trees with the use of a general recog-
nition from images without user interaction. In [2] an approach for
recognition of procedural models is presented. However, the procedural
models used in [2] were two-dimensional. Therefore, we extended their
approach to the domain of three-dimensional procedural models suitable
to model woody plants without user interaction.

3. Woody Plants Recognition by Differential
Evolution

We have combined the jDE algorithm [4] and the numerically coded
procedural model of woody plants from EcoMod framework [21, 23, 25].
Thereby, we recognize woody plant models from images by evolving the
parameters of the procedural model. The fitness computation is based
on the comparison of two-dimensionally rendered images. The fitness
is better (i.e. takes smaller values) for images with greater similarity.
The recognition method operates by encoding the parameters of the
procedural model in genotype of the individual vector of jDE population.
In the following, parts of the optimization procedure are described, i.e.
the genotype encoding, genotype-phenotype mapping, and its fitness
evaluation.

3.1 Genotype Encoding

An individual genotype vector x of jDE population represents the set
of procedural model parameters, used in Algorithm 1. The dimension-
ality of evolved floating-point encoded parameters is D = 4509. Each
parameter xi,j ∈ [0, 1] for all i ∈ {1..NP} and j ∈ {1..D} encodes the
following parameters (for more explicit formulation of the parameters
see [21]):



Woody Plants Model Recognition by Differential Evolution 211

number of strands of a tree
S = 400xi,0 + 10 (S ∈ [10, 410]),

height of base trunk
l0,00 = xi,110 m (l0,00 ∈ [0 m, 10 m]),

coefficient of branch thickness
kd = 0.05xi,2 (kd ∈ [0, 0.05]),

phyllotaxis angle
αp = 360◦xi,3 (αp ∈ [0◦, 360◦]),

branching ratio of subbranch strands distribution
kg,ws = 0.5xi,j + 0.5, ∀j ∈ {4, 753} (kg,ws ∈ [0.5, 1]),

branching angle between dividing subbranches
αg,w = 180◦xi,j , ∀j ∈ {754, 1503} (αg,w ∈ [0◦, 180◦]),

maximum relative subbranch to base branch length
Mg,w = 20xi,j , ∀j ∈ {1504, 2253} (Mg,w ∈ [0, 20]),

minimum relative subbranch to base branch length
mg,w = 20xi,j , ∀j ∈ {2254, 3003} (mg,w ∈ [0, 20]),

branch length scaling factor
kg,wl = 20xi,j , ∀j ∈ {3004, 3753} (kg,wl ∈ [0, 20]),

gravicentralism impact
kc = xi,3754 (kc ∈ [0, 1]),

gravimorphism impact (i.e. gravitational bending of branches)
αg,wm = 360◦xi,j − 180◦, ∀j ∈ {3755, 4504} (αg,wm ∈ [−180◦, 180◦]),

enabling leaves display on a tree
Bl = ⌊xi,4505 + 0.5⌋ (Bl ∈ {0, 1}),
density of leaves
ρl = 30xi,4507 (ρl ∈ {0, 30}),
size of leaves
ll = 0.3xi,4506 (ll ∈ [0, 0.3]), and

leaf distribution type
ltype = 5xi,4508 (ltype ∈ {Spiral, Stacked, Staggered, Bunched,
Coniferous}),

where g ∈ {0, 15}, w ∈ {0, 50}, and each 750 real-coded parameters
encode one matrix of a Gravelius and Weibull ordered parameter.
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3.2 Genotype-phenotype Mapping

Our recognition method is based on recognition of two-dimensional
images of woody plants z∗, possibly taken by a digital camera. To com-
pare the three-dimensional tree evolved with the use of genotype x to
the reference image z∗, the encoded D-dimensional genotype x must
be transformed to its phenotype first. Phenotype is a rendered two-
dimensional image z of a genotype x with the use of Algorithm 1. Im-
ages z∗ and z are all of dimensionality X×Y pixels, where the reference
image is scaled to the given resolution, if necessary. Both images are
converted to black and white, where white (0) pixels mark background
and black (1) pixels mark the material, e.g. wood. With the use of the
conversion, the evolved procedural model is compared twice to the refer-
ence images, differing by camera view angle of β = 90◦ along the trunk
base. The latter is done to favor three-dimensional procedural models
generation. If we denote the Algorithm 1 as function g then z = g(x, β).

