
BIOINSPIRED OPTIMIZATIONMETHODS

AND THEIR APPLICATIONS

BIOINSPIRED OPTIMIZATIONMETHODS

AND THEIR APPLICATIONS

Proceedings of the Student Workshop on

Bioinspired Optimization Methods and

their Applications, BIOMA 2014

13 September 2014, Ljubljana, Slovenia

Edited by

JURIJ ŠILC

ALEŠ ZAMUDA

Jožef Stefan Institute, Ljubljana

Jožef Stefan Institute

Ljubljana, Slovenia

Editors: Jurij Šilc, Aleš Zamuda

Cover design by Studio Design Demšar, Škofja Loka
Logo design by Gregor Papa
Printed by Tiskarna Artelj, Ljubljana
Published by Jožef Stefan Institute, Ljubljana, Slovenia, September 2014
Circulation: 50 copies

Typesetting in kapproc-based LATEX style with kind permission from
Kluwer Academic Publishers

CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

004.02(082)
005.519.1(082)
510.5(082)

STUDENT Workshop on Bioinspired Optimization Methods
and their Applications (2014 ; Ljubljana)

Bioinspired optimization methods and their applications :
proceedings of the Student Workshop on Bioinspired
Optimization Methods and their Applications - BIOMA 2014,
13 September 2014, Ljubljana, Slovenia / edited by Jurij Šilc,
Aleš Zamuda. - Ljubljana : Jožef Stefan Institute, 2014

ISBN 978-961-264-068-2
1. Gl. stv. nasl. 2. Šilc, Jurij

275097088

Contents

Preface vii

Contributing Authors xiii

Analysis of Two Algorithms for Multi-Objective Min-Max
Optimization 1

S. Alicino, M. Vasile

Comparison Between Single and Multi Objective Genetic Algorithm
Approach for Optimal Stock Portfolio Selection 15

N. Cvörnjek, M. Brezočnik, T. Jagrič, G. Papa

Simulation-Based GA Optimization for Production Planning 27
J. E. Diaz Leiva, J. Handl

Multi-Population Adaptive Inflationary Differential Evolution 41
M. Di Carlo, M. Vasile, E. Minisci

Automated Slogan Production Using a Genetic Algorithm 55

P. Tomašič, G. Papa, M. Žnidaršič

A Comparison of Search Spaces and Evolutionary Operators
in Facial Composite Construction 67

J. J. Mist, S. J. Gibson, C. J. Solomon

Local Search Based Optimization of a Spatial Light Distribution Model 81

D. Kaljun, J. Žerovnik

Parallel CUDA Implementation of the Desirability-Based Scalarization
Approach for Multi-Objective Optimization Problems 93

E. Akca, Ö. T. Altınöz, S. U. Emel, A. E. Yilmaz, M. Efe, T. Yaylagul

Differential Evolution for Self-Adaptive Triangular Brushstrokes 105
U. Mlakar, J. Brest, A. Zamuda

v

vi BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Extended Finite-State Machine Inference with Parallel Ant Colony
Based Algorithms 117

D. Chivilikhin, V. Ulyantsev, A. Shalyto

Empirical Convergence Analysis of Genetic Algorithm for Solving
Unit Commitment Problem 127

D. Butala, D. Velušček, G. Papa

Preface

The possibly changing and uncertain environment attracts and retains
the fittest members of biological populations, which accumulate expe-
rience and improve, from adapting and competing among themselves.
Their material of experience is exchanged and propagated from itera-
tion to iteration according to the laws of nature. Relying on elementary
activities of individuals, societies of these biological populations exhibit
complex emergent behaviors. Assemblies of genes, insects, bird flocks,
and many other fascinating natural phenomena have been a rich source
of inspiration in computer algorithms design for decades. Specifically,
optimization is an area where these techniques are studied and exercised
with particular practical success.

As a result, the family of bioinspired algorithms under the Bioin-
spired Optimization Methods and its Applications (BIOMA) includes
the evolutionary algorithms, genetic algorithms, evolution strategies,
evolutionary programming, genetic programming, ant colony optimiza-
tion, particle swarm optimization, artificial immune systems, and related
bioinspired methods and their applications in science, engineering, and
business. They were designed to overcome the drawbacks of traditional
algorithms in demanding application scenarios including those where
little, if any, information is available to assist problem solving. The
emerging challenges inspire new methods to be delivered and existing
ones being introduced for specific tasks.

This volume contains recent theoretical and practical contributions to
the field of bioinspired optimization presented at the Student Workshop
on Bioinspired Optimization Methods and their Applications (BIOMA
2014), held at the Ljubljana Exhibition and Convention Centre, Slovenia,
on 13 September 2014.

Encouraged by the success of the previous BIOMA conferences orga-
nized in 2004, 2006, and 2008 as part of the Information Society Multi-
conference and 2010 and 2012 when BIOMA continued its own way, this
time BIOMA conference takes part of the 13th International Conference
on Parallel Problem Solving from Nature (PPSN 2014). BIOMA con-

vii

viii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

tinues its mission of bringing together theoreticians and practitioners to
present their recent achievements and exchange the ideas, and promot-
ing the bioinspired optimization methods to wider audience. This year,
basis are the student papers, and therefore BIOMA is organized as a
workshop to thrive new contributors in the field.

Each paper submitted to the conference was reviewed by two members
of the international program committee. In the reviewing procedure, 11
papers were selected for presentation at the conference and publication
in the proceedings. They were contributed by 31 (co)authors coming
from Russian Federation, Slovenia, Turkey, and United Kingdom.

Theoretical and algorithmic studies presented at the conference ad-
dress a variety of issues in bioinspired optimization: constraint optimiza-
tion, multi-objective optimization, uncertain variables, parameter con-
trol, self-adaptation, population structuring and sizing, multiple pop-
ulations, stagnation re-initialization, local search, memetic operators,
parallel algorithms, distributed optimization architecture, application
problem encoding, evolutionary operators definition, optimization algo-
rithm proposition, evaluation function formalization, sub-function ag-
gregation, and problem dimension reduction.

The applied work reports come from a number of interesting do-
mains: multi-objective min-max optimization of design budget, optimal
stock portfolio selection, production planning, spread spectrum radar
polyphase code design, tersoff radar function minimization, automated
slogan production, facial composite construction, spatial light distribu-
tion model, CUDA implementation, triangular brushstrokes composed
image evolution, finite-state machine inference, and power generating
units commitment.

The proposed theoretical mechanisms and realized challenging appli-
cations are balanced into four workshop sessions. The BIOMA 2014
workshop concludes with a general discussion, which aims to spring de-
bates on interesting emerging topics from bioinspired optimization meth-
ods and their applications, with especial emphasis on future challenges
in energy, finance, computational creativity and multimedia, computer
vision, machine inference, and other.

Technical sponsor of the BIOMA conference is the Jožef Stefan In-
stitute. Organized under the PPSN 2014 as a workshop, the follow-
ing sponsors are acknowledged: B2, d.o.o., Flaška, d.d., and Kolektor
Group, d.o.o. The partners participating in the conference organization
in various ways are the City of Ljubljana, Ljubljana Exhibition and Con-
vention Centre, Slovenian Artificial Intelligence Society, and Toleranca
marketing, d.o.o.

PREFACE ix

Our thanks go to the conference sponsors and partners, members of
the program and organizing committees, session chairs, paper presenters,
and other participants for contributing their parts to the conference.

We wish you an inspiring scientific meeting and a pleasant stay in
Ljubljana.

Ljubljana, 1 September 2014

JURIJ ŠILC AND ALEŠ ZAMUDA

Program Committee

Jurij Šilc, Chair, Jožef Stefan Institute, Ljubljana, Slovenia
Aleš Zamuda, Chair, University of Maribor, Slovenia

Janez Brest, University of Maribor, Slovenia
Dirk Büche, MAN Diesel & Turbo Schweiz AG, Switzerland
Rolf Drechsler, DFKI - Cyber-Physical Systems, Bremen, Germany
Bogdan Filipič, Jožef Stefan Institute, Ljubljana, Slovenia
Shih-Hsi “Alex” Liu, California State University, Fresno, USA
Nalini N, Nitte Meenakshi Institute of Technology, Bangalore, India
Gregor Papa, Jožef Stefan Institute, Ljubljana, Slovenia
Franciszek Seredynski, Cardinal Stefan Wyszynski University

in Warsaw, Poland
Jim Tørresen, University of Oslo, Norway
Xin-She Yang, Middlesex University, London, UK

Organizing Committee

Gregor Papa, Chair, Jožef Stefan Institute, Ljubljana, Slovenia

Jurij Šilc, Jožef Stefan Institute, Ljubljana, Slovenia
Aleš Zamuda, University of Maribor, Slovenia

xi

Contributing Authors

Eren Akca received his B.Sc. degree in Electronics and Communica-
tion Engineering from Çankaya University of Ankara, Turkey, in 2011.
He has also a Major degree in Computer Engineering from Çankaya Uni-
versity, Ankara. He is currently a M.Sc. student at Ankara University,
Department of Electrical-Electronics Engineering. His research interests
include software technologies and GPGPU.

Simone Alicino received his M.Sc. degree in Aerospace Engineering
from the University of Pisa, Italy, in 2009. He is currently a Ph.D.
student at the University of Strathclyde, Glasgow, United Kingdom,
Faculty of Engineering. His research interests include space systems,
optimization, and uncertainty quantification.

Ökkes Tolga Altınöz received his M.Sc. degree in Electrical-Electronics
Engineering from Hacettepe University, Ankara, Turkey, in 2010. He is
currently a Ph.D. student at Ankara University, Department of Electrical-
Electronics Engineering. His research interests include optimization and
control theory. He is a member of IEEE.

Janez Brest received his Ph.D. degree in Computer Science from the
University of Maribor, Slovenia, in 2000. He is currently a full profes-
sor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. His research interests include evolutionary comput-
ing, artificial intelligence, and optimization.

Miran Brezočnik received the Ph.D. degree from the Faculty of Me-
chanical Engineering at the University of Maribor, Slovenia, in 1998.
He is a Full Professor at the Production Engineering Institute. His
main scientific interests include: intelligent manufacturing and assembly
systems, intelligent machines and systems, advanced production tech-

xiii

xiv BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

nologies, machine learning (evolutionary computation methods, neural
networks, swarm intelligence, gravitational search algorithm), modeling
and optimization of different systems and processes in manufacturing
using intelligent systems. He is also Editor-in-Chief of the international
scientific journal Advances in Production Engineering & Management.

Domen Butala received his M.Sc. in Financial Mathematics from Uni-
versity of Ljubljana, Slovenia, in 2014 where he studied the optimization
methods for a power systems. He is currently working as a quantita-
tive power analyst in a power trading company ElectroRoute in Dublin,
Ireland, where we develops different mathematical methods including
stochastic optimization and stochastic processes.

Daniil Chivilikhin received his M.Sc. degree in Applied mathematics
and informatics from the ITMO University, Saint-Petersburg, Russian
Federation, in 2013. He is currently a Ph.D. student at ITMO Univer-
sity, Faculty of Information technologies and programming. His research
interests include evolutionary computation, ant colony algorithms, and
searh-based software engineering.

Nejc Cvörnjek received his B.Sc. degree in Industrial engineering from
the University of Maribor, Slovenia, in 2010. He is a parallel master
degree student at the University of Maribor at Faculty of Mechanical
engineering-Faculty of Economics and Business and Faculty of Health
Science. His research interests include intelligent systems in finance,
biology, medicine and health science.

Marilena Di Carlo received her M.Sc. degree in Aerospace Engineer-
ing from the University of Pisa, Italy, in 2012. She is currently a Ph.D.
student at the University of Strathclyde (Glasgow, UK) in the Depart-
ment of Mechanical and Aerospace Engineering. Her research interests
include global optimization, evolutionary computation and low-thrust
space trajectory optimization.

Juan Esteban Diaz Leiva is a current Ph.D. student in Business
and Management at the University of Manchester, United Kingdom.
He received his M.Sc. degree in Food and Resource Economics from
the University of Bonn, Germany, in 2013 and an Engineering degree
from the University of San Francisco de Quito, Ecuador, in 2010. His

Contributing Authors xv

research interests include simulation-based optimization, multi-objective
optimization, optimization under uncertainty and robust optimization.

Murat Efe received his Ph.D. degree in Electronics Engineering from
University of Sussex, United Kingdom, in 1998. He is currently an asso-
ciate professor at Ankara University, Turkey, Department of Electrical-
Electronics Engineering. His research interests include Kalman filtering
multi-target multi-sensor tracking, detection and estimation, cognitive
radar, passive network sensing. He is a member of IEEE.

Sadi Uçkun Emel received his B.Sc. degree in Electric and Electronics
Engineering from Middle East Technical University of Ankara, Turkey,
in 2000. He is currently working as a senior software engineer. His
research interests include agile software development methodologies and
optimization algorithms.

Stuart James Gibson received his Ph.D. degree in Physics from the
University of Kent, United Kingdom, in 2007. He is currently a lecturer
at the University of Kent. His research interests include interactive evo-
lutionary computation, machine learning, image and signal processing,
and face recognition. He is a member of the IEEE.

Julia Handl received her Ph.D. degree in Computer Science from the
University of Manchester, United Kingdom, in 2006. She is currently
lecturer in the Decision and Cognitive Sciences Group at Manchester
Business School. Prior to this (April 2007 – June 2011), she was an
MRC Special Training Fellow in Bioinformatics in the Faculty of Life
Sciences at the University of Manchester and she spent six months as
a visiting researcher at the University of Washington, Seattle, USA, in
2009. Her research interests include data-mining, machine learning, opti-
mization, multi-objective optimization, multi-criterion decision making,
computational biology and computational protein structure prediction.

Timotej Jagrič received the Ph.D. degree in Economics from the Uni-
versity of Maribor, Slovenia, in 2003. He is full professor of applied eco-
nomics and econometrics and associate professor of finance at Faculty
of Economics and Business. He is head of the Institute of finance and
banking. His current research interest include risk modeling, forecast-
ing, and development of new econometric methods. He has published

xvi BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

several articles in international journals and regularly attends scientific
conferences. He works as consultants for financial institutions.

David Kaljun received his B.Sc. degree in Mechanical Engineering
from the University of Maribor, Slovenia, in 2011. He is currently a
young researcher and Ph.D. student at the University of Ljubljana, Fac-
ulty of Mechanical Engineering. His research interests include local op-
timization, light distribution optimization, computer science, intelligent
expert systems. He is also a member of the young researcher group at
the Slovenian Research Agency (ARRS).

Joseph James Mist has recently submitted his thesis for his Ph.D. in
Physics at the University of Kent, United Kingdom. His research inter-
ests include interactive evolutionary computation and image processing.
He is a member of the IEEE.

Edmondo Minisci received his Ph.D. degree in Aerospace Engineering
from the Politecnico di Torino, Italy, in 2004. He is currently a lecturer
at the University of Strathclyde, Glasgow, UK, in the Department of
Mechanical and Aerospace Engineering. His research interests include
evolutionary computing, multidisciplinary design optimization, and un-
certainty based design. He is currently involved in projects regarding
global optimization of trans-atmospheric and interplanetary trajectories,
uncertainty based design of space transportation systems, and design of
innovative horizontal and vertical axis wind turbines.

Uroš Mlakar received his B.Sc. degree in Computer Science from the
University of Maribor, Slovenia, in 2014. He is currently affiliated with
the University of Maribor, Faculty of Electrical Engineering and Com-
puter Science. His research interests include computer vision and evolu-
tionary algorithms.

Gregor Papa received the Ph.D. degree in Electrical engineering from
the University of Ljubljana, Slovenia, in 2002. He is a Researcher at
the Computer Systems department, Jožef Stefan Institute, Ljubljana,
since 1997. He is also an Assistant Professor at the Jožef Stefan Inter-
national Postgraduate School, Ljubljana. His research interests include
optimization techniques, metaheuristic algorithms, and hardware im-
plementations of high-complexity algorithms. His work is published in

Contributing Authors xvii

international journals and conference proceedings. He is a member of
the IEEE and ACM.

Anatoly Shalyto received his Ph.D. degree in Automation from the
Saint-Petersburg Electrotechnical University “LETI”, Russian Federa-
tion, in 1999. He is currently a professor at the ITMO University, Saint-
Petersburg, Faculty of Information technologies and programming. His
research interests include automation, search-based software engineer-
ing, and evolutionary algorithms.

Christopher John Solomon received his Ph.D. degree in Physics from
the Royal Marsden Hospital, University of London, United Kingdom, in
1989. He is currently a Faculty member at the University of Kent, School
of Physical Sciences. His research interests include Image Processing,
evolutionary computation, pattern recognition, and facial synthesis and
recognition.

Polona Tomašič received her B.Sc. degree in Computer Science and
Mathematics from the University of Ljubljana, Slovenia, in 2013. She
is currently a Ph.D. student in Information and Communication Tech-
nologies at the Jožef Stefan International Postgraduate School, Ljubl-
jana. Her research interests include evolutionary computing and com-
putational creativity.

Vladimir Ulyantsev received his M.Sc. degree in Applied mathematics
and informatics from the ITMO University, Saint-Petersburg, Russian
Federation, in 2013. He is currently a Ph.D. student at ITMOUniversity,
Faculty of Information technologies and programming. His research in-
terests include machine learning, search-based software engineering, and
bioinformatics.

Massimiliano Vasile received his Ph.D. degree in Aerospace Engineer-
ing from Politecnico di Milano, Italy, in 2001. He is currently a professor
at the University of Strathclyde, Glasgow, United Kingdom, Faculty of
Engineering. His research interests include computational optimization,
robust design and optimization under uncertainty. He is a member of
IEEE, Computational Intelligence Society’s Emerging Technology Com-
mittee, and IAF Space Power Committee.

xviii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Dejan Velušček received his Ph.D. in Mathematics from University
of Ljubljana in 2005. He is currently an Assistant Professor of Finan-
cial Mathematics at the University of Ljubljana, Slovenia, Faculty of
Mathematics and Physics. He is also a researcher at the Institute of
Mathematics, Physics and Mechanics in Ljubljana. His research inter-
ests include probabilistic numerical methods, modeling with stochastic
processes and stochastic optimization.

Tayfur Yaylagul received his B.Sc. degree in Computer Science &
Engineering from Hacettepe University of Ankara, Turkey, in 1996. He
is currently working as a chief software engineer. His research interests
include missin planning and optimization algorithms.

Asım Egemen Yilmaz received his Ph.D. degree in Electrical-Electronics
Engineering from Middle East Technical University, Ankara, Turkey, in
2007. He is currently an associate professor at Ankara University, De-
partment of Electrical-Electronics Engineering. His research interests in-
clude computational electromagnetics, nature-inspired optimization al-
gorithms, knowledge-based systems; more generally software develop-
ment processes and methodologies. He is a member of IEEE.

Aleš Zamuda received his Ph.D. degree in Computer Science from the
University of Maribor, Slovenia, in 2012. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineer-
ing and Computer Science. His research interests include evolutionary
algorithms, multicriteria optimization, artificial life, and computer ani-
mation.

Janez Žerovnik received his Ph.D. degree in Computer Science from
the University of Ljubljana, Slovenia, in 1992 and his Ph.D. degree in
Mathematics from the Techical University Graz, Austria, in 1994. He is
currently a professor mathematics at University of Ljubljana and a part
time researcher at the Institute of mathematics, physics and mechan-
ics, Ljubljana, Slovenia. He was a research fellow at Montanuniversitaet
Leoben, Austria, École Normale Supérieure Lyon, France, and Royal
Holloway, University of London, United Kingdom. He has published
more than 100 papers in refereed journals and more than 100 papers in
proceedings of scientific conferences. He is a member of editorial boards
of Ars Mathematica Contemporanea, ISRN Discrete Mathematics, and
Central European Journal of Operations Research, and served as guest

Contributing Authors xix

editor of special issues of Central European Journal of Operations Re-
search (twice), Discussiones Mathematicae. Graph Theory, Theoretical
Computer Science, and several conference proceedings including Struc-
tural information and communication complexity : revised selected pa-
pers, (Lecture Notes in Computer Science, 5869). His main research
interest are graph theory and optimization, and more general discrete
mathematics with applications in theoretical computer science, chemical
graph theory and operational research.

Martin Žnidaršič is a post-doctoral researcher at the Department of
Knowledge Technologies of the Jožef Stefan Institute, Ljubljana, Slove-
nia. His main research interests are in decision support and data mining
with a focus on probabilistic modeling, evaluation modeling and senti-
ment analysis. He was active in several EU FP5, FP6 and FP7 research
projects and is currently active in two FP7 projects concerned with
computational creativity: ConCreTe and WHIM. Besides research, he
is interested in Web programming and is currently teaching courses on
Web programming at the Faculty of Information Sciences Novo mesto,
Slovenia, and at the Jožef Stefan International Postgraduate School,
Ljubljana.

ANALYSIS OF TWO ALGORITHMS

FOR MULTI-OBJECTIVE MIN-MAX

OPTIMIZATION

Simone Alicino
Mechanical and Aerospace Engineering

University of Strathclyde, Glasgow, United Kingdom

simone.alicino@strath.ac.uk

Massimiliano Vasile
Mechanical and Aerospace Engineering

University of Strathclyde, Glasgow, United Kingdom

massimiliano.vasile@strath.ac.uk

Abstract This paper presents two memetic algorithms to solve multi-objective
min-max problems, such as the ones that arise in evidence-based robust
optimization. Indeed, the solutions that minimize the design budgets
are robust under epistemic uncertainty if they maximize the belief in
the realization of the value of the design budgets. Thus robust solu-
tions are found by minimizing with respect to the design variables the
global maximum with respect to the uncertain variables. A number
of problems, composed of functions whose uncertain space is modelled
by means of evidence theory, and presenting multiple local maxima as
well as concave, convex, and disconnected fronts, are used to test the
performance of the proposed algorithms.

Keywords: Evidence-based robust optimization, Multi-objective optimization, Worst-
case scenario design.

1. Introduction

Worst-case scenario problems arise whenever a performance index, or
cost function, has to be optimal with respect to a design vector d, and at
the same time robust against an uncertain vector u. This class of prob-
lems is common in several fields, such as game theory, decision making,
robust control, risk analysis, and robust design. For instance, the lower
expectation in the realization of the value of a particular performance

1

2 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 Min-max optimization via restoration.

1: Initialize archive Au = {u1}, and set i = 1
2: while the stopping condition is not met do

3: Compute di = argmin
d∈D

{
max
u∈Au

f(d,u)

}

4: Compute ui+1 = argmax
u∈U

f(di,u)

5: Add ui+1 to the archive Au

6: i← i+ 1
7: end while

8: Return {di,ui+1}.

index for a model of a system can be defined as the degree of belief that
one has in a certain proposition being true, given the available evidence.
In the framework of imprecise probabilities, it can be seen as a lower
bound to the cumulative distribution function of classical probability
theory. Its use is therefore interesting in engineering design, as it gives
the lower limit of the confidence that the design budgets under uncer-
tainty will be below a given threshold. In this framework both epistemic
and aleatory uncertainties can be treated even when no exact informa-
tion on the probability distribution associated to an uncertain quantity
is available. Stochastic variables and associated probability are replaced
by a multivalued mapping from a collection of subsets of an uncertain
space U into a lower expectation (Belief function in the case of Evi-
dence Theory). The main drawback of the use of multivalued mappings
is that the computation of the lower expectation, i.e. the Belief, has a
complexity that is exponential with the number of uncertain variables.
Recently, some strategies were proposed in [10] to obtain an estimation
of the maximum Belief with a reduction of the computational cost. The
approach starts by translating an optimization under uncertainty into
a single or multi-objective min-max problem equivalent to a worst-case
scenario optimization problem. Several methods have been proposed to
address single-objective min-max problems, especially using evolution-
ary approaches [2, 3], and metamodels [4, 5, 12]. For the multi-objective
case, a gradient-based approach is presented in [1]. An interesting ap-
proach is based on the procedure proposed in [4, 8] for single-objective
problems, and exploited in [6] for interval multi-objective linear pro-
gramming. Such procedure is based on an iterative minimization over
the design space and subsequent restoration of the global maximum over
the uncertain space as shown in Algorithm 1. The stopping condition
can be the achievement of a desired accuracy, or a maximum number
of function evaluations, for example. In this paper we present a multi-

Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 3

objective version of Algorithm 1 implemented in an algorithm called
MACSminmax. MACSminmax, employs MACS2 and IDEA at steps 3
and 4, respectively. Another algorithm, MACSν, is presented in this
paper and compared to MACSminmax. MACSν is a variant of MACS2
containing heuristics to deal with min-max problems. The paper starts
with a brief introduction to Evidence Theory and its use in the context
of robust design optimization in Section 2. Section 3 introduces the
two memetic algorithms, MACSminmax and MACSν. Section 4 finally
presents the results on some test cases.

2. Evidence-Based Robust Design Optimization

Evidence theory [7] allows to adequately model both epistemic and
aleatory uncertainty when no information on the probability distribu-
tions is available. For instance, during the preliminary design of an
engineering system, experts can provide informed opinions by express-
ing their belief in an uncertain parameter u being within a certain set of
intervals. The level of confidence an expert has in u belonging to one of
the intervals is quantified by using a mass function generally known as
Basic Probability Assignment (bpa). All the intervals form the so-called
frame of discernment Θ, which is a set of mutually exclusive elementary
propositions. The power set of Θ is called U = 2Θ, or the set of all the
subsets of Θ (the uncertain space in the following). An element θ of U
that has a non-zero bpa is called focal element. When more than one
parameter is uncertain, the focal elements are the result of the Cartesian
product of all the elements of each power set associated to each uncertain
parameter. The bpa of a given focal element is then the product of the
bpa of all the elements in the power set associated to each parameter.
All the pieces of evidence completely in support of a given proposition
form the cumulative belief function Bel, defined as follows:

Bel(A) =
∑

∀θi⊆A

m(θi) (1)

where A is the proposition about which the Belief is evaluated. For
example, the proposition can be expressed as:

A = {u ∈ U | f(u) ≤ ν} (2)

where f is the outcome of the system model and the threshold ν is the
desired value of a design budget. It is important to note that the set A
can be disconnected or present holes, likewise the focal elements can be
disconnected or partially overlapping. This introduces discontinuities in
the search space, making the problem more difficult to solve.

4 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

An engineering system to be optimized can be modelled as a function
f : D × U ⊆ ℜm+n → ℜ. The function f represents the model of the
system budgets (e.g. power budget, mass budget, etc.), and depends on
some uncertain parameters u ∈ U and design parameters d ∈ D, where
D is the available design space and U the uncertain space. What is
interesting for the designers is the value of the function f for which Bel =
1, i.e. it is maximum. This value of the design budget is the threshold
νmax above which the design is certainly feasible, given the current body
of evidence. If q objective functions exist, then the following problem
can be solved without considering all the focal elements:

νmax = min
d∈D

F = min
d∈D

[max
u∈Ū

f1(d,u), . . . ,max
u∈Ū

fq(d,u)]
T (3)

Problem in 3 is a multi-objective min-max over the design space D and
the uncertain space Ū , where Ū is a unit hypercube collecting all the
focal elements in a compact set with no overlapping or holes. The trans-
formation between U and Ū is given by:

xU =

(
bu
U,i − bl

U,i

)
(
bu
Ū,i
− bl

Ū ,i

)xŪ ,i + bl
U,i −

(
bu
U,i − bl

U,i

)
(
bu
Ū,i
− bl

Ū ,i

)bl
Ū ,i

(4)

where bu
U,i and bl

U,i (resp. b
u
Ū,i

and bl
Ū ,i

) are the upper and lower bound-

aries of the i− th hypercube to which xU,i (resp. xŪ,i) belongs.

3. Multi-Objective Min-Max Memetic
Optimization

Problem (3) searches for the minimum of the maxima of all the func-
tions over Ū and represents an example of worst-case scenario design op-
timization. The maximum of every function is independent of the other
functions and corresponds to a different uncertain vector. Therefore, all
the maxima can be computed in parallel with q single-objective maxi-
mizations. The maximization of each function is performed by running
a global optimization over Ū using Inflationary Differential Evolution
(IDEA). The minimization over D is performed by means of MACS2.
IDEA [9] is a population-based memetic algorithm for single-objective
optimization. It hybridizes Differential Evolution and Monotonic Basin
Hopping in order to simultaneously improve local convergence and avoid
stagnation. MACS2 [13] is a memetic algorithm for multi-objective op-
timization based on a combination of Pareto ranking and Tchebycheff
scalarization. The search for non-dominated solutions is performed by
a population of agents which combine individualistic and social actions.

Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 5

The initial population is randomly generated in the search domain. In-
dividualistic actions perform a sampling of the search space in a neigh-
borhood of each agent. Then, subsets of the population perform social
actions aiming at following particular descent directions in the criteria
space. Social agents implement a Differential Evolution operator and
assess the new candidate solutions using Tchebycheff scalarization. Cur-
rent non-dominated solutions are then stored in an archive. Both social
and individualistic actions make use of a combination of the population
and the archive.

In a classical minimization problem two solutions d1 and d2 are ranked
according to which one gives the lower value of the function. In the
minimization loop of a min-max problem, the same can be done only if
the maximization loop has returned the actual global maxima ũ1 and
ũ2. However, this is usually not true. Therefore a mechanism of cross-
check such that also (d1,u2) and (d2,u1) are evaluated is needed in
order to increase the probability that each maximization identifies the
global maximum, and correctly rank two solutions.

3.1 MACSν

MACSν (Algorithm 2) is the min-max variant of MACS2. It endows
MACS2 with special heuristics to increase the probability of finding the
global maxima in Ū . More in detail, a Cross-check (lines 7, 18, and
28) compares the values of the objective functions for a newly generated
design vector in the trial populations Pt (line 7) and Ps (line 18) against
the function values of a solution already archived in A (indicated with
subscript arch in Algorithm 2). In addition, the cross-check performs a
local search or a simple function evaluation in the inner maximization
loop depending on whether the location of the maxima changes or not,
respectively, for different design vectors. After the cross-check, a Min-

Max Selection (lines 11 and 22) compares the population P with
the new candidate populations Pt (line 11) and Ps (line 22) and selects
the design vectors to attribute to the next generation according to the
following rule: If d (resp. u) is unchanged, the old u (resp. d) is replaced
with the new one, if it yields a higher (resp. lower) value of the objective
function; if both d and u are different, the new vectors will replace
the old ones. At the end of the algorithm, and at the last iteration,
a Validation (line 24) mitigates the possibility that the cross-check
operators assign the same incorrect u to all d vectors in the population
and archive. This is done by starting from the minimum value of the first
objective in the archived Pareto front, and performing a global search in
the uncertain space. If the new uncertain vector gives a higher value of

6 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 2 MACSν

1: Initialize population P , archive A = P , nfeval = 0, ǫ = 0.7, δ = 10−6

2: while nfeval < nfeval,max do

3: Run individualistic moves and generate trial population Pt

4: for all d ∈ Pt do

5: for all darch ∈ A do

6: if d ≻ darch then

7: Cross-check(Pt, A)
8: end if

9: end for

10: end for

11: Min-Max Selection(P,Pt)
12: Update P and A
13: Z ← ‖Fmax

arch − Fmin
arch‖

14: Run social moves and generate candidate population Ps

15: for all d ∈ Ps do

16: for all darch ∈ A do

17: if d ≻ darch or ‖F(d)− F(darch)‖ > ǫZ then

18: Cross-check(Ps, A)
19: end if

20: end for

21: end for

22: Min-Max Selection(P,Ps)
23: Update P and A
24: Validation(A)
25: for all d ∈ P do

26: for all darch ∈ A do

27: if d ≻ darch or d ≺ darch then

28: Cross-check(P,A)
29: else if ‖F(d)− F(darch)‖ < δ then

30: Replace u ∈ P with u ∈ A
31: end if

32: end for

33: end for

34: end while

the function, then it replaces the old one. This operation is repeated for
the elements in the archived Pareto front until there is no more variation
in their value.

Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 7

Algorithm 3 MACSminmax

1: Initialize archive Au = {u1}, nfeval = 0
2: while nfeval < nfeval,max do

3: Run MACS2 to compute dmin = argmin
d∈D

max
u∈Au

f(d,u) and asso-

ciated fd
4: Add dmin to the archive Ad

5: for all dmin ∈ Ad do

6: for all l ∈ {1, . . . , q} do
7: Run IDEA to compute ul

max = argmax
u∈Ū

f l(dmin,u) and

associated f l
u

8: if f l
u > f l

d
then

9: Add ul
max to the archive Au

10: else

11: Evaluate function to find ul
max = arg max

u∈Au

f l(dmin,u)

12: end if

13: end for

14: end for

15: end while

16: for all dmin ∈ Ad do

17: for all l ∈ {1, . . . , q} do
18: Run local search to refine ul

max ∈ Au associated to dmin

19: end for

20: end for

21: Return non-dominated dmin and associated ul
max

3.2 MACSminmax

MACSminmax (Algorithm 3) is a min-max memetic algorithm in-
spired by the procedure of Algorithm 1. This is the main difference with
MACSν. In MACSminmax, for each agent of the minimization the best
function value is computed with respect to an archive Au of candidate
uncertain vectors (line 3). The archive Au is composed of the results
of a global maximization or a simple function evaluation, depending on
which one of the two gives the higher function value (as explained above,
it is not guaranteed that the maximization finds the global maximum),
for each design vector contained in another archive Ad of candidate so-
lutions (lines 5 to 14). Thus, each element in the archive Au corresponds
to an element in the archive Ad. This is so if the global maxima change
for different design vectors. If they do not change, the archive Au is
composed of only one element. At the end of the main loop, a local

8 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

search is run for each element of the archive Ad in order to refine the
accuracy of the elements in the archive Au. Finally, because the archive
Ad is filled with batches of solutions given in output by MACS2, the
solutions are non-dominated only inside each batch. Therefore a fur-
ther dominance check is necessary to find the non-dominated solutions
among the batches.

Interesting is a comparison between MACSminmax and MACSν. In
MACSν a maximization is run for every agent of the minimization,
whereas in MACSminmax each agent of the minimization is cross-checked
with the archive of candidate uncertain vectors through a function evalu-
ation. However, it is worth noting that the evaluation, in MACSminmax,
of each d against an archive Au of candidate uncertain vectors, as well
as the update of Au for each element of an archive Ad of candidate de-
sign vectors, is equivalent to the cross-checks implemented in MACSν.
Furthermore, the local search in MACSminmax after the main loop is
similar to the validation procedure in MACSν, where a global search
is run starting from the extrema of the Pareto front. Finally, in terms
of balance between exploration (social moves) and exploitation (individ-
ualistic moves) of the search space, both MACSν and MACSminmax
employ the same search algorithms, MACS2 and IDEA, therefore they
are equivalent so long as the parameters (population, F , CR) are set to
the same values.

4. Test Cases

MACSν and MACSminmax were tested on the six bi-objective and
one tri-objective test cases reported in Table 1, where n is the dimen-
sion of the design vector d, as well as the uncertain vector u – therefore
the total dimension of the test cases is 2n – and nfeval,max is the maxi-
mum number of function evaluations, i.e. the termination condition for
the algorithms. The test cases are composed of the functions in Table
2. The functions are easily scalable and present very challenging land-
scapes, with multiple maxima that can change significantly with the
design vector. Function MV10, in particular, is characterized by having
the maxima located on top of multiple sharp, steep peaks. Note also
that the test cases present several types of Pareto fronts, convex, con-
cave, linear, and disconnected. The uncertain vector u is assigned the
bpa structure reported in Table 3. The uncertain intervals present holes
and overlappings, that introduce discontinuities in the uncertain space.
The reference solution, i.e. the real front in Figures 1, was computed by
merging the results of 200 runs of the same problems solved by means
of MACSν with the results of 200 runs of MACSminmax.

Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 9

Table 1. Test cases.

Test Case Functions d n nfeval,max

TC1 f1 = MV1, f2 = MV3 [1, 5]n 2 2E5
TC2 f1 = MV2, f2 = MV8 [0, 3]n 8 1E6
TC3 f1 = MV2, f2 = EM1 [1, 5]n 8 1E6
TC4 f1 = MV8, f2 = MV9 [1, 3]n 2 4E5
TC5 f1 = MV8, f2 = EM1 [1, 5]n 4 1E6
TC6 f1 = MV10, f2 = MV9 [−4, 2π]n 1 1E5
TC7 f1 = MV2, f2 = MV8, f3 = EM1 [1, 5]n 4 1E6

Table 2. Test functions.

ID Function

MV1 f =
∑n

i=1 diu
2
i

MV2 f =
∑n

i=1 (di − ui)
2

MV3 f =
∑n

i=1 (5− di) (1 + cos u1) + (di − 1) (1 + sinui)
MV8 f =

∑n
i=1 (2π − ui) cos (ui − di)

MV9 f =
∑n

i=1 (di − ui) cos (−5ui + 3di)
MV10 f =

∑n
i=1 (di + ui) cos (−ui(5|d| + 5) + 3di)

EM1 f =
∑n

i=1 (ui − 3di) sinui + (di − 2)2

From a sensitivity analysis on total number of agents (5, 10, 20) vs.
subset of social agents (1/3, 1/2, 1), and F (0.1, 0.5, 1, 2) vs. CR (0.1,
0.5, 0.9) for MACS2 and IDEA resulted that the best settings were:
200n function evaluations for both MACS2 and IDEA, for 10 agents for
MACS2, half of which perform the social actions, 5 agents for IDEA,
and F = 1 and CR = 0.1 for both MACS2 and IDEA. The sensitivity
analyses were run for test case TC4 with a total of 2E5 function eval-
uations, and the results assessed in terms of success rate of finding the
global maximum, as well as convergence Mconv and spreading Mspr as
per definition in [11]. The same settings were used in all the test cases.

Table 4 summarizes the success rates of finding the global maxima,
as well as convergence and spreading of MACSminmax in comparison
to MACSν. The results are the average performances obtained from
the 200 runs needed to achieve a confidence interval of 95% on the suc-
cess rate being within a ±5% interval containing its estimated value [9].
Columns maxf1, maxf2 and maxf3 contain the maximization success

10 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 3. bpa structure of the uncertain variables.

MV1, MV2, MV3
Interval [-5 -4] [-3 0] [-1 3]
bpa 0.1 0.25 0.65

MV8
Interval [0 1] [2 4] [3 2π]
bpa 0.1 0.25 0.65

MV9
Interval [-π/2 -π/6] [0 π] [3π/4 3π/2]
bpa 0.1 0.4 0.5

MV10
Interval [π 4] [5 6] [5.5 2π]
bpa 0.1 0.25 0.65

EM1
Interval [0 5] [7 14] [12 20]
bpa 0.1 0.5 0.4

rates computed with an accuracy of 10-4 with respect to the actual max-
ima, columns Mconv and Mspr contain the mean value of Mconv and Mspr

respectively, and columns pconv/tconv and pspr/tspr contain the success
rate of computing a front which convergence and spreading are below
the thresholds tconv and tspr also contained in the columns after the ‘/’
symbol. MACSminmax attains performances similar to MACSν, with
excellent success rates for almost all the test cases. For TC2, TC3 and
TC7, MACSminmax provides a significantly better spreading (2.0, 0.3,
and 2.1) than MACSν (16.1, 7.5, and 9.3). Note also that TC2 and TC3
are the test cases with the higher dimension, 16, whereas TC7 has the
highest number of objectives, 3. Moreover, for TC5 MACSminmax has
a significantly higher success rate for the maximization of the second
objective (87.6% against 54.1%): in function EM1 the global maximum
has a jump for a certain value of d. This makes the global maximum
been tracked more effectively with the global search implemented in
MACSminmax than with the local search of MACSν. However, for TC5
average converge and spreading computed by MACSminmax, and their
success rates, are worse than for MACSν. MACSν also performs better
at finding a front for TC6 which spreading is below a threshold equal
to 2. In conclusion, MACSminmax has equal or better capability in the
maximization in the uncertain space, and also in terms of convergence
and spreading, than MACSν, which in turns performed slightly better
in two cases. On one hand, such rather equivalent performances of the
two algorithms can be explained by the fact that they have equivalent
balance between exploration and exploitation, as explained in subsec-

Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 11

50 100 150
13.5

14

14.5

15

15.5

16

f
1

f 2

Real
MACSν
MACSminmax

(a) TC1

200 300 400 500 600
25

30

35

40

45

50

55

f
1

f 2

Real
MACSν
MACSminmax

(b) TC2

200 300 400 500 600
80

90

100

110

120

130

140

f
1

f 2

Real
MACSν
MACSminmax

(c) TC3

6 7 8 9 10 11
5

5.5

6

6.5

7

7.5

f
1

f 2

Real
MACSν
MACSminmax

(d) TC4

6 8 10 12 14
40

50

60

70

80

f
1

f 2

Real
MACSν
MACSminmax

(e) TC5

2 4 6 8 10 12 14
12

14

16

18

20

22

24

f
1

f 2

Real
MACSν
MACSminmax

(f) TC6

100
200

300
400

0
10

20
30
40

50

60

70

f
1

f
2

f 3

Real
MACSν
MACSminmax

(g) TC7

Figure 1. Pareto fronts of the test cases.

tion 3.2. On the other hand, the better performance of MACSminmax
on some of the test cases can be due to more effective archiving, cross-
check and validation mechanisms, which are the only aspects that dif-
ferentiate MACSν and MACSminmax. The Pareto fronts for the seven
test cases are shown in Figure 1. As a comparison, the fronts computed
by means of MACSν and of MACSminmax are displayed. One can see
that MACSminmax performs as well as MACSν at identifying the true
Pareto front for all the test cases. In addition, it is worth noting that
TC4 presents a deceptive front, as the bottom-right portion of it has
a multitude of dominated fronts above it. This resulted to be a very
difficult part for both MACSν and MACSminmax to identify.

5. Conclusions

Two multi-objective min-max memetic algorithms, MACSminmax and
MACSν have been presented and compared in this paper. MACSν is a
variant of MACS2 endowed with cross-checks, and selection and valida-
tion mechanisms to properly maximize the subproblem. MACSminmax
makes use of an iterative restoration of the global maxima in the uncer-
tain space. Despite the different procedures, the two strategies imple-
ment similar cross-checks. The two algorithms have been tested on seven
scalable test cases that present several types of Pareto fronts. Results
show that both MACSminmax and MACSν are able to achieve similar
very good performances, in terms of finding the global maxima in the
uncertain space and the true Pareto front. However, MACSminmax per-

12 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 4. Results: comparison between MACSν and MACSminmax.

Test Case Algorithm maxf1 maxf2 maxf3 Mconv Mspr pconv / tconv pspr / tspr

TC1
MACSν 100% 100% - 0.2 1.7 100 / 0.5 79 / 2

MACSminmax 100% 100% - 0.2 1.3 100 / 0.5 100 / 2

TC2
MACSν 100% 65% - 0.5 16.1 100 / 1 0 / 2

MACSminmax 100% 60% - 0.6 2.0 100 / 1 64 / 2

TC3
MACSν 100% 100% - 0.6 7.5 46 / 0.5 3 / 2

MACSminmax 100% 100% - 0.1 0.3 100 / 0.5 100 / 2

TC4
MACSν 100% 91.3% - 0.3 0.9 83 / 0.5 97 / 2

MACSminmax 100% 85.7% - 0.4 1.0 77 / 0.5 91 / 2

TC5
MACSν 98.6% 54.1% - 1.2 5.8 48 / 1 60 / 6

MACSminmax 92.8% 87.6% - 2.7 8.0 24 / 1 42 / 6

TC6
MACSν 100% 100% - 0.3 1.2 95 / 0.5 97 / 2

MACSminmax 100% 100% - 0.3 2.0 91 / 0.5 63 / 2

TC7
MACSν 100% 100% 95.3% 5.0 9.3 50 / 5 8 / 5

MACSminmax 100% 100% 98.3% 4.6 2.1 66 / 5 100 / 5

formed significanly better in terms of spreading in the two test cases with
the highest dimension and the one with three objectives. Multi-objective
min-max optimization algorithms find applicability to worst-case sce-
nario problems, such as evidence-based robust engineering design.

References

[1] S. Azarm and H. Eschenauer. A Minimax Reduction Method for Multi-Objective
Decomposition-Based Design Optimization. Struct. Optimization, 6:94–98, 1993.

[2] A. M. Cramer, S. D. Sudhoff, and E. L. Zivi. Evolutionary Algorithms for Min-
imax Problems in Robust Design. IEEE T. Evolut. Comput., 13(2):444–453,
2009.

[3] R. I. Lung and D. Dumitrescu. A New Evolutionary Approach to Minimax
Problems. In Proc. IEEE Congress on Evolutionary Computation (CEC), 2011.

[4] J. Marzat, E. Walker, and H. Piet-Lahanier. Worst-case Global Optimization of
Black-Box Functions through Kriging and Relaxation. J. Global Optim., 55:707–
727, 2013.

[5] Y.-S. Ong, P. B. Nair, and K. Y. Lum. Max-Min Surrogate-Assisted Evolu-
tionary Algorithm for Robust Design. IEEE T. Evolut. Comput., 10:392–404,
2006.

[6] S. Rivaz and M. A. Yaghoobi. Minimax Regret Solution to Multiobjective Linear
Programming Problems with Interval Objective Functions Coefficients. Cent.
Europ. J. Oper. Re., 21:625–649, 2013

[7] G. Shafer A Mathematical Theory of Evidence. Princeton University Press, 1976.

[8] K. Shimizu and E. Aiyoshi. Necessary Conditions for Min-Max Problems and
Algorithms by a Relaxation Procedure. IEEE T. Automat. Contr., 25(1):62–66,
1980.

Analysis of Two Algorithms for Multi-Objective Min-Max Optimization 13

[9] M. Vasile, E. Minisci, and M. Locatelli. An Inflationary Differential Evolu-
tion Algorithm for Space Trajectory Optimization. IEEE T. Evolut. Comput.,
15:267–281, 2011.

[10] M. Vasile, E. Minisci, and Q. Wijnands. Approximated Computation
of Belief Functions for Robust Design Optimization. In Proc. 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Mate-
rials Conference, 2012.

[11] M. Vasile and F. Zuiani. Multi-agent Collaborative Search: An Agent-based
Memetic Multi-Objective Optimization Algorithm Applied to Space Trajectory
Design. J. Aerosp. Eng. 225:1211–1227, 2011.

[12] A. Zhou and Q. Zhang. A Surrogate-Assisted Evolutionary Algorithm for
Minimax Optimization. In Proc IEEE Congress on Evolutionary Computation
(CEC), Barcelona, Spain, 2010.

[13] F. Zuiani and M. Vasile. Multi Agent Collaborative Search Based on Tchebycheff
Decomposition. Comput. Optim. Appl., 56(1):189–208, 2013.