3.3 Phenotype and Reference Image Comparison

The recognition success is measured by similarity of the reference
original images and the generated rendered images of evolved paramet-
rized procedural models. To measure similarity of these images we chose
to compare the images pixel-wise as follows. For each pixel rendered
as non-background in the evolved image, we compute the Manhattan
distance to the nearest non-background pixel in the reference image, and
vice-versa [2]. The sum of these distances accounts for fitness evaluation
of each phenotype:

f(x) = f(g(x, 0◦),g(x, 90◦)) = h(z1) + h(z2),

h(z) =
∑

x,y

m1(zx,y, z
∗
x,y) +

∑

x,y

m1(z
∗
x,y, zx,y),

where m1 denotes a function which computes a Manhattan distance to
the nearest pixel in an image z∗, being set to 1 (i.e. black, wood material).

4. Experimental Results

We have assessed the algorithm for tree recognition on an example
tree, seen in Fig. 1 on the far right. The sampling rate dimension of
the rendered parametrized procedural model was set to 250x250, the
maximal number of strands in the tree to S = 410, and the maximal
number of fitness evaluations (FEs) for jDE algorithm to FEs = 10000.
The remaining parameters were kept as defaults in original algorithms
from their literature.
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Figure 1. Rendered evolved parameterized procedural models at FEs ={1, 8, 18,
1992, 2727, 3230} (NP = 100, seed 1) and fifth, the reference image.

Final best evaluations obtained over 30 runs for different settings of
NP in the evolutionary algorithm are seen in Fig. 2. The best average
final best was obtained using NP = 100 with fitness of 1828.3. For
population size of NP = 100, the jDE algorithm in 30 runs obtained
the best fitness value of 1806, the worst being 1870, and the average of
1828.3 with standard deviation of 84.4. The sampled procedural models
for run 1, with seed 1, for this test are seen in Fig. 1. The tree on
the image is 2.5 m tall, 1 m for the first branch segment, therefore it
only extends to a part of the image’s canvas which is 25 m tall in total.
Therefore, the images in Fig. 1 were zoomed to fit. Since we can design
woody plants with a reliability, seen in Fig. 2 and obtain such models as
seen in Fig. 1, we can conclude that the presented approach is viable for
modeling of woody plants for computer animation by evolution of the
numerically-coded procedural model.

5. Conclusions

We presented an approach to design woody plant geometrical models.
To construct a geometrical model, we have used a parameterized pro-
cedural model. The parameters of the procedural model were evolved
through the jDE differential evolution algorithm. The sampled proce-
dural models were rendered with the use of the EcoMod framework.
Rendered images were then compared to the reference source images,
for recognition, to guide the optimization process. After the descrip-
tion of proposed approach, we demonstrated its experimental results by
recognition of a sample woody plant model and statistical analysis of
the obtained results.

In the future research, we would like to improve metrics for compar-
ison of rendered and reference images. Multiple metrics could be used
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Figure 2. Algorithm performance, dependent on population size.

and combined with the use of multi-objective search [22], and possibly
combined with interactive methods for optimization.
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Abstract This paper adopts four stochastic optimization algorithms to perform
model selection in linear regression models when the number of can-
didate variables is such that full enumeration of all possible models is
impossible. Algorithms performance in maximizing several fitness func-
tions are compared using different measures. The main conclusion is
that performance differentials depend on the problem complexity, in
terms of the number of local solutions, and on the measure used. In
absolute terms, however, Genetic Algorithms and Simulated Annealing
give the best results.
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1. Introduction

Variable selection is one of the core steps before fitting any econo-
metric model, especially when dealing with multivariate ones. Given its
central role, many different methodologies have been proposed.

The first ones being developed have been sequential and iterated pro-
cedures. Forward Selection and Backward Elimination [3] rely on se-
quential hypothesis testing of the coefficients significance. Lasso [19] and
garrote [9], are shrinkage based techniques that contemporaneously esti-
mate coefficients and select variables, by applying progressively stronger
constraints on the estimates. Finally, the two most used bayesian algo-
rithms in this framework are Stochastic Search Variable Selection (SSVS)
[4] and Markov Chain Monte Carlo Model Comparison (MC3) [13]. Fi-
nally, Principal Variables [12] and Diffusion Indexes [18], popular in a
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forecasting framework, select variables by using data dimensionality re-
duction techniques such as principal components and factor analysis.