COMPARISON BETWEEN SINGLE

AND MULTI OBJECTIVE GENETIC

ALGORITHM APPROACH FOR

OPTIMAL STOCK PORTFOLIO

SELECTION

Nejc Cvörnjek
Faculty of Mechanical Engineering, University of Maribor, Slovenia

and

Faculty of Economics and Business, University of Maribor, Slovenia

nejc.cvornjek@gmail.com

Miran Brezočnik
Laboratory of Intelligent Systems, Faculty of Mechanical Engineering

University of Maribor, Slovenia

miran.brezocnik@um.si

Timotej Jagrič
Institute for Finance and Banking, Faculty of Economics and Business

University of Maribor, Slovenia

timotej.jagric@uni-mb.si

Gregor Papa
Computer Systems Department

Jožef Stefan Institute, Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

gregor.papa@ijs.si

Abstract Portfolio selection is one of the most common problem in the field of fi-
nance. Many investors would like to allocate their funds in such way that
ratio between return and risk will be as high as possible. Up to today,

15

16 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the problem has been solved with various approaches based on genetic
algorithm technique and GA has proved to be suitable. In this paper
we applied two different approaches based on genetic algorithm tech-
nique in order to solve the problem. First is single objective approach
and second is multi objective one (NSGA-II). Results are showing that
there is no significant difference between approaches.

Keywords: Computational finance, Genetic algorithm, NSGA-II, Portfolio opti-
mization, Portfolio selection.

1. Introduction

Few decades ago finance was just one discipline inside of economy.
In synergy with other science disciplines like engineering, mathematics,
statistics, risk management, and computer science, finance is expanding
rapidly. Today finance is independent, heavily interdisciplinary field in
science with many sub-disciplines, such as portfolio management and
computational finance.

Portfolio is a collection of assets desired to achieve diversification.
There are different types of assets on the market. Most known assets
are stocks, bonds, derivatives, commodities, etc. Portfolio can include
assets of only one type as well as assets of different types. Stock portfolio
is portfolio that contains only stocks. There can be any number of
stocks in portfolio. By adding stocks in portfolio idiosyncratic risk can
be reduced. With portfolios containing 40 or more stocks from different
industries almost half of a whole risk can be eliminated. This is called
diversification. Due to market risk, entire risk can never be eliminated
[1].

Managing any portfolio can be a difficult task. Main goal of port-
folio management is choosing best asset on the market and allocating
investors capital among these assets in such proportions that there will
be a maximum return along with a minimum risk. The fact which makes
problem difficult is that return and risk are conflicting. Assets with high
return would often have a high risk. Risk can be measured with different
metrics such as variance, semi-variance, VaR, cVaR, etc.

Portfolio selection problem (PSP) is a quadratic programming (QP)
problem. However, heuristic techniques could be used in optimal PSP.
Among heuristic techniques genetic algorithm (GA) are very common.
Shoaf and Foster demonstrated effectiveness of GA where they proved
that GA has smaller time complexity than QP [10].

Until today, problem was solved with single and multi objective GA
approaches. In this paper, we applied both, single as well as multi
objective approach, in order to find optimal stock portfolio and compare
results to see if there is any significant difference.

Comparison Between Single and Multi Objective Genetic Algorithm 17

Paper is organized as follows. In Section 2 a problem of stock port-
folio optimization is presented. In Section 3 both used techniques are
described in detail. In Section 4 we give a brief description about related
work. In Sections 5 a practical problem and methodology of work are
presented. We show results and discuss about them in Section 6. Last
section is conclusion.

2. Problem Presentation

State of the art of today’s modern portfolio theory is the mean-
variance model introduced by H. Markowitz [7] in 1952. Markowitz
developed his mean-variance model (M-V model) where is assumed that
there is a trade-off between return and risk. M-V model includes two
parameters. First is mean which stands for expected return of portfolio.
Expected return is mathematically described as

E (rp) =

n∑

i=1

E (ri)wi (1)

where E (rp) is an expected portfolio return, E (ri) is an expected return
of i-th stock in portfolio and wi is a proportion of i-th stock in portfolio.

A second parameter is variance which stands for risk. Portfolio vari-
ance can be computed by using the equation below

σ2
p =

n∑

i=1

n∑

j=1

wiwjσij (2)

where σ2
p is portfolio variance, wi and wj are weights of i-th and j-th

stock, and σij is covariance between i-th and j-th stock.
There are weight constraints in portfolio optimization problem. The

basic model has two constraints

n∑

i=1

wi = 1 (3)

and
0 ≤ wi ≤ 1 (4)

where i, j = 1, . . . , N .
We must warn that the last constraint applies only when long positions

are allowed. If short selling is allowed portfolio weights can be negative.
To improve basic model other constraints could be included. Typical

constraints are constraints on cardinality, floor-ceiling, transaction costs,
etc. More on constraints in PSP can be found in [5].

18 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3. Genetic Algorithm

Genetic algorithm [4] (GA) is stochastic nonlinear optimization and
search technique developed by J. Holland. GA is based on principles of
nature. Those principles are natural selection, reproduction and muta-
tion.

Each organism has his own fitness, which represents organism’s abil-
ity to survive. The higher is the organism’s fitness, the higher is the
probability that organism would be selected for reproduction and for
retaining organism into the next generation.

3.1 Simple GA

Multi objective problem can be easily converted into single objec-
tive problem. Most often used methods are weighted sum method, ǫ-
constrained method, etc. [2].

Simple GA starts with randomly generated population P of size N .
Population is a set of organisms. Each organism represent a possible
solution of the problem. Then, we assign fitness to each organism, and
expose them to evolutionary operations. First operation is natural se-
lection. With natural selection best organisms in present generation
are carried into the next generation without making any changes. Next
operation is reproduction. Reproduction consists of two operations: Se-
lection of parents and crossover. Operation stars with selection. Most
often used is a tournament selection. There are k participants in the
tournament, and organism with best fitness is a winner, which becomes
a parent. When two parents are selected, crossover can happen with
some probability Pc. If crossover is happened offspring is produced.
The process of reproduction is repeated until new population of off-
springs with size P is created. Next operation is mutation. Mutation
is a random change in genetic material of organism and it occurs with
some probability Pm.

Now new generation of organism is made. Procedure is repeated until
number of generation or stopping criteria is reached.

3.2 NSGA-II

With multi objective approach instead of a single solution we get a
whole set of solutions. This set is called a Pareto front. Every solution
in set is not worse than other solutions. In multi objective approach we
implemented NSGA-II algorithm, but there exist many multi objective
approaches based on GA. NSGA-II was developed by Deb et. al [3] and

Comparison Between Single and Multi Objective Genetic Algorithm 19

has been proved as an efficient algorithm for multi objective optimiza-
tion, with better time efficiency than other similar approaches.

In NSGA-II, first population of parents P0 of size N is randomly
generated. This population then produces a population of offsprings O0

also of size N . Both populations are combined into one population R0.
Then population R0 is transferred to non-dominate sorting procedure.

Non-dominated sorting is a procedure in which a rank or level is as-
signed to each organism. Organisms that are not dominated by any
other organism have the best rank. Thus, organisms are removed from
population, and procedure is repeated until all organisms in population
have their ranks. Organism one is dominated by organism two if two
conditions are satisfied. First, if organism two is strictly better in at least
one criteria, and second, if organism two is not worse than organism one
in any criteria.

Furthermore, new population of parents P1 is made according to or-
ganism rank. Population gets filled with organisms with the same rank.
When, by adding new front in population, its size exceeds, organisms
in that front are selected with crowding distance. Crowding distance is
a distance between neighboring organisms. For boundary organisms is
assigned as c = ∞, but for other organisms is computed. Organisms
with bigger crowding distance are added into population P1 until size N
for population P1 is reached.

Now new generation of offsprings can be made. Procedure is repeated
until the number of generation or stopping criteria is reached.

4. Related Work

Until today, fairly large amount of research has been done. Most of
research is based on M-V model.

Problem can be solved by converting it into single objective approach.
There are two popular approaches. First, used in [11], parameter λ is
included and it stands for risk factor. Evaluation function is

maximise (1− λ)

n∑

i=1

E (ri)wi − λ

n∑

i=1

n∑

j=1

wiwjσij (5)

0 ≤ λ ≤ 1 (6)

With iterating through λ efficient frontier of portfolios could be pro-
duced. If λ = 1 risk is disinterested and portfolio with maximum return
could be found. If λ = 0 global minimum portfolio could be found
because return is disinterested. The second approach used in [6] is a
Sharpe ratio with risk free rate ignored. Function is maximization of a

20 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ratio between return and risk

maximise

∑n
i=1E (ri)wi∑n

i=1

∑n
j=1wiwjσij

(7)

and this approach we are going to use.
In MOGA approaches Mishra et al. [8] compare four elitist approaches

PAES, APAES, PESA and NSGA-II. In research they evaluated their
performance through three metrics of Pareto front performance, S met-
ric, δ metric, C metric. Results were demonstrating that NSGA-II is
superior against other approaches. In [9] Mishra et al. compare PESA
SPEA-II and NSGA-II. Their results were showing that NSGA-II signifi-
cantly outperform other two approaches. Based on that we will compare
simple GA and NSGA-II.

5. Problem Definition and Methodology

According to our case, we attempt to find optimal stock portfolio
with two different approaches, depending on the size of portfolio, and
then compare their results in order to see if there is any significant
difference. To implement M-V model we need historical data on prices
of each stock in portfolio. Data we used was observed within the period
from 01.01.2013 to 01.01.2014. In this case, all stocks are a part of S&P
500 stock market index. Data were obtained from [12]. Abbreviation of
stocks used on market are in Table 1. For algorithms implementation
we used Python 2.7.5 and Python(x, y) 2.7.5.0 environment.

Table 1. Abbreviation of stocks.

Portfolio size Stocks included in portfolio

5 CAD, TIF, AXP, NOC, FRX
10 CAD, TIF, AXP, NOC, FRX, AA, CVX, KO, F,

GOOG
20 CAD, TIF, AXP, NOC, FRX, AA, CVX, KO, F,

GOOG, GS, JEC, KSU, MCS, NVDA, PFE, TAP,
PM, GPS, MHK

Sizes of portfolios were 5, 10 and 20 stocks. According to this, car-
dinality constraint was ignored. In both approaches we used the same
parameters and they are shown in Table 2. Parameters were selected
based on multiple runs. With these values performance was the best.

Generation sizes were 100, 250, 500 and 1000 generations. Each or-
ganism was encoded as vector of weights. This is showed in Figure 1.

Comparison Between Single and Multi Objective Genetic Algorithm 21

Table 2. Parameters used in research.

Parameter Simple GA NSGA-II

Population size 50 50
Natural selection 0.05 /
Tournament size 2 2
Crossover rate 0.9 0.9
Mutation size 0.2 0.2

Figure 1. Organism encoding.

In reproduction process the tournament selection was used. Fitness
function in single objective approach was a formula for Sharpe ratio, but
risk free interest rate was ignored. Fitness function is defined as

maximizef(x) =
E(rp)

σ2
p

(8)

In multi objective approach we optimize

f(x) =

{
maximize f1 (x) =

∑n
i=1 E (ri)wi

minimize f2 (x) =
∑n

i=1

∑n
j=1wiwjσij

(9)

6. Results

Results are given in Figures 2, 3, and 4. On every plot axes are labeled
as Return and Variance. Return in case stand for expected return of
portfolio E(rp) and Variance stand for portfolio’s risk defined as σ2

p.
In Figure 2 we include five stocks in portfolio. Four of them have

positive return and one has negative return. With NSGA-II we get a
Pareto front with all different and equivalent portfolios. Solution ob-
tained with simple GA is on that front regardless to size of generations.
Stocks included in five stocks portfolio are in Table 1.

22 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 2. Results for five stocks in portfolio.

In Figure 3 we include ten stocks in portfolio. Nine of them has
positive return and one with negative return and the lowest variance.
Solution obtained with simple GA is again on the Pareto front in every
generation size. Stocks included in ten stocks portfolio are in Table 1.

In Figure 4 we include twenty stocks in portfolio. Nineteen of them
has positive return and one with negative return and the lowest variance.
Again, solution obtained with simple GA is on the Pareto front regardless
to generation size. Stocks included in twenty stocks portfolio are in
Table 1.

We can say that results obtained with simple GA approach are compa-
rable with results obtained with NSGA-II approach. Sometimes it even
happened that a neighbor solution on the Pareto front was dominated
by solution obtained with simple GA. We also made measurements of
computation times for both techniques depending on portfolio size and
number of generations. Simple GA needed significantly less time for its
computation, regardless to number of generations or portfolio size. More
details on computational are in Tables 3 and 4.

Comparison Between Single and Multi Objective Genetic Algorithm 23

Figure 3. Results for ten stocks in portfolio.

Table 3. Computational timesa of simple GA.

Portfolio size
Number of generations 5 10 20

100 0,62 0,7 0,83
250 1,55 1,78 2,02
500 3,25 3,43 4,04
1000 6,42 7,06 8,06

aAll computational times are in seconds.

7. Conclusion

In this paper, we applied stock portfolio optimization problem. Pur-
pose of portfolio optimization is to achieve highest possible return at
known risk rate or vice versa. Because exact methods like QP are time
complex we solve problem with GA.

We compare performance both, with simple as well as multi objective
GA. In research we used simple GA and NSGA-II approach in order

24 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4. Results for twenty stocks in portfolio.

Table 4. Computational timesa of NSGA-II.

Portfolio size
Number of generations 5 10 20

100 83,19 83,8 84,67
250 206,16 209,08 210,33
500 414,24 418,86 423,97
1000 827,01 841,79 857,36

aAll computational times are in seconds.

to find optimal stock portfolio, according to Markowitz mean-variance
model. Results show that even if NSGA-II is more complex algorithm,
its performance was not significantly better than the performance of
simple GA. On the contrary, sometimes simple GA solution dominate
its neighbor on the Pareto front. Simple GA also had significantly lower
computation time irrespective of portfolio size or number of generations.

Comparison Between Single and Multi Objective Genetic Algorithm 25

There are still some open questions, like how approaches will perform
with different risk metrics because in mean-variance model stocks with
lower variance are favorized regardless to their returns, or how they will
perform if we add some real world constraints in model. And that is a
starting point for future work.

References

[1] E. Brigham and M. Ehrhardt. Financial management theory and practice, 12th
edition, South-Western Cengage Learning, 2008

[2] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wi-
ley & Sons, Chishester, 2001.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE T. Evolut. Comput., 6(2):182–197,
2002.

[4] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithm, 2nd edition, Wiley,
2004.

[5] P. N. Kolm, R. Tütüncü, and F. Fabozzi. 60 years of portfolio optimization:
Practical challanges and current trends. Eur. J. Oper. Res., 234(2):356–371,
2014.

[6] C.-M. Lin and M. Gen. An effective decision-based genetic algorithm approach to
multiobjective portfolio optimization problem. Applied Mathematical Sciences,
1(5):201–210, 2007.

[7] H. Markowitz. Portfolio selection. J. Financ., 7(1):77–91, 1952.

[8] S. K. Mishra, G. Panda, S. Meher, R. Majhi, and M. Singh. Portfolio man-
agement assessment by four multiobjective optimization algorithm. In Recent
Advances in Intelligent Computational Systems (RAICS), 2011, pages 326–331.

[9] S. K. Mishra, G. Panda, S. Meher, and S. S. Sakhu. Optimal Weighting of
Assets using a Multi-objective Evolutionary Algorithm. Int. J. Recent Trends
in Engineering, 2(5):161–166, 2009.

[10] J. Shoaf and J. A. Foster. The efficient set GA for stock portfolios. In Proc. IEEE
World Congress on Computational Intelligence (WCCI), 1998, pages 354–359.

[11] Y. Xia, B. Liu, S. Wang, and K. K. Lai. A model for portfolio selection with
order to expected returns. Comput. Oper. Res., 27(5):409-422, 2000.