Despite such abundance and variety of approaches, as the number of
candidate variables increases some of those procedures become infeasible.
This is due to the well known dimensionality curse.

A possible remedy might come from Stochastic Optimization Algo-
rithms (SOA). A natural way to link them to the variable selection
problem is in couple with Information Criteria.

Despite their great potential, not much is known about their real
performance in solving the variable selection problem in an econometric
framework. On the contrary, in data mining this problem is known as
feature selection and extensive research use SOA [7]. The aim of this
paper is to fill this gap by investigating how those algorithms work, both
in absolute and in relative terms.

The paper proceeds as follows. Section 2 briefly describes SOA and
their implementation, Section 3 introduces the adopted methodology
and illustrates the results, Section 4 concludes and proposes future im-
provements.

2. Theory

In presenting the algorithms, we follow the taxonomy in [20], whose
first distinction is between local and global search algorithms. The clas-
sification is based on the way the algorithms organize their walks through
the solutions space.

2.1 Local Search algorithms

The two local search algorithms adopted are Random Search and Mul-
tiple Random Search. As typically implemented, Random Search entails
the following steps:

Algorithm 1 Random Search

1: Generate initial solution mc. Calculate f(mc).
2: while stopping criteria not met do
3: Generate mn ∈ Υ(mc)
4: if f(mn) < f(mc) then
5: mc = mn

6: end if
7: end while

In case there are no local solutions this algorithm is expected to per-
form as well as global search ones with fewer iterations. It stops when
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there is no mn in the neighborhood of mc that represents a better so-
lution. Similarly, the Multiple Random Search algorithm might be for-
malized in the following way:

Algorithm 2 Multiple Random Search

1: Initialize Ψ
2: for ψ = 1 to Ψ do
3: Generate initial solution mc

ψ

4: while stopping criteria not met do
5: Generate mn

ψ ∈ Υ(mc
ψ)

6: if f(mn
Ψ) < f(mc

ψ) then
7: mc

ψ = mn
ψ

8: end if
9: end while

10: store m∗
ψ

11: end for
12: Select M∗

ψ s.t. Φ = [m∗
ψ|m∗

ψ > M∗
ψ] = ⊘

In the case of the variable selection problem, a solutionm represents a
model, a 1×k row vector of zeros and ones [ 1 0 . . . 0 1k ] where a
1 in the jth position indicates that the jth variable belongs to the subset
of variables used to compute the objective function f(◦). M∗

ψ represents
the final solution that the algorithm returns. In the following analysis,
as in [4], the starting solution mc is randomly generated according to

the following density p(mc) =
k∏
j=1

π
mc

j

j (1 − πj)
mc

j where π = 0.5. A

neighborhood of a current solution, Υ(mc), is the set of all 1× k vectors
with at least one and at most κ < k elements different from mc. For
the empirical analysis κ has been set equal 1. Given a standard linear
regression framework where y is the vector of the dependent variable,
X the regressors matrix, β̂ = (X ′X)−1X ′y the ordinary least square

estimates, ŷ = Xβ̂ the fitted values, ê the vector of residuals, and the
log-likelihood λ̂ = −T

2 (1+ ln(2π)+ ln( ê
′ê
T
)), the fitness functions f(◦) to

be maximized are:

1 Akaike Information Criterion (AIC): λ̂− k

2 Bayesian Information Criterion (BIC): λ̂− ln(T )k
2

3 Adjusted R2: 1−
ê′ê

T−k−1
(y−y)′(y−y)

T−1
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4 Mean Square Error: −[ 1
T

T∑
t=1

(yt − ŷt)
2]

5 Sign Criterion: 1
T

T∑
t=1

{
Iyt>0Iŷt>0 + (1− Iyt>0))(1− Iŷt>0)

}

Those functions have been chosen because they are most frequently
used for in-sample and out-of-sample model validation and because they
entail different degrees of nonlinearity.