[12] http://finance.yahoo.com/

SIMULATION-BASED GA OPTIMIZATION

FOR PRODUCTION PLANNING

Juan Esteban Diaz Leiva
Manchester Business School

University of Manchester, United Kingdom

juan.diaz@postgrad.mbs.ac.uk

Julia Handl
Manchester Business School

University of Manchester, United Kingdom

j.handl@manchester.ac.uk

Abstract Effective production planning requires models that are capable of ac-
counting for the complexity and uncertainty intrinsic to manufacturing
systems. While the identification of a globally optimal plan is desirable,
a more important requirement is the ability of a model to produce pro-
duction plans that are sufficiently realistic to be implemented in prac-
tice and are robust to perturbations in the system. Here, we present
a simulation-based optimization approach that employs discrete event
simulation and a genetic algorithm as a methodology to support decision
making in the area of production planning. The model aims to minimize
the sum of expected backorders and inventory costs, while incorporat-
ing system constraints and the uncertainty that derives from variations
of manufacturing lead times, occurrence of work centre failures and re-
pair service times. Preliminary results for a real-world problem indicate
that the model is capable of producing feasible production plans that
correctly account for the uncertainty intrinsic to the underlying manu-
facturing system.

Keywords: Discrete event simulation, Genetic algorithms, Production planning,
Stochastic variables, Uncertainty.

1. Introduction

Production planning, which specifies how resources should be allo-
cated to production activities [16], forms an integral part of medium-
term planning within manufacturing processes. Given the increasing

27

28 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

pressures faced by manufacturers, the development and deployment of
effective models that support production planning is essential.

Ideally, an optimal production plan should be able to achieve customer
satisfaction [18] along with profit maximization, while considering un-
certainty in the system [14,16]. Therefore, an appropriate methodology
needs to perform optimization while accounting for the effects that un-
certain parameters may have on the implementation of a production
plan. This should then lead to an optimized solution that is robust to-
wards various source of uncertainty in the manufacturing system. The
lack of an instrument that is fully able to meet this requirement is one
of the main reasons why, currently, decisions in production planning are
often made in a subjective manner (based on the experience and “sixth
sense” of a few people) or guided by inappropriate (simplistic) method-
ologies.

Optimization and simulation models have been previously deployed
to solve the production planning problem, albeit independently. Opti-
mization models are able to generate optimal or near-optimal solutions,
but the real applicability of these solutions is often limited. This is be-
cause of the oversimplifying assumptions made by many optimization
models and their inability to fully incorporate uncertainty [9, 17]. Fur-
thermore, when trying to incorporate the high level of complexity and
the stochastic [13] and dynamic nature of manufacturing systems [3] into
optimization models, standard approaches become computationally in-
tractable. On the other hand, simulation approaches are capable of cap-
turing the uncertainty of the system [16] and of accurately reproducing
its behaviour [11]. Therefore, simulation often provides a better repre-
sentation of a real production system, since the variability introduced
through exogenous and endogenous factors can be explicitly considered
and the impact of these factors can be assessed [2]. However, in contrast
to optimization approaches, the results obtained from simulation mod-
els are fundamentally descriptive: while a clear picture of the system is
obtained, the results do not provide explicit guidance towards improved
solutions.

In an attempt to combine the respective advantages of simulation
and optimization techniques, simulation-based optimization has been
suggested as a means of handling problems where the high level of com-
plexity precludes a complete analytic formulation and the ultimate goal
is the identification of a robust, near-optimal solution [10]. More specif-
ically, the combined application of discrete event simulation (DES) and
genetic algorithms (GAs) has been successfully applied to address sev-
eral problems related to manufacturing systems. For instance, Azzaro-
Pantel et al. [3] were able to improve the efficiency of a multi-purpose,

Simulation-Based GA Optimization for Production Planning 29

multi-objective plant with limited storage by accurately modelling the
dynamic behaviour of the production system through DES and solving
the scheduling problem using a GA. Al-Aomar [1] combined DES and
a GA to determine robust design parameters. The author integrated
Taguchis’s robustness measures of signal-to-noise ratio and the quality
loss function into a GA in order to enhance the selection scheme. Ding
et al. [8] employed DES to capture the uncertainty involved in the sup-
plier selection process and used a GA to optimize the supplier portfolio.
Cheng and Yan [5] applied an integration of DES and a messy GA to
determine the near optimal combination of resources in order to enhance
the performance of construction operations. This approach enabled the
authors to cope with the complexity and large dimensionality of the
problem and to obtain adequate solutions. Wu et al. [21] integrated
DES with a GA to determine the order point for different product types
of a cross-docking center in order to minimize total cost. Through this
approach the solution space was efficiently reduced and more simula-
tion effort was allocated to promising areas via smart computing budget
allocation. Korytkowski et al. [12] proposed an evolutionary simulation-
based heuristics, where DES and a GA were deployed to find near op-
timal solutions for dispatching rules allocation. The sequence of orders
determined through this approach improved the performance of a com-
plex multi-stage, multi-product manufacturing system.

Here, we describe a simulation-based optimization approach for pro-
duction planning. The long-term aim of our work is to derive an effective
modeling approach that is capable of determining feasibe and robust
monthly production plans. Here, we formulate production planning as
an optimization problem that requires the minimization of the expected
sum of backorders and inventory costs, subject to a set of constraints
of the manufacturing system (e.g. resource constraints) and uncertain-
ties deriving from variations of manufacturing lead times, occurrence of
work centre failures and repair service times. Our choice of methodol-
ogy is motivated by the proven success of simulation-based optimization
in related problems (see [1, 3, 5, 8, 12, 21] and above), and we develop
a model based on the combination of DES and a meta-heuristic opti-
mizer (specifically, a GA). Finally, we describe preliminary results on a
real-world production planning problem.

2. Simulation-based Optimization Model

The production planning problem considered here is based on the
real manufacturing system of a large company that specializes in the
production of cleaning products, edible shortenings, fats, and oils. This

30 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

study focuses exclusively on its activities related to the manufacturing
of cleaning products.

Discrete Event Simulation (DES) is a good option to model the dy-
namic behaviour of this production system [3], as it allows for the incor-
poration of stochastic events and the variations of processes that occur
in complex systems [19]. Specifially, the use of DES enables us to cap-
ture the uncertainty intrinsic to production planning that cannot be
represented by deterministic models [16].

The application of simulation-based optimization implies the absence
of an analytical problem formulation, i.e. the functional relationships
between dependent and independent variables are not known explicitly
[20]. Consequently, a suitable optimization approach needs to be able
to perform optimization based exclusively on function values obtained
via simulation, a so called “black-box approach”. Considering the com-
plexity and large dimensionality of the solution space, a suitable search
strategy should be able to find near-optimal solutions in a large and com-
plex solution space and be capable of escaping local optima. Finally, the
optimization method needs to be robust with respect to noise, since the
optimization procedure relies on stochastic responses generated by the
simulation model [10]. Meta-heuristics present suitable candidates for
this setting, and, in this study, a GA was selected as the optimizer.
This choice was motivated by previous research indicating the robust
performance of GAs under noisy conditions [4, 15], and, specifically, in
the context of DES optimization [13].

The DES model of the production system was developed in SimEventsr

(The MathWorks, Inc., 2013). This was integrated with MATLABr

R2013a (The MathWorks, Inc., 2013), and MATLAB’s standard GA
implementation was employed as the optimizer. Details of the simula-
tion model and optimizer are described in the following sections.

2.1 Simulation Model

The DES model represents the production of 31 products k within 7
work centres l. A work centre corresponds to the set of resources (e.g.,
machines, people, etc.) needed to manufacture certain products. Given
that some products can be manufactured in several work centres a total
of 41 processes j are considered in the DES model. A process j includes
all series of events involved in the initialization of orders of a product k,
its manufacture in a specific work centre l and its storage in an specific
sink s (with s = 1, 2, . . . , 41). Here orders are measured in number of
lots. The simulation time t of each simulation replication is 24 days,
which corresponds to the number of working days in a month.

Simulation-Based GA Optimization for Production Planning 31

Figure 1. Order processing subsystem for work centre l.

The model component designed for the generation of orders for a
single work centre l is illustrated in Figure 1. The production plan to
be simulated is determined by the decision variables xj (used as inputs
for the function-call generator blocks), specified by the GA, and then
the number of production orders for each process j are initialized (by
event-based entity generator blocks). Given that some products k are
required as raw materials during the manufacturing process of other
products k, a higher priority is assigned to the initialization of orders for
those sub-products in order to assure the static logic of the model.

Attributes are assigned to the different product lots (via attribute
blocks). Specifications about the entity sink s (with s = 1, 2, . . . , 41)
where final products will be stored are assigned via an attribute called
OutputPortj. Furthermore, the time required to manufacture a specific
production lot (ManufacturingT imej) and the occurrence of a failure
in a work centre while processing a production lot (WorkCentreFailurej)
are additional attributes assigned to each lot of product. Two different
event-based random number generators are employed to set the last two
attributes mentioned. Both event-based random number generators pro-
duce a signal sampled randomly from the probability distribution func-
tions (PDFs) assigned to them. A synthetic data set was employed to
estimate PDFs for each stochastic variable included in the current study,
as data collection for these aspects of the system is currently incomplete.

Once the attributes have been assigned to the production orders, those
orders are transferred to a queue following a first-in first-out (FIFO)

32 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

discipline. Subsequently, those queues of production orders that have to
be processed by the same work centre are merged (by a path combiner
block) into a single FIFO queue.

Figure 2. Production subsystem for work centre l.

Figure 3. Repair service centre of work centre l.

The model components of a production subsystem and repair service
centre are illustrated in Figure 2 and Figure 3, respectively. Each order
is manufactured as soon as the corresponding work centre (represented
by an N-server block) becomes available. In case of failure, the activity
of that work centre is blocked by the control signal Pausel. This signal
is generated from the corresponding repair service centre and it outputs
the number of entities present in that repair centre. Therefore, a signal
with value greater than zero indicates that the work centre l is being
repaired and stops its activity until that signal becomes zero (no entities
present in the repair service centre).

In case that no failure occurs (WorkCentreFailurej = 1), the pro-
duction batch is transferred to the corresponding sink s (determined by
OutputPortj). Whereas if a failure occurs (WorkCentreFailurej = 2),
that product batch is transferred to a repair service centre prior to its
storage. The delay caused by the work centre failure is sampled from
the corresponding PDF assigned to RepairServiceT imel. One impor-
tant assumption made is that after a production batch has left the re-
pair service centre no re-manufacture is required, since the manufactur-
ing process has been already completed (passed through the N-server
block). This is an effective way to model system failure without having
conflicting events.

Simulation-Based GA Optimization for Production Planning 33

The stock of product k manufactured in work centre l, denoted by
Stockkl, is collected at the end of every replication and it is measured in
number of lots. Based on Stockkl, the total stock of product k (Stockk)
is calculated at the end of every replication as follows:

Stockk =
7∑

l=1

Stockkl (1)

consequently, for products manufactured by a single work centre this
formula reduces to:

Stockk = Stockk1 (2)

2.2 Optimization Model

The decision variables, denoted by xj, are the number of lots to be
produced in process j. A black box optimization approach is applied
in which the decision variables specified by the GA provide the input
to the DES model and the responses Stockk from the DES model are
employed to compute the value of the fitness function. A total of 41
decision variables xj, which are constrained to be positive integers, are
considered in the model. Given the stochastic nature of the DES outputs,
fitness is evaluated across n independent simulation trials (with n = 10).
Specifically, the fitness value f is estimated for each individual x as
follows:

f(x) = c̄ =
1

n

n∑

m=1

cm (3)

For each replication m, the response (Stockk) of the DES model is used
to calculate cm as follows:

cm =

31∑

k=1

InventoryCostk +BackorderCostk. (4)

Inventory and Backorder Costs are defined as:

InventoryCostk =

{
(Stockk −Dk)×Costk if Stockk > Dk

0 if Stockk ≤ Dk

and

BackorderCostk =

{
(Dk − Stockk)× Pricek if Stockk < Dk

0 if Stockk ≥ Dk

where, Dk indicates the demand for product k. Unsold amounts of prod-
uct k are penalized proportionally to the corresponding standard cost

34 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

per lot (Costk), whereas backorders receive a fine equal to the prod-
uct price, which is the income lost (Pricek) for not selling that specific
amount of product. Given a lack of information on real inventory costs
and total cost derived from backorders per product (cost of customer dis-
satisfaction, cost of non-future purchases, cost of customers switching to
other brands, etc.), standard costs and product prices are currently em-
ployed to penalize inventory and backorders, respectively. These two
assumptions are not valid in reality for several reasons. First, excess of
inventory can be sold in future periods and inventory costs are not equal
to standard costs. Second, considering product price as the total loss
caused by product backorders is inaccurate and unrealistic.

Additional constraints are imposed given that some products k are
required as raw materials during the manufacturing process of other
products k. Therefore, the requirement of sub-products is represented
through linear constraints as follows:

41∑

j=1

aij × xj ≤ bi (i = 1, 2, . . . , 4) (5)

where bi denotes the quantity available of sub-product i and aij is the
amount required of sub-product i to produce one lot in process j.

The default MATLAB implementation for solving integer and mixed
integer problems using a GA is applied in the current study. A detailed
description of the (MI-LXPM) GA and its truncation procedure (which
ensures compliance with integer constraints after crossover and muta-
tion) can be found in [7]. The inbuilt constraint-handling approach is
the parameter free penalty function approach proposed by Deb [6].

3. Preliminary Results

The model enables an accurate incorporation of uncertainty derived
from variations of manufacturing lead times, occurrence of work centre
failures and repair service times. The time required to run 15 itera-
tions of the GA is 12.15 hours. For this reason, very limited results
are reported in the present study, and we mostly focus on the validity
of the model designed. More extensive benchmarking of the approach
(including longer optimization runs and statistics across multiple trials)
is currently in progress.

As shown in Figure 4, when run for 15 iterations, the GA successfully
reduces the expected sum of backorders and inventory costs. The best
production plan after 15 iterations is presented in Table 1. For reference,
the amount of demand to be covered, the consolidated number of lots per
product to be manufactured and the actual number of lots produced is

Simulation-Based GA Optimization for Production Planning 35

shown in Table 2. The allocation for work centre 204 provides a suitable
illustration of the results obtained. For the majority of products (except
for product B), work centre 204 displays a more reliable performance
than work centre 203. For this reason, the suggested production plan
(see Table 1) allocates a greater number of orders to work centre 204.
This solution is in accordance with our expectations and illustrates that
the reliability of work centres is correctly accounted for in the production
plan generated.

Figure 4. Best, mean and worst fitness value of the population at each iteration.

4. Future Research

There are a number of ways in which this research will be extended
in future work. Regarding the simulation component of the work, data
collection (from the company) needs to be completed. The data obtained
will be used to estimate PDFs of all stochastic variables, so that the use
of synthetic data can be avoided.

Regarding the optimizer, future work will include an investigation of
parameter settings, the sensitivity to noise and, potentially, the compar-
ison to alternative meta-heuristic optimization approaches. Moreover,
the number (n) of simulation trials employed to evaluate fitness will be
further analysed in order to balance quality of estimations and computa-
tional cost. Furthermore, a multi-objective formulation of the problem
will be explored in order to account for the robustness of solutions in
a more explicit manner. Specifically, the maximization of the signal-to-
noise ratio may be used as an additional objective to directly account
for the variability in the fitness values obtained [1].

36 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1. Number of product lots to be manufactured in a specific work centre.

Product Work centre Prod. planb

A 204 14
B 203 7
B 204 6
C 203 10
D 203 6
E 203 10
F 203 8
G 203 7
G 204 14
H 203 3
H 204 11
I 203 3
I 204 8
J 203 14
K 203 6
L 203 12
L 204 13
M 203 7
M 204 19
N 204 14
O 203 5
O 204 10
P 203 4
P 204 4
Q 203 12
R 202 5
R 203 3
R 204 7
S 202 7
T 203 9
U 203 12
V 203 13
W 203 2
X 202 9
Yb 101 3

Zb 204 10
AA 204 6

ABb 205 8

ACb 205 16
AD 208 7
AE 301 9

abest production plan generated by the model after 15 iterations with n = 10.
bSub-products.