2.2 Global Search algorithms

2.2.1 Genetic Algorithms. Genetic Algorithms (GAs) by [10]
and [5] are a subfamily of a wider random-guided search techniques called
evolutionary algorithms [16]. As typically implemented, GAs involve the
following steps:

Algorithm 3 Genetic Algorithm

1: Generate initial population P , initialize pmut and pcross
2: while stopping criteria not met do
3: Select P ′ ⊂ P (mating pool) set P ′′ = ⊘ (set of child)
4: for i = 1 to n (population size) do
5: Select individuals ma and mb at random from P ′

6: if u(0, 1) < pcross then
7: cross-over and to produce mc

8: end if
9: if u(0, 1) < pmut then

10: mutate produced child mc

11: end if
12: P ′′ = P ′′ ∪mc

13: end for
14: P = P ′′

15: end while

P and P ′′ are n × k matrices, where each row is a binary vector
representing a solution. Similarly, P ′ is a submatrix of P whose row
size depends on the parameters discussed below. When the solutions
are taken individually as 1 × k vectors, they are labeled with m. GA
parameters are often chosen according to some general guidelines pre-
sented in literature and by calibrating, mainly by means of Monte Carlo
simulations, the algorithm to the problem [1]. Following [2] the value
for pcross and pmut have been set to 0.7 and 0.1 and as suggested by
[16], they decrease over time. Uniform crossover and flipping mutation
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are adopted. To improve the algorithm performance, elitism operator is
used by setting the row size of P ′ 0.5 times the one of P ; it implies that
only the better half of the current population is used to breed the next
generation. Finally, the stopping criterion is determined by a maximum
number of generations to be performed, and is a decreasing function
of the population size. The row size of P is around 2k where k is the
number of regressors, and number of generation has been set to 50, with
those value increasing according to problem difficulty.

2.2.2 Simulated Annealing. It is based on ideas from statisti-
cal mechanics and motivated by an analogy to the behavior of physical
systems in the presence of a heat bath [11]. This approach avoids en-
trapment in poor local optima by allowing an occasional uphill move.
It is done under the influence of a random number x ∼ u(0, 1) and a
control parameter T , called the temperature, that affect the probability

of uphill move e−
∆
T . As typically implemented, the simulated annealing

approach involves the following steps:

Algorithm 4 Simulated Annealing

1: Generate a current solution mc, initialize L, r < 1 and T
2: for l = 1 to L do
3: while stopping criteria not me do
4: Select a new candidate solution mn ∈ Υ(mc)
5: Compute ∆ = f(mn)− f(mc)
6: if ∆ ≤ 0 then
7: mc = mn

8: else
9: if u(0, 1) < e−

∆
T then

10: mc = mn

11: end if
12: end if
13: end while
14: Set T = rT
15: end for

While r = 0.005 and L = 20 have been found to fit for most of
functions to be maximized, initial T has been found strongly depending
on the function characteristics, in particular on its scale. It must be
carefully chosen because if it is too high, the algorithm converges too
late. If it is too low, it does not explore a sufficiently broad area of
the solution space, in both cases it returns a local solution far from the
global one.
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3. Results

As common practice in this kind of studies [14], two analysis are
performed: with real and randomly generated data.

3.1 Monte Carlo Simulations

3.1.1 Absolute performance evaluation. The following sim-
ulations are aimed to investigate how three factors affect algorithms’
performances. They are N , the number of candidate variables, t, the
number of observations, and Σ the variance covariance matrix of the
regressors. The two values that t can assume are aimed to mimic a
small and a large sample, while the values of Σ are aimed to simulate
a situation of no and one of medium multicollinearity (i.e. the degree
of pairwise correlation between variables). Some more details are re-
quired for N . In order to evaluate the algorithms in absolute terms, the
global solution must be known. This requires tabulating the empirical
cumulated distribution function, Φ(◦), of all the possible 2N models and
Φ−1(1), its maximum. If N is too high, the analysis becomes infeasible,
due to the excessive computational burden. If it is too low, it becomes
useless since there would be no real need to use SOA. Therefore the two
values that N can assume, 14 and 17, have been chosen in such a way
to balance this trade-off between feasibility and significance.

A setting is defined by a vector Θ = [Ni∈1,2, tj∈1,2,
∑

l∈1,2], where

N ∈ [14, 17], t ∈ [35, 150] and
∑ ∈ [Ik,M ]; I is the identity matrix

whileM is such that it induces a pairwise correlation among variables of
about 0.5. Given those six values, a total of eight settings are simulated,
from Θ = [14, 35, Ik] to Θ = [17, 150,M ]. For each setting, the full
regressors matrix is generated such that Xtj×Ni

∼ N(µ,Σl), from it the
dependent variable is constructed according to yt = Xtj×n<Ni

β + εt,

finally all f(mi) for i = 1 to 2Ni with mi ⊆ MNi
are computed. Once

the full empirical distribution of the values assumed by the function
is obtained, the algorithms are run 50 times and summary statistics

µa =
1
50

50∑
i=1

c(f(ma,i)) are computed, where a is the subscript to identify

the algorithm and c are criteria described below.
In order to judge the algorithms performance, eight criteria have been

designed, with the intent of catching different aspects.