Simulation-Based GA Optimization for Production Planning 37

Table 2. Demand, consolidated production plan per product and actual production
achieved.

Production a

Product Demand a Planned Actual b

A 10 14 7.3
B 9 13 6.1
C 12 10 4
D 10 6 2.4
E 15 10 4
F 13 8 3.2
G 12 21 10.1
H 11 14 7
I 9 11 5.5
J 8 14 5.6
K 15 6 2.4
L 12 25 11.6
M 13 26 12.6
N 12 14 7.3
O 13 15 7.3
P 9 8 3.9
Q 11 12 4.8
R 10 15 10
S 9 7 7
T 15 9 3.6
U 15 12 4.8
V 12 13 5.2
W 9 2 0.8
X 9 9 9
Yc 0 3 3
Zc 0 10 5.3
AA 10 6 3.3
ABc 0 8 8
ACc 0 16 16
AD 10 7 7
AE 10 9 9

ameasured in number of lots.
baverage value of 10 independent replications.
cSub-products.

38 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

References

[1] R. Al-Aomar. Incorporating robustness into genetic algorithm search of stochas-
tic simulation outputs. Simul. Model. Prac. Th., 14(3):201–223, 2006.

[2] J. April, M. Better, F. Glover, J. Kelly, and M. Laguna. Enhancing business
process management with simulation optimization. In Proc. 38th Conference on
Winter Simulation, pages 642–649, 2006.

[3] C. Azzaro-Pantel, L. Bernal-Haro, P. Baudet, S. Domenech, and L. Pibouleau.
A two-stage methodology for short-term batch plant scheduling: discrete-event
simulation and genetic algorithm. Comput. Chem. Eng., 22(10):1461–1481, 1998.

[4] E. B. Baum, D. Boneh, and C. Garrett. On genetic algorithms. In Proc. 8th
Annual Conference on Computational Learning Theory, pages 230–239, 1995.

[5] T.-M. Cheng and R.-Z. Yan. Integrating messy genetic algorithms and simula-
tion to optimize resource utilization. Comput.-Aided Civil .Inf., 24(6):401–415,
2009.

[6] K. Deb. An efficient constraint handling method for genetic algorithms. Comput.
Methods Appl. M., 186(2):311–338, 2000.

[7] K. Deep, K. P. Singh, M. Kansal, and C. Mohan. A real coded genetic algo-
rithm for solving integer and mixed integer optimization problems. Appl. Math.
Comput., 212(2):505–518, 2009.

[8] H. Ding, L. Benyoucef, and X. Xie. A simulation optimization methodology for
supplier selection problem. Int. J. Comp. Integ. M., 18(2-3):210–224, 2005.

[9] M. Gnoni, R. Iavagnilio, G. Mossa, G. Mummolo, and A. Di Leva. Production
planning of a multi-site manufacturing system by hybrid modelling: A case study
from the automotive industry. Int. J. Prod. Econ., 85(2):251–262, 2003.

[10] G. Gray, K. Fowler, and J. Griffin. Hybrid optimization schemes for simulation-
based problems. Procedia Computer Science, 1(1):1349–1357, 2010.

[11] S.-J. Hsieh. Hybrid analytic and simulation models for assembly line design and
production planning. Simul. Model. Prac. Th., 10(1-2):87–108, 2002.

[12] P. Korytkowski, T. Wísniewski, and S. Rymaszewski. An evolutionary
simulation-based optimization approach for dispatching scheduling. Simul.
Model. Prac. Th., 35:69–85, 2013.

[13] T. Lacksonen. Empirical comparison of search algorithms for discrete event
simulation. Comput. Ind. Eng., 40(1):133–148, 2001.

[14] P. Li, M. Wendt, and G. Wozny. Optimal production planning for chemical
processes under uncertain market conditions. Chem. Eng. Technol., 27(6):641–
651, 2004.

[15] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[16] L. Monostori, G. Erdős, B. Kádár, T. Kis, A. Kovács, A. Pfeiffer, and J. Váncza.
Digital enterprise solution for integrated production planning and control. Com-
put. Ind., 61(2):112–126, 2010.

[17] A. Nikolopoulou and M. G. Ierapetritou. Hybrid simulation based optimization
approach for supply chain management. Comput. Chem. Eng., 47:183–193, 2012.

[18] Y. Pochet. Mathematical programming models and formulations for determin-
istic production planning problems. In Computational Combinatorial Optimiza-
tion, pages 57–111. Springer, 2001.

Simulation-Based GA Optimization for Production Planning 39

[19] L. A. Riley. Discrete-event simulation optimization: a review of past approaches
and propositions for future direction. In Proc. 2013 Summer Computer Simu-
lation Conference, page 47, 2013.

[20] I. Steponavičė, S. Ruuska, and K. Miettinen. A solution process for simulation-
based multiobjective design optimization with an application in the paper in-
dustry. Comput. Aided Design, 47:45–58, 2014.

[21] Y. Wu, M. Dong, and D. Yang. Cross-docking centre operation optimiza-
tion using simulation-based genetic algorithm. P. I. Mech. Eng. B-J. Eng.,
225(7):1175–1187, 2011.

MULTI-POPULATION ADAPTIVE

INFLATIONARY DIFFERENTIAL

EVOLUTION

Marilena Di Carlo
Mechanical and Aerospace Engineering

University of Strathclyde, Glasgow, United Kingdom

marilena.di-carlo@strath.ac.uk

Massimiliano Vasile
Mechanical and Aerospace Engineering

University of Strathclyde, Glasgow, United Kingdom

massimilano.vasile@strath.ac.uk

Edmondo Minisci
Mechanical and Aerospace Engineering

University of Strathclyde, Glasgow, United Kingdom

edmondo.minisci@strath.ac.uk

Abstract In this paper, a multi-population version of Adaptive Inflationary Differ-
ential Evolution, which automatically adapts the crossover probability
and the differential weight of the Differential Evolution, is presented.
The multi-population algorithm exploits the use of different popula-
tions, and the local minima found by each population, to assess the
distance between minima; a probabilistic kernel based approach is then
used to automatically adapt the dimension of a bubble in which the
population is re-initialized after converging to a local minimum. The
algorithm is tested on two real case functions and on two difficult aca-
demic functions.

Keywords: Adaptive algorithms, Differential evolution, Global optimization.

41

42 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

1. Introduction

Differential Evolution (DE), [13], is a population-based stochastic al-
gorithm for solving optimization problems. Although it has proved to
be a very efficient global optimizer, work has been done to enhance
its performance by combining it with deterministic or stochastic opti-
mizers [4, 5, 15]. In [19], Inflationary Differential Evolution Algorithm
(IDEA) was introduced. IDEA is based on the hybridization of Differ-
ential Evolution (DE) with the restarting procedure of Monotonic Basin
Hopping (MBH) algorithm [20]. The performance of IDEA was found to
be dependent upon the parameters controlling both the DE and MBH
heuristics [19]. In particular, the DE performance is strongly influenced
by the crossover probability, CR, and the differential weight, F, whose
best settings are heavily problem dependent [8].

The need to have an algorithm capable of self-adapting these two
parameters has resulted in many works [1, 3, 10, 12, 14]. The next step
in the development of IDEA has therefore been the adaptation of CR
and F , leading to Adaptive Inflationary Differential Evolution Algorithm
(AIDEA) [11]. This algorithm uses a probabilistic kernel based approach
to automatically adapt the values of both CR and F.

Starting from the successful results of AIDEA, this paper introduces a
multi-population version of AIDEA (MP-AIDEA), using different strate-
gies to create the mutant vector of the DE, different strategies to adapt
CR and F and a new mechanism to adapt the dimension of the search
space in which the population is re-initialized. Other multi-populations
DE algorithms have been presented in [16,21,22].

In the first part of this paper MP-AIDEA is described. Then the
results of four test cases are presented.

2. Multi-Population Adaptive Inflationary
Differential Evolution Algorithm

The algorithm presented in this paper is a further development of
AIDEA [11]. In the following, a summary of AIDEA and a detailed
description of MP-AIDEA are given.

AIDEA. The first step in the run of AIDEA is a DE process in which
each element of the population is associated to a different value of CR
and F . During the advancement of the population from parents to chil-
dren the values of CR and F are adapted using a kernel based approach.
The DE is run until the population contracts below a threshold, iden-
tified by the parameter ρ. When this contraction condition is satisfied
a local search is performed from the best individual in the population.

Multi-Population Adaptive Inflationary Differential Evolution 43

The found local minimum is archived in a matrix of minima and the
population is restarted in a bubble of dimension δlocal around the local
minimum (local restart). Local restart is iterated up to a predefined
maximum value, identified by the value iun. When this value is reached
the population is restarted at a distance δglobal from the cluster of local
minima found thus far (global restart). The algorithm stops when the
maximum number of function evaluation is reached.

MP-AIDEA. In MP-AIDEA the single population of AIDEA is re-
placed by many populations. The common archive of local minima of
all the populations can be used to create the mutant vector of the DE.
Three strategies have been considered for the generation of the mutant
vector: 1) DE/best/1 -DE/rand/1 : the mutant vector is created ran-
domly using the best element or a random element of the population; 2)
DE/arch/1 -DE/rand/1 : the mutant vector is created randomly using
an element from the archive of local minima or a random element of the
population: 3) DE/arch/1 -DE/best/1 : the mutant vector is created
randomly using an element from the archive of local minima or the best
element of the population.

As regards the adaptation, the presence of many populations can be
exploited to adapt CR and F in a different way with respect to AIDEA.
Two strategies for the adaptation of CR and F are proposed: 1) MP-
AIDEA-CRF1 (CR and F adaptivity realized using CR and F values
equal for every element of each population and comparing the popula-
tions to each other) and 2) MP-AIDEA-CRF2 (CR and F adaptivity
realized using different CR and F values for each element of each popu-
lation and comparing elements of each single population to each other,
as in AIDEA [11]).

Finally, a strategy is proposed to adapt also the dimension of the bub-
ble for the local restart of the population, using a kernel based approach
similar to the one used for the adaptation of CR and F . Considering all
these possibilities, twelve different versions of the algorithm have been
developed and tested:

- MP-AIDEA 1: MP-AIDEA-CRF1-DE/best/1 -DE/rand/1

- MP-AIDEA 2: MP-AIDEA-CRF1-DE/arch/1 -DE/rand/1

- MP-AIDEA 3: MP-AIDEA-CRF1-DE/arch/1 -DE/best/1

- MP-AIDEA 4 to 6: MP-AIDEA 1 to 3 with δlocal adaptation

- MP-AIDEA 7 to 12: MP-AIDEA 1 to 6 based on CRF2 strategy

A detailed description of the common structure of the algorithms is
given in Algorithm 1. The procedure starts by setting values for npop

44 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(number of elements in each population), Npop (number of populations),
iun (maximum number of local restart), ρ̄ (size of the convergence box),
δglobal (distance from the cluster centres for the global restart) and δlocal
(dimension of the bubble for the local restart, if not adapted) as in line
1 and initializing the populations (line 3). The joint PDF for CR and
F is then initialised to be a uniform distribution (lines 4 and 5). For
MP-AIDEA-CRF1, DE is run (line 11) drawing probabilistically a value
for F and CR from CRF for each population (line 9) and CRF is
updated on the basis of the improvement of the populations (step 15).
For MP-AIDEA-CRF2, lines 9, 15 and 16 are to be considered inside
the for cycle over the elements of the population (different values of CR
and F for each element of the populations). If the populations contracts
below a predefined threshold (step 18), a local optimizer is run from
the current minimum (line 19) and the found local minimum is saved
in an archive of local minima of all the populations (line 32). iunm is
updated based on the improvement of the value of fmin,m (lines 23 to
28). If the adaptation of δlocal is performed, when all the population
have performed the local search, a matrix B for the adaptation of the
dimension of the bubble can be created (step 34, Algorithm 3) using the
local minima found thus far. At this point the populations go through
local or global restart according to lines 39 to 45. In particular, if the
local optimizer failed to improve the value of fmin more than iunmax

times, the population is restarted globally and iun is set to 0, otherwise
the population is restarted within a local bubble and iun = iun+1. The
dimension of the bubble for the local restart is sampled from matrix B

(line 40) or is the one defined at line 1 if δlocal is not adapted. The
adaptation of B (line 36) is done only when the local optimizer has been
applied to all the population for the second time (for each population,
the adaptation can be performed only if two local minima are known for
that population). At this point, the loop restart from the initialization
of CRF. As a terminal criterion the algorithms stops if the maximum
number of function evalutation nfeval,max has been reached.

CR and F adaptation. The updating procedure for CRF is de-
tailed in Algorithm 2 for MP-AIDEA-CRF1. For each population, the
maximum objective function difference between parents and children,
ddmax, is computed (line 1). Then the element of CRF are sequen-
tially evaluated and the first time that the dd value associated to the
considered row is lower than ddmax (line 4) the value of F used for the
considered population substitutes the corresponding elements CRFj,2

(line 5). For CR, the value associated to the considered population sub-

Multi-Population Adaptive Inflationary Differential Evolution 45

stitutes CRFj,1 (line 7) only if ddmax is greater than a given value CRC
(line 6), [11].

For MP-AIDEA-CRF2 the for cycle in line 2 is substituted by a for

cycle over the elements of the single population and ddmax is replaced
by f (xi,k)− f (xi,k+2) for each element i of the population, as in [11].

δ adaptation. The generation of the matrix B for the adaptation
of the dimension of the bubble for the local restart is described in Algo-
rithm 3; it reflects the procedure for the creation of CRF and is based on
the computation of the distance between the local minima found by the
different populations and stored in the common archive of local minima.
The updating procedure for B, detailed in Algorithm 4, follows the same
approach used for the adaptation of CRF; the distance between local
minimum found at subsequent local restart is used to assess the validity
of the used dimension of the bubble for the local restart (a local restart
is effective if the algorithm move from a local minimum to another).

The process of adaptation of the dimension of the bubble for the local
restart will be presented in greater details in the first two test cases of
the Test Results section.

3. Test Results

The test cases are taken from the technical report of the CEC 2005
and CEC 2011 competitions [6,17]. The considered problems are: Spread
Spectrum Radar Polyphase Code Design and Tersoff Radar Function
Minimization Problem from CEC 2011; Schwefel’s Problem, Function 12,
and Rotated Version of Hybrid Composition Function, Function 16, from
CEC 2005. The statistics reported are computed on the results obtained
from 100 independent runs in which new populations are generated at
each run. The success rate reported in the next tables and figures is
computed as number of times (over the 100 runs) in which the minimum
found by the algorithm is lower than fmin+ǫ where fmin is the minimum
value of the function and ǫ is a given threshold [18]. ǫ = 0.001 for the
test cases from CEC 2011 and ǫ = 0.01 for the CEC 2005 problems [17].