1 Fitness: It is the value of the maximized function f(m∗
a), where

m∗
a is the model found by the ath algorithm.

2 Rank: It is the rank of f(m∗
a) out of all the possible 2Ni .
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3 Percentile: It is the percentile Φ(f(m∗
a)) of f(m∗

a) where Φ(◦)
represents the empirical cumulative distribution function.

4 Best: It is an indicator variable that takes value 1 if f(m∗
a) =

f(M∗), where M∗ is the model at which the function reaches the
global max: Φ−1(1).

5 Percentile 99.5: It is an indicator variable that takes value 1 if
99.5 ≤ Φ(f(m∗

a)).

6 Distance: ∆ = f(M∗)− f(m∗
a) where M

∗ is the model at which
the function reaches the global max: Φ−1(1).

7 Efficiency: νa
2N

where νa is the number of times the cost function

is evaluated by the ath algorithm and 2N represents the maximum
number of model combinations given N variables.

8 Time: It is the time needed to perform νa.

The following results are based on the maximization of AIC and BIC
criteria as defined in Section 2.

Table 1. BIC: Rank

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 3.9 1 1 1
14 I 150 4.8 1.1 1 1
14 M 35 4.3 1 1 1.1
14 M 150 6 1.3 1 1
17 I 35 4.6 2 1.1 1.9
17 I 150 34.8 2.2 1.6 1.7
17 M 35 30.6 2.1 1 1
17 M 150 28.4 1.9 1.1 1.3

Mean 14.68 1.58 1.10 1.25

Tables 1 and 2 display the average rank for each setting. Genetic algo-
rithms, Simulated Annealing and Multiple Random Search outperform
a simple Random Search whose average rank, across all experiments, is
around 13. In particular, Genetic Algorithms are always able to find the
global solution when there are 14 variables and 214 = 16,384 possible
solutions.

Tables 3 and 4 display the success rate, i.e. the percentage of times
the algorithm converges to the global solution. It is calculated as the
mean of Criterion 4 illustrated before. From this point of view, Genetic
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Table 2. AIC: Rank

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 3 1 1 1.2
14 I 150 4.7 1.2 1.2 1
14 M 35 7.2 1.1 1 1.3
14 M 150 5 1.3 1 1
17 I 35 23.6 1.9 1 1.6
17 I 150 25.2 3.9 1.6 1.7
17 M 35 17.2 1.5 1.2 1.3
17 M 150 21 1.9 1.1 1.4

Mean 13.36 1.73 1.14 1.31

Table 3. BIC: Success rate

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.6 1 1 1
14 I 150 0.3 0.9 1 1
14 M 35 0.3 1 1 0.9
14 M 150 0 0.8 1 1
17 I 35 0.2 0.3 0.9 0.6
17 I 150 0 0.4 0.6 0.2
17 M 35 0 0.2 1 1
17 M 150 0 0.7 0.9 0.7

Mean 0.15 0.66 0.93 0.80

Table 4. AIC: Success rate

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.6 1 1 0.8
14 I 150 0.3 0.8 0.8 1
14 M 35 0 0.9 1 0.7
14 M 150 0.3 0.8 1 1
17 I 35 0 0.4 1 0.6
17 I 150 0.2 0 0.7 0.4
17 M 35 0 0.5 0.8 0.7
17 M 150 0.3 0.7 0.9 0.7

Mean 0.14 0.61 0.90 0.74
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Algorithms and Simulated Annealing have a quite good performance
with a success rate around 0.9 and 0.8 respectively, Multiple Random
Search slightly below with 0.65, with Random Search being the worst
with just 0.14.

Table 5. BIC: Distance

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 2.73 0 0 0
14 I 150 65.12 6.21 0 0
14 M 35 4.70 0 0 0.13
14 M 150 31.04 3.26 0 0
17 I 35 7.58 5.52 0.78 3.47
17 I 150 31.16 3.4 1.49 0.92
17 M 35 24.12 9.97 0 0
17 M 150 43.44 4.96 0.33 0.98

Mean 26.24 4.17 0.32 0.69

Tables 5 and 6 display the average distance from the global solution
in terms of the function to be maximized, it is based on the Criterion 6
discussed above. The tables show that when Random Search and Mul-
tiple Random Search fail in finding the best solution, the magnitude of
their error is bigger than Genetic Algorithms and Simulated Annealing.
Random Search has the worst performance, with an average distance of
25. The difference in the other three algorithms is more evident looking
at Table 5, rather than Table 6; nevertheless Multiple Random Search
preforms worse in both cases.

Table 6. AIC: Distance

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 2 0 0 0.03
14 I 150 65.69 12.72 12.72 0
14 M 35 6.34 0.1 0 0.3
14 M 150 25.86 3.71 0 0
17 I 35 13.13 5.20 0 8.85
17 I 150 24.48 7.34 1.64 0.9
17 M 35 22.95 6.23 2.49 3.74
17 M 150 31.93 3.86 0.33 2.16

Mean 24.05 4.90 2.15 2.03
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In the light of these results, it seems that GAs and SA clearly outper-
form the other two algorithms. However, this gap tends to shrink if one
looks at the average percentile in Tables 7 and 8.

Table 7. BIC: Percentile

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.999822998 1 1 1
14 I 150 0.999768066 0.9999939 1 1
14 M 35 0.999798584 1 1 0.9999939
14 M 150 0.999694824 0.9999817 1 1
17 I 35 0,999972534 0.9999924 0.999999 0.9999931
17 I 150 0.999742126 0.9999908 0.999995 0.9999924
17 M 35 0.999774170 0.9999916 1 1
17 M 150 0.999790955 0.9999931 0.999999 0.9999977

Mean 0.999796 0.999993 0.999999 0.999997

Although Random Search and Multiple Random Search have a lower
success rate, their solutions still lie well above the 95th percentile. There-
fore, if the best 0.05× 2Ni solutions are considered being a satisfactory
result, these two algorithms represent a good alternative given that they
require less iterations as shown in the following tables.

They display the efficiency measured according to Criterion 7. This
result show how the better performances of Genetic Algorithms and
Simulated Annealing are based on a larger number of iterations. As the
problem complexity increases the number of iterations increases too, but
with a lower rate; therefore with 14 variables they perform 0.22 and 0.35
out of the total 2Ni , but just 0.027 and 0.053 with N = 17.

Table 8. AIC: Percentile

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.99987793 1 1 0.9999878
14 I 150 0.99977417 0.9999873 0.999988 1
14 M 35 0.999621582 0.9999933 1 0.9999817
14 M 150 0.999755859 0.9999817 1 1
17 I 35 0.999827576 0.9999931 1 0.9999763
17 I 150 0.999815369 0.9999779 0.999995 0.9999947
17 M 35 0.999876404 0.9999962 0.999998 0.9999977
17 M 150 0.999847412 0.9999931 0.999999 0.9999969

Mean 0.999800 0.999990 0.999998 0.999992
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Table 9. BIC: Efficiency

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.006 0.060 0.220 0.350
14 I 150 0.006 0.052 0.220 0.350
14 M 35 0.006 0.054 0.220 0.350
14 M 150 0.006 0.053 0.220 0.350
17 I 35 0.001 0.010 0.027 0.053
17 I 150 0.001 0.009 0.027 0.053
17 M 35 0.001 0.009 0.027 0.053
17 M 150 0.001 0.009 0.027 0.053

Mean 0.003 0.03 0.12 0.20

Table 10. AIC: Efficiency

N Sigma t RandomSearch MRandomSearch GA SA

14 I 35 0.006 0.059 0.220 0.350
14 I 150 0.006 0.052 0.220 0.350
14 M 35 0.006 0.056 0.220 0.350
14 M 150 0.006 0.053 0.220 0.350
17 I 35 0.001 0.009 0.027 0.053
17 I 150 0.001 0.008 0.027 0.053
17 M 35 0.001 0.009 0.027 0.053
17 M 150 0.001 0.009 0.027 0.053