3.1 Spread Spectrum Radar Polyphase Code Design

This problem has dimension nD = 20 and the best solution found is
fmin = 0.5. The maximum number of function evaluation is 1.5e5 [6].
The same parameters setting of [11] was used, that is δlocal = δglobal =
0.1, ρ = 0.2 and iun = 10. The results obtained using AIDEA in [11]
(where the DE strategy was DE/best/1) and new results obtained using
AIDEA with the DE strategy DE/best/1 -DE/rand/1 are reported in

46 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 Multi-Population Adaptive Inflationary Differental Evo-
lution Algorithm
1: Set values for npop, Npop, iun, ρ̄, δglobal

2: Set nfeval,m = 0 and km = 1 for all populations m ∈ [1, . . . , Npop]
3: Initialize population xm,i,k for all m ∈ [1, . . . , Npop] and for all i ∈ [1, . . . , npop]

4: A regular mesh with (nD + 1)2 points (where nD is the dimensionality of the problem) in the
space CR ∈ [0.1, 0.99]xF ∈ [−0.5, 1] is created

5: Initialize CRF with points of the mesh: CRFj,1 ← CRj and CRFj,2 ← Fj for all j ∈

[1, . . . , (nD + 1)2]
6: Associate to each row of CRF an element ddj = 0 for all j ∈ [1, . . . , (nD + 1)2]
7: Row sort CRF in terms of dd values
8: for m ∈ [1, . . . , Npop] do
9: Sample CRm,k and Fm,k from CRF

10: for i ∈ [1, . . . , npop] do
11: xm,i,k+1 ← DE(xm,i,k, CRm,k, Fm,k)
12: nfeval,m = nfeval,m + 1
13: end for

14: km = km + 1
15: Update CRF (see Algorithm 2)
16: Row sort CRF in terms of dd values
17: ρm = max (||xm,i,k − xm,j,k||) ∀xm,i,k,xm,j,k ∈ Pm,k

18: if ρm < ρ̄ · ρmax,m then

19: Run a local optimizer from xbest,m and let xl,m be the local minimum found by the
local optimizer

20: if f (xl,m) < f (xbest,m) then

21: f (xbest,m) ← f (xl,m)
22: end if

23: if f (xbest,m) < fmin,m then

24: fmin,m ← f (xbest,m)
25: iunm = 0
26: else

27: iunm = iunm + 1
28: end if

29: else

30: Termination Unless nfeval,m ≥ nfeval,max goto (10)
31: end if

32: Add xbest,m to the archive of minima of population: Ag,m = Ag,m + {xbest,m}
33: end for

34: Create matrix B for adaptation of the dimension of the bubble (see Algorithm 3)
35: if (All population went for the 2nd time through the local minimizer) then

36: Update B (see Algorithm 4)
37: end if

38: for m ∈ [1, . . . , Npop] do
39: if iun ≤ iunmax then

40: Sample δlocal,m from B to define the bubble Dm

41: Initialize population xm,i,k for all i ∈ [1, . . . , npop] in the bubble Dm

42: else

43: Define clusters in the archive and compute baricentre xc,m of each cluster
44: Initialize population xm,i,k for all i ∈ [1, . . . , npop] such that ∀i, j||xm,i,k − xm,j,k|| >

δglobal

45: end if

46: end for

47: Termination Unless nfeval,m ≥ nfeval,max goto (4)

Table 1, along with the results of two of the best performing algorithms
of the CEC 2011 competition, the Genetic Algorithm with Multi Parent
Crossover (GA-MPC) [7] and the Weed Inspired Differential Evolution
(WI-DE) [9].

AIDEA gives better results than GA-MPC or WI-DE. In Figure 1 the
success rates obtained using different population number Npop composed

Multi-Population Adaptive Inflationary Differential Evolution 47

Algorithm 2 Updating procedure for CRF

1: For each population compute ddmax,m = max||f (xm,i,k+1) −
f (xm,i,k) || for all i ∈ [1, . . . , npop]

2: for m ∈ [1, . . . , Npop] do
3: for j ∈ [1, . . . , (nD + 1)2] do
4: if ddj < ddmax,m then

5: CRFj,2,k ← Fm,k

6: if ddmax,m > CRC then

7: CRFj,1,k ← CRm,k

8: end if

9: end if

10: end for

11: end for

Algorithm 3 Generation of matrix B for the adaptation of the bubble

1: Compute mean and minimum distance between all local minima in
Agm for all m ∈ [1, . . . , Npop]: dminMIN and dminMEAN

2: Create regular mesh with (nD + 1)2 points in the space
[dminMIN ,dminMEAN]

3: Initialize B with points of the mesh
4: Associate to each row of B an element ddbj = 0 for all j ∈

[1, . . . , (nD + 1)2]
5: Row sort B in terms of ddb values

Algorithm 4 Updating procedure for B

1: For each population compute pm = ||xl,m,k+1 − xl,m,k||
2: for m ∈ [1, . . . , Npop] do
3: for j ∈ [1, . . . , (nD + 1)2] do
4: if ddbj < pm then

5: Bj,1,k ← δlocal,m
6: end if

7: end for

8: end for

by npop = 10 elements are shown for MP-AIDEA 1, 4, 7 and 10 and MP-
AIDEA 2, 5, 8 and 11. Results from MP-AIDEA 3, 6, 9, 12 are very
similar to MP-AIDEA 2, 5, 8, 11 and therefore are not shown. AIDEA
was tested with a number of individuals in the single population equal
to the total number of individuals of MP-AIDEA. The most successful
versions of MP-AIDEA are 1, 7 and 10; their results are always better
than AIDEA’s one. MP-AIDEA versions 2, 5, 8 and 11 show a success

48 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1. Spread Spectrum Radar Polyphase Code Design – AIDEA, GA-MPC and
WI-DE results.

Algorithm npop Min Mean Max Str.Dev. S.Rate

AIDEA DE/best 20 0.5000 0.5150 0.6509 0.0343 -
AIDEA DE/best-DE/rand 20 0.5000 0.5130 0.6422 0.0263 75
GA-MPC - 0.5000 0.7484 0.9334 0.1249 -
WI-DE - 0.5000 0.656 0.993 0.116 -

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

N
pop

S
uc

ce
ss

 r
at

e

MP−AIDEA DE/best−DE/rand

AIDEA
MP−AIDEA 1
MP−AIDEA 4
MP−AIDEA 7
MP−AIDEA 10

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

N
pop

S
uc

ce
ss

 r
at

e

MP−AIDEA DE/arch−DE/rand

AIDEA
MP−AIDEA 2
MP−AIDEA 5
MP−AIDEA 8
MP−AIDEA 11

Figure 1. Spread Spectrum Radar Polyphase Code Design – MP-AIDEA success
rate.

rate increasing with Npop and greater than the success rate of AIDEA
for Npop sufficiently high.

In Figure 2 the process of adaptation of the dimension of the bubble
for the local restart is shown for MP-AIDEA 4 and Npop = 3 for a
sequence of 19 subsequent local restarts before the global restart of the
algorithm. The bold line represents the mean value of δlocal over all the
populations. It is evident that δlocal = 0.1 proves to be a good guess for
the value of δlocal.

3.2 Tersoff Potential Function Minimization Problem

This problem has dimension nD = 30 and the best solution is fmin =
−36.9286. The maximum number of function evaluation is 1.5e5. AIDEA
and MP-AIDEA were tested using two different sets of parameters set-
tings: δlocal = δglobal = 0.1, ρ = 0.2, iun = 10 (Case 1) and δlocal = 0.3,
δglobal = 0.1, ρ = 0.2, iun = 10 (Case 2). The results obtained using
AIDEA in [11] and new results obtained using AIDEA with the DE
strategy DE/rand/1 -DE/best/1 are reported in Table 2, along with the
results obtained by GA-MPC and WI-DE.

Multi-Population Adaptive Inflationary Differential Evolution 49

0 5 10 15 20
0.05

0.1

0.15

0.2

0.25

0.3

Adaptation Steps

δ lo
ca

l

MP−AIDEA 4

Population1
Population2
Population3
MeanValue

Figure 2. Spread Spectrum Radar Polyphase Code Design – adaptation of δlocal.

Table 2. Tersoff Potential Function Minimization Problem – AIDEA, GA-MPC and
WI-DE results.

Algorithm npop Min Mean Max Str.Dev. S.Rate

Case 1
AIDEA DE/best 20 -36.9286 -36.8527 -35.5171 0.2442 -
AIDEA DE/best-rand 20 -36.9286 -36.8046 -35.9700 0.2483 34

Case 2
AIDEA DE/best-rand 20 -36.9286 -36.6219 -35.4467 0.4694 11

GA-MPC - -36.8457 -35.03883 -34.1076 0.8329 -
WI-DE - -36.8 -35.6 -34.2 0.904 -

In Figure 3 the results obtained from different combinations of Npop ×
npop are shown for the best variants of MP-AIDEA and for both Case 1
and Case 2.

For Case 1 the best results are given by MP-AIDEA 1 and MP-
AIDEA 7. Changing the values of δlocal from 0.1 to 0.3 (Case 2) results
however in a successful performance of the algorithms with adaptation
of δlocal, that is MP-AIDEA 4 and MP-AIDEA 10. This is due to the
fact that for Case 1 the chosen value of δlocal was close to the optimal
value for this problem. This is proved in Figure 4, where the process
of adaptation of δlocal is shown for MP-AIDEA 4 using 3 populations.
Arbitrary chosen values, such as δlocal = 0.3 (Case 2) are very dissimilar
from the one obtained through the adaptation process (δlocal = 0.1).

50 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2x10 4x10 6x10 8x10
0

10

20

30

40

50

60

70

N
pop

xn
pop

S
uc

ce
ss

 r
at

e

Case 1

AIDEA
MP−AIDEA 1
MP−AIDEA 4
MP−AIDEA 7
MP−AIDEA 10

2x10 4x10 6x10 8x10
0

10

20

30

40

50

60

70

N
pop

xn
pop

S
uc

ce
ss

 r
at

e

Case 2

AIDEA
MP−AIDEA 1
MP−AIDEA 4
MP−AIDEA 7
MP−AIDEA 10

Figure 3. Tersoff Potential Function Minimization Problem – MP-AIDEA success
rate.

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Adaptation Steps

δ lo
ca

l

Population1
Population2
Population3
MeanValue

Figure 4. Tersoff Potential Function Minimization Problem – adaptation of δlocal.

3.3 Schwefel’s Problem

Schwefel’s problem was tested with dimension nD = 30 and nD = 50.
The best solution is fmin = −460; the parameters settings is δlocal =
δglobal = 0.1, ρ = 0.2 and iun = 5. The maximum number of function
evalutions is 3e5 for the 30D problem and 5e5 for the 50D problem,
[17]. The results obtained using AIDEA with DE strategy DE/rand/1 -
DE/best/1 are reported in Table 3 as statistics of the objective function
error values with respect to fmin, as required by [17], along with the
results obtained by one of the best performing algorithms of the CEC
2005 competition, the Restart Covariance Matrix Adaptation Evolution
Strategy with Increasing Population Size (IPOP-CMA-ES) [2]. AIDEA
gives better results for the 30D problem and for the 50D problem it
locates the global minimum, while CMA-ES was not able to find it.

Multi-Population Adaptive Inflationary Differential Evolution 51

Table 3. Schwefel’s Problem – AIDEA and IPOP-CMA-ES results.

Algorithm nD npop Min Mean Max Str.Dev. S.Rate

AIDEA 30 20 2.01e-9 1.03e+2 1.00e+3 1.97e+2 43
IPOP-CMA-ES 30 - 3.79e-9 4.43e+4 1.10e+6 2.19e+5 -

AIDEA 50 40 1.45e-8 2.63e+3 1.75e+4 2.74e+3 1
IPOP-CMA-ES 50 - 9.67e+0 2.27e+5 5.57e+6 1.11e+6 -

2 4 6 8 10 12 14 16
0

20

40

60

80

100

N
pop

S
uc

ce
ss

 r
at

e

MP−AIDEA DE/best−DE/rand

 AIDEA
MP−AIDEA 1
MP−AIDEA 4
MP−AIDEA 7
MP−AIDEA 10

2 4 6 8
0

5

10

15

N
pop

S
uc

ce
ss

 r
at

e

MP−AIDEA DE/best−DE/rand

AIDEA
MP−AIDEA 1
MP−AIDEA 4
MP−AIDEA 7
MP−AIDEA 10

Figure 5. Schwefel’s Problem – MP-AIDEA success rate.

In Figure 5 the success rates obtained for different values of Npop, with
npop = 10 for the 30D problem and npop = 20 for the 50D problem, are
shown for the most successful versions of MP-AIDEA. For the 30D prob-
lem MP-AIDEA gives better results than AIDEA in most of the cases;
for the 50D problem MP-AIDEA is able to find the global minimum of
the function.

3.4 Rotated Version of Hybrid Composition

Function

For this function the best solution is fmin = 120, nD = 10, δlocal =
δglobal = 0.1, ρ = 0.2 and iun = 5. The maximum number of function
evaluations is 1e5 [17]. The results obtained using AIDEA, IPOP-CMA-
ES and MP-AIDEA are shown in Table 4 and Table 5, where results
from different combinations of Npop × npop are presented.

The most successful variants of MP-AIDEA were able to locate the
global minimum of this function, a minimum that neither IPOP-CMA-
ES nor AIDEA were able to find.

52 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 4. Rotated Version of Hybrid Composition Function – AIDEA and IPOP-
CMA-ES results.

Algorithm npop Min Mean Max Str.Dev. S.Rate

AIDEA 40 5.38e+1 1.02e+2 1.14e+2 8.42e+0 0
IPOP-CMA-ES - 7.92e+1 9.13e+1 9.68e+1 3.49e+0 -

Table 5. Rotated Version of Hybrid Composition Function – MP-AIDEA success
rate.

Algorithm 2x20 4x20 6x20 8x20

MP-AIDEA 4 2 1 1 0
MP-AIDEA 10 1 0 1 3

4. Conclusions

In this paper a multi-population version of AIDEA have been pre-
sented and tested. Results have shown that MP-AIDEA can give results
which are better, or at least comparable, to the ones provided by AIDEA.
The new strategies DE/arch/1 -DE/rand/1 and DE/arch/1 -DE/best/1
have shown to be effective when the number of populations is not too
low. The adaptation of the bubble dimension has proven to give good
results, having moreover the advantage of not requiring the setting of the
parameter δlocal for the dimension of the bubble of the local restart. In
addition, the most successful versions of MP-AIDEA were able to locate
for the first time the global minima of two difficult academic functions.

References

[1] M. M. Ali and A. Torn. Population set based global optimization algorithms:
Some modifications and numerical studies. Comput. Oper. Res., 31(10):1703–
1725, 2004.

[2] A. Auger and N. Hansen. A Restart CMA Evolution Strategy with Increasing
Population Size. Proc. IEEE Congress on Evolutionary Computation (CEC),
pp. 1769–1776, 2005.

[3] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: A comparative study on numeri-
cal benchmark problem. IEEE T. Evolut. Comput., 10:646–657, 2006.

[4] J. P. Chiou and F. S. Wang. A Hybrid Method of Differential Evolution with
Application to Optimal Control Problem of a Bioprocess System. In Proc. IEEE
World Congress on Computational Intelligence (WCCI), pages 627–632, 1998.

Multi-Population Adaptive Inflationary Differential Evolution 53

[5] L. Coelho and V. C. Mariani. A Hybrid Method of Differential Evolution and
SQP for Solving the Economic Dispatch Problem with Valve-Point Effect. Ap-
plications of Soft Computing, pages 311–320, 2006.

[6] S. Das, and P. N. Suganthan. Problem Definitions and Evaluation Criteria for
CEC 2011 Competition on Testing Evolutionary Algorithms on Real World
Optimization Problems. Technical Report, 2010.

[7] S. M. Elsayed, R. A. Sarker, and D. L. Essam. GA with a New Multi-
Parent Crossover for Solving IEEE-CEC2011 Competition Problems. Proc.
IEEE Congress on Evolutionary Computation (CEC), pp. 1034–1040, 2011.

[8] R. Gamperle, S.D. Muller, and P. Koumoutsakos. A Parameter Study for Dif-
ferential Evolution. In Proc. WSEAS International Conference on Advances in
Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pages 293–298,
2002.

[9] U. Halder, S. Das, D. Maity, A. Abraham, and P. Dasgupta. Self Adaptive Clus-
ter Based and Weed Inspired Differential Evolution Algorithm for Real World
Optimization. Proc. IEEE Congress on Evolutionary Computation (CEC), pp.
750–756, 2011.