Mean 0.003 0.03 0.12 0.20

3.1.2 Relative performance evaluation. The procedure for
relative performance is similar to the one described in previous subsec-
tion. The main difference is that the complexity of the problem has been
increased by setting N = 35 for a total of 235 = 34,359,738,368 possible
models. Since it is not feasible to evaluate the full cumulative distri-
bution function, only a comparison in relative terms is possible. This
requires also a slight change in the steps of the Monte Carlo simulation.
A setting is still defined by a vector Θ = [N, tj∈1,2,

∑
l∈1,2] with N = 35,

t ∈ [70, 250] and
∑ ∈ [Ik,M ]. However, instead of generating the data

once for each setting, they are generated 50 times and algorithms are
run once for each generation, in order to still have 50 total values to
compute the summary statistics. Consequently, the criteria are slightly
different. Percentile and Percentile 99.5 can not be computed, the rank
is not out of 2Ni but out of a, the number of algorithms, finally M∗ is
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no longer the model at which the function reaches the global max but
simply the highest among the ones found by the algorithms.

Table 11 displays results for AIC while Table 12 for adjusted R2.
Results from the first table are in line with the one from previous sub-
section, in the sense that Genetic Algorithms and Simulated Annealing
perform better than the other two algorithms with the GAs being the
best most of the times.

Table 11. AIC

N Sigma t RandomSearch MRandomSearch GA SA

35 I 70 2156.2 2164.7 2171.1 2169.2 Fit
35 I 70 15.3 6.8 0.4 2.3 Dist
35 I 70 3.9 2.8 1.2 1.7 Rank
35 I 70 0 0.1 0.8 0.5 Best
35 I 70 0.000000014 0.000000067 0.000000314 0.000000877 Eff

35 I 250 7738 7755.3 7786.2 7781 Fit
35 I 250 52 34.7 3.8 9 Dist
35 I 250 3.8 3.2 1.3 1.7 Rank
35 I 250 0 0 0.7 0.3 Best
35 I 250 0.000000012 0.000000067 0.000000314 0.000000877 Eff

35 M 70 2035.9 2050.1 2069.7 2067.1 Fit
35 M 70 34.8 20.6 1.1 3.6 Dist
35 M 70 3.7 3.2 1.2 1.7 Rank
35 M 70 0 0 0.8 0.4 Best
35 M 70 0.000000014 0.000000070 0.000000314 0.000000877 Eff

35 M 250 7422.5 7470.9 7469.1 7490 Fit
35 M 250 78.6 30.2 5.1 11.1 Dist
35 M 250 4 2.6 1.4 1.9 Rank
35 M 250 0 0 0.8 0.3 Best
35 M 250 0.000000024 0.000000066 0.000000314 0.000000877 Eff

Table 12 shows one important point. When the function to maximize
has just one or very few local maxima, no matter how the problem is
complex in terms of number of possible solutions, all the algorithms will
have very similar results.

The main conclusions from both absolute and relative evaluations are
the followings. In absolute terms, SOA have quite satisfactory perfor-
mances. In relative terms GAs and SA seem to outperform the others,
with GAs having the best performance. Local search algorithms are
faster and might still represent a good alternative when having larger
set of satisfactory solutions. Nevertheless, they have a big pitfall that
make them less preferable – they cannot be controlled. GAs and SA in-
stead can be improved and better tuned (increasing the population or the
number of generations in GAs, and lowering the decaying factor for SA),
in case they do not provide satisfactory results. The last observation is
that the harder the problem, in terms of local solutions, the clearer the
difference in performance between local and global algorithms.
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Table 12. Adjusted R2

N Sigma t RandomSearch MRandomSearch GA SA

35 I 70 1.0 1.0 1.0 1.0 Fit
35 I 70 0 0 0 0 Dist
35 I 70 1 1 1 1 Rank
35 I 70 1 1 1 1 Best
35 I 70 0.000000011 0.000000059 0.000000314 0.000000877 Eff

35 I 250 1.0 1.0 1.0 1.0 Fit
35 I 250 0 0 0 0 Dist
35 I 250 1 1 1 1 Rank
35 I 250 1 1 1 1 Best
35 I 250 0.000000011 0.000000059 0.000000314 0.000000877 Eff

35 M 70 1.0 1.0 1.0 1.0 Fit
35 M 70 0 0 0 0 Dist
35 M 70 1 1 1 1 Rank
35 M 70 1 1 1 1 Best
35 M 70 0.000000012 0.000000060 0.000000314 0.000000877 Eff