[10] J. Liu and J. Lampinen. A fuzzy adaptive differential evolution algorithm. J.
Soft Computing, 9:448–462, 2005.

[11] E. Minisci and M. Vasile. Adaptive Inflationary Differential Evolution. In Proc.
IEEE World Congress on Computational Intelligence (WCCI), 2014.

[12] M. G. H. Omran, A. Salman, and A. P. Engelbrecht. Self-adaptive Differential
Evolution. Lect. Notes Artif. Intell., 3801:192–199, 2005.

[13] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution. A Practical
Approach to Global Optimization. Natural Computing Series, Springer, 2005.

[14] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE T. Evolut.
Comput., 13:398–417, 2009.

[15] A. Qinq. Differential Evolution: Fundamentals and Applications in Electrical
Engineering. John Wiley & Sons, 2009.

[16] D. Shen, Y. Li, B. Wei, and X. Xia. Adaptive Forking Multipopulation Differ-
ential Evolution Algorithm for Multimodal Optimization. J. Convergence Infor-
mation Technology, 7(5):218–227, 2011.

[17] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and
S. Tiwari. Problem Definitions and Evaluation Criteria for the CEC 2005 Special
Session on Real-Parameter Optimization. Technical Report, 2005.

[18] M. Vasile, E. Minisci, and M. Locatelli. Analysis of Some Global Optimization
Algorithms for Space Trajectory Design. J. Spacecraft Rockets, 47:334–344, 2010.

[19] M. Vasile, E. Minisci, and M. Locatelli. An Inflationary Differential Evolu-
tion Algorithm for Space Trajectory Optimization. IEEE T. Evolut. Comput.,
15:267–281, 2011.

[20] D.J. Wales, and J.P.K. Doye. Global Optimization by Basin-Hopping and the
Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110
Atoms. J. Phys. Chem., 10:5111–5116, 1997.

54 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[21] W. Yu and J. Zhang. Multi-population Differential Evolution with Adaptive
Parameter Control for Global Optimization. In Proc. 13th Annual Conference
on Genetic and Evolutionary Computation (GECCO), pages 1093–1098, 2011.

[22] D. Zaharie. A Multipopulation Differential Evolution Algorithm for Multi-
modal Optimization. In Proc. 10th International Conference on Soft Computing
(MENDEL), pages17–22, 2004.

AUTOMATED SLOGAN PRODUCTION

USING A GENETIC ALGORITHM

Polana Tomašič
XLAB, Pot za Brdom 100, 1000 Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

polona.tomasic@xlab.si

Gregor Papa
Computer Systems Department

Jožef Stefan Institute, Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

gregor.papa@ijs.si

Martin Žnidaršič
Department of Knowledge Technologies

Jožef Stefan Institute, Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

martin.znidarsic@ijs.si

Abstract Invention of slogans is an intelligent and highly creative task. As such,
it is a challenging problem for computational methods. In this paper
we present our solution based on the use of linguistic resources and
evolutionary computing.

Keywords: Computational creativity, Genetic algorithms, Slogan generation.

1. Introduction

Generation of slogans for companies and products is one of the less ex-
plored problems in the field of Computational Creativity. To our knowl-
edge, there is only one scientific study dedicated particularly to slogan

55

56 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(and other creative sentences) generation, namely the BrainSup frame-
work [13]. This approach requires the user to provide keywords, domain,
emotions and similar properties of the slogans. This shrinks the huge
search space of slogans and improves the quality of results. We, however,
have aimed at a completely autonomous approach that is not influenced
by the user in any way, apart from providing a short textual description
of the target entity.

In this paper, we present our slogan generation procedure, which is
based on a genetic algorithm (GA) [1]. Genetic algorithms ensure good
coverage of the search space and are relatively often used in Computa-
tional Creativity. For instance, they have been successfully used for gen-
erating recipes [11], poetry [7] and trivial dialog phrases [10]. However,
genetic algorithm has not previously been used for slogan generation.
Our method is the first to use it for that purpose. It follows the Brain-

Sup framework in the initial population generation phase, and it uses a
collection of heuristic slogan functions in the evaluation phase.

The results of the experiments indicate some deficiencies of our method.
The generated slogans nonetheless present a good starting point for
brainstorming.

2. Resources

Our slogan generation method requires some linguistic and semantic
resources for the generation of initial population:

Database of the existing slogans

The database of existing slogans serves as a basis for the initial
population generation and for comparison with generated slogans.
It contains famous slogans obtained from the Internet.

Database of the frequent grammatical relations

For the acquisition of the frequent grammatical relations between
words in sentences we used the Stanford Dependencies Parser [8].
Stanford dependencies are triplets containing two words, called
governor and dependent, and the name of the relation between
them. The parser also provides part-of-speech (POS) tags and
phrase structure trees. An example of its output is in Figure 1.
To get representatives of frequent grammatical relations between
words, we parsed 52,829 random Wikipedia pages, sentence by
sentence, and obtained 4,861,717 different dependencies.

Database of the slogan skeletons

A slogan skeleton contains information about each position in the
sentence - its POS tag and all its dependencies relations with other

Automated Slogan Production Using a Genetic Algorithm 57

words in the sentence. It does not contain any content words, only
stop words. An example of a skeleton from [13] is in Figure 2.
Skeletons were obtained by parsing existing slogans with the Stan-
ford Dependencies Parser.

Figure 1. Stanford dependencies parser’s output for the sentence “Jane is walking
her new dog in the park.”

Figure 2. Example of a skeleton from [13].

3. Slogan Generation

In this section we describe our slogan generation approach in terms of
its inputs, outputs and algorithmic steps. The whole procedure is shown
in the Algorithm 1.

3.1 Extraction of the Keywords and the Main Entity

Target keywords are extracted from the input text using the Nodebox
English Linguistics library [12]. The aim is to generate positive slogans.

58 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 SloganGenerator

Input: A textual description of a company or a product T , Size of
the population SP, Maximal number of iterations Max iter, Crossover
probability pcrossover, Mutation probability pmutation, Set of evaluation
weights W .
Output: A set of generated slogans S.

1: Keywords,Entity ⇐ GetKeywordsAndEntity(T)
2: P ⇐ CreateInitialPopulation(SIP,Keywords,Entity)
3: Evaluate(P)
4: while Max iter > 0 do

5: ChooseParentsForReproduction(P)
6: Crossover(P, pcrossover)
7: Mutation(P, pmutation)
8: DeleteSimilarSlogans(P)
9: while Size(P) < SP do

10: AddARandomSeed(P)
11: end while

12: Evaluate(P)
13: Max iter ⇐Max iter − 1
14: end while

15: S ⇐ P

That is why all the sentences with the negative polarity in the input
text are being removed. A sentence has a negative polarity if it contains
words that are associated with negative emotions. After the removal,
the most frequent words are selected as keywords. The main entity is
usually the name of the company and is obtained by selecting the most
frequent entity in the whole text using nltk library [2].

Example of the keywords and the entity, extracted from the Coca-
Cola Wikipedia page:
keywords = [’win’, ’celebrate’, ’enjoy’, ’follow’, ’available’, ’raspberry’,
’snowy’, ’cherry’, ’famous’, ’wonderful’, ’familiar’, ’sugar’, ’sparkle’, ’pas-
sion’, ’beloved’, ’fountain’, ’bubble’, ’enjoyment’, ’drink’, ’fluid’, ’diet’,
’candy’, ’tour’, ’beverage’, ’contribution’, ’dream’, ’vision’, ...]
entity = Coke

3.2 Generation of the Initial Population of Slogans

The procedure of generating the initial population of slogans is based
on the BrainSup framework [13], with some modifications. It follows
the steps in Algorithm 2. Skeletons are obtained from the database of
slogan skeletons, and fillers are words from the database of all grammat-

Automated Slogan Production Using a Genetic Algorithm 59

ical relations between words in sentences and must satisfy all predefined
dependencies and POS tags. If there are any keywords in a set of all
possible filler words, the algorithm assigns them higher priority for the
selection phase. The main difference between our algorithm and the
BrainSup method is in selection of filler words. We select them at ran-
dom, while the BrainSup framework uses a beam search in the space of
all possible lexicalizations of a skeleton to promote the words with the
highest likelihood of satisfying the user specifications.

Algorithm 2 CreateInitialPopulation

Input: Size of the population SP, a set of target keywords K, and the
target entity E.
Output: A set of initial slogans S.

1: S ⇐ ∅
2: while SIP > 0 do

3: SloganSkeleton⇐ SelectRandomSloganSkeleton()
4: while not AllEmptySlotsFilled(SloganSkeleton) do

5: EmptySlot⇐ SelectEmptySlotInSkeleton(SloganSkeleton)
6: Fillers⇐ FindPossibleFillerWords(EmptySlot)
7: FillerWord⇐ SelectRandomFillerWord(Fillers)
8: FillEmptySlot(SloganSkeleton, F illerWord)
9: end while

10: AddFilledSkeleton(S, SloganSkeleton)
11: SP ⇐ SP − 1
12: end while

3.3 Evaluation of Slogans

To order the slogans by their quality, an aggregated evaluation func-
tion was constructed. It is composed of 9 different sub-functions, each
assessing a particular feature of a slogan with scores in the interval [0,1].
Parameter of the aggregation function is a list of 9 weights that sum to
1. They define the proportions of sub-functions in the overall score. In
this subsection we give a short description for every one of them.

Bigram Function. In order to work with 2-grams, we obtained the
data set of 1,000,000 most frequent 2-grams and 5000 most frequent
words in Corpus of Contemporary American English (COCA) [3]. We
assume that slogans containing many frequent 2-grams, are more likely
to be semantically coherent. That is why they get higher bigram evalu-
ation score.

60 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Length Function. This function assigns score 1 to slogans with less
than 8 words, and score 0 to longer ones.

Diversity Function. The diversity function evaluates a slogan by
counting the number of repeated words. The highest score goes to a
slogan with no repeated words. If a slogan contains identical consecutive
words, it receives score 0.

Entity Function. It returns 1, if slogan contains the main entity,
and 0, if it doesn’t.

Keywords Function. If one up to half of the words in a slogan
belong to the set of keywords, the keywords function returns 1. If a
slogan doesn’t contain any keyword, the score is 0. If more than half of
the words in the slogan are keywords, the score is 0.75.

Word Frequency Function. This function prefers slogans with
many frequent words, because slogans with many infrequent words are
considered bad. The score is obtained by dividing the number of frequent
words by the number of all words in the slogan. Word is considered to
be frequent, if it is among 5000 most frequent words in COCA.

Polarity and Subjectivity Functions. To calculate the polarity
and subjectivity scores based on the adjectives in the slogan, we used
the sentiment function from pattern package for Python [4].

Semantic Relatedness Function. This function computes the re-
latedness between all pairs of content words in the slogan. Stop words
are not taken into account. Each pair of words gets a score based on
the path distance between corresponding synsets (sets of synonyms) in
WordNet [9]. The final score is the sum of all pairs’ scores divided by
the number of all pairs.

3.4 Production of a New Generation of Slogans

A list of all generated slogans is ordered descending with regard to
the evaluation score.

We use a 10% elitism [5]. The other 90% of parent slogans are selected
using a roulette wheel [6].

A new generation is built by pairing parents and performing the
crossover function followed by the mutation function, which occur with
probabilities pcrossover and pmutation respectively. Offspring are then
evaluated and compared to the parents, in order to remove very sim-

Automated Slogan Production Using a Genetic Algorithm 61

ilar ones. If the number of the remaining slogans is smaller than the size
of the population, some additional random slogans are generated using
the method for initial slogans production. After that, slogans proceed
into the next generation. These steps are repeated until the predefined
maximal number of iterations is achieved.

Crossover. There are two types of crossover function, the big and
the small one. Both inspect POS tags of the words in both parents, and
build a set of possible crossover locations. Each element in the set is a
pair of numbers. The first one provides a position of crossover in the
first parent and the second one in the second parent. The corresponding
words must have the same POS tag. Let the chosen random pair from
the set be (p, r). Using the big crossover, the part of the first parent,
from the pth position forward, is switched with the part of the second
parent, from the rth position forward. For the small crossover only the
pth word in the first parent and the rth word in the second parent are
switched. Examples for the big and the small crossover are in Figure 3.

We [PRP] bring [VBP] good [JJ] things [NNS] to [DT] life [NN].

Fly [VB] the [DT] friendly [JJ] skies [NNS].

We bring friendly skies.

Fly the good things to life.

Just [RB] do [VB] it [PRP].

Drink [VB]more [JJR] milk [NN].

Just drink it.

Do more milk.

big:

small:

Figure 3. Examples for the big and the small crossover.

Mutation. Two types of mutation are possible. Possible big muta-
tions are: deletion of a random word; addition of an adjective in front
of a noun word; addition of an adverb in front of a verb word; replace-
ment of a random word with new random word with the same POS tag.
Small mutations are replacements of a word with its synonym, antonym,
meronym, holonym, hypernym or hyponym. A meronym is a word that
denotes a constituent part or a member of something. The opposite of a
meronym is a holonym - the name of the whole of which the meronym is
a part. A hypernym is a general word that names a broad category that
includes other words, and a hyponym is a subdivision of more general
word.

62 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Functions for obtaining such replacements are embedded into the
Nodebox English Linguistics library and are based on the WordNet lex-
ical database [9].

Deletion of similar slogans. Every generated slogan is compared
to all its siblings and to all the evaluated slogans from the previous
generation. If a child is identical to any other slogan, it gets removed. If
more than half of child’s words are in another slogan, the two slogans are
considered similar. Their evaluation scores are being compared and the
one with the higher score remains while the other one is removed. The
child is also removed, if it contains only one word or if it is longer than
10 words. Deletion of similar slogans prevents the generated slogans to
converge to the initial ones.

4. Experiments

We made a preliminary assessment of the generator with experiments
as described in this section.

4.1 Experimental Setting

In presented experiments and results we use a case of the U. S. soft
drinks manufacturer Coca-Cola. The input text was obtained from
Wikipedia [15].

First, we tried to find the optimal weights for the evaluation func-
tion. We tested different combinations of weights on a set of manually
evaluated slogans. The comparison of the computed and the manually
assigned scores showed that the highest matching was achieved with the
following weights: [bigram: 0.22, length: 0.03, diversity: 0.15, entity:
0.08, keywords: 0.12, frequent words: 0.1, polarity: 0.15, subjectivity:
0.05, semantic relatedness: 0.1].

In our experiments we used probabilities for crossover and mutation
p crossover = 0.8, p mutation = 0.7. The probability for mutation was
set very high, because it affects only one word in a slogan. Consequently
the mutated slogan is still very similar to the original one. Thus the
high mutation probability does not prevent population to converge to
an optimum solution. For the algorithm to decide which type of crossover
to perform, we set probabilities for the big, the small and both crossovers
to 0.4, 0.2 and 0.4 respectively. The mutation type is chosen similarly.
Probabilities of the big and the small mutation were set to 0.8 and 0.2.
These control parameters were set according to the results of testing on a
given input text, as their combination empirically leads to convergence.

Automated Slogan Production Using a Genetic Algorithm 63

Due to the high computational complexity of our method, the maxi-
mal number of iterations was set to 150. We performed 3 experiments
and for each of them we executed 20 runs of the algorithm using the
same input parameter values. The only difference between these three
tests was in the size of the population - 25, 50 and 75.

4.2 Results and Discussion

All 20 runs of the algorithm on the same input data had similar sta-
tistical results. Statistics of average slogans’ scores for each of the ex-
periments are gathered in Table 1. Slogans’ scores increased with each
iteration. The results in Figure 4 show that the slogans’ scores increased
very fast in relation to the number of evaluations when the size of the
population was set to 25. They increased a bit slower when the size of
the population was set to 50 and 75.

Table 1. Comparison of average slogans’ scores for sizes of population: 25, 50 and
75. (F = final slogans, IP = initial