35 M 250 1.0 1.0 1.0 1.0 Fit
35 M 250 0 0 0 0 Dist
35 M 250 1 1 1 1 Rank
35 M 250 1 1 1 1 Best
35 M 250 0.000000011 0.000000060 0.000000314 0.000000877 Eff

3.2 Real Data Analysis

Real data analysis is based on a popular dataset in return predictabil-
ity literature. The variables are the ones used in [6] plus some others
added by the author that represent other less known predictors available
in literature. The final dataset has 19 time series and contains monthly
observations of macro, financial and accounting variables that span from
January 1961 to December 2008. The total number of possible models is
524,288. Results for the functions described in Section 2 are displayed.
They are grouped into three categories according to the difficulty of the
problem. Table 13 and Table 14 show the result for BIC and AIC. They
confirm that Genetic Algorithms and Simulated Annealing perform bet-
ter and that performance differentials shrink towards zero when looking
at Percentile and Percentile 99.5

Table 15 show results for Mean Square Error and Table 16 for Ad-
justed R2, they represent easy maximization problem because all the
four algorithms are able to find the best solution out of the 524,288
available.

Table 17 displays results for Sign Criterion. It is apparently the hard-
est function to be maximized. Only Genetic Algorithms are able to
systematically find the global solutions against a success rate of 0.72,
0.14 and 0.08 of the other three algorithms.
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Table 13. BIC

RandomSearch MRandomSearch GA SA

Fitness 1165.95 1166.33 1166.39 1166.39
Rank 7 2.6 1 1
Percentile 1 1 1 1
Best 0.6 0.8 1 1
Percentile 99.5 1 1 1 1
Distance 0.44 0.06 0 0
Efficiency 0.0004 0.0014 0.0114 0.0109
Time 0.1 0.3 3.1 2.7

Table 14. AIC

RandomSearch MRandomSearch GA SA

Fitness 1142.82 1143.85 1143.85 1143.85
Rank 61.5 1 1 1
Percentile 0.9999 1 1 1
Best 0.86 1 1 1
Percentile 99.5 1 1 1 1
Distance 1.3 0 0 0
Efficiency 0.0004 0.0015 0.0114 0.0019
Time 0.001 0.009 0.027 0.053

Table 15. Mean Square Error

RandomSearch MRandomSearch GA SA

Fitness -0.0010 -0.0010 -0.0010 -0.0010
Rank 1 1 1 1.1
Percentile 1 1 1 1
Best 1 1 1 0.88
Percentile 99.5 1 1 1 1
Distance 0 0 0 0
Efficiency 0.0004 0.0015 0.0114 0.0143
Time 0.1 0.4 3.6 4.7

4. Conclusions

This paper deals with variable selection in linear regression models
using stochastic algorithms. Four algorithms (Random Search, Multi-
ple Random Search, Genetic Algorithms and Simulated Annealing) are
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Table 16. Adjusted R2

RandomSearch MRandomSearch GA SA

Fitness 0.4283 0.4283 0.4283 0.4283
Rank 1 1 1 1
Percentile 1 1 1 1
Best 1 1 1 1
Percentile 99.5 1 1 1 1
Distance 0 0 0 0
Efficiency 0.0004 0.0016 0.0114 0.0064
Time 0.1 0.3 3.2 2.9

Table 17. Sign Criterion

RandomSearch MRandomSearch GA SA

Fitness 0.756 0.765 0.770 0.769
Rank 12328.1 173.9 1 4.6
Percentile 0.9765 0.9997 1 1
Best 0.08 0.14 1 0.72
Percentile 99.5 0.6 1 1 1
Distance 0.01 0.01 0 0
Efficiency 0.0002 0.0007 0.0114 0.0095
Time 0.008 0.1 3.2 3.4

tested with respect to eight criteria on simulated and real data. Both
Monte Carlo and Real data analysis confirm the same results. In accor-
dance with the literature, Genetic Algorithms and Simulated Annealing
perform well in absolute terms with the former being the best in relative
terms. Contrary to previous evidence, performance differentials strongly
depend on the function to be maximized and on the measure used to
compare the algorithms. One limit of this study is that it restricts the
analysis to linear regression. It would be interesting in future studies
to investigate the algorithms’ behavior in more complicated problems
involving VAR or even nonlinear models.
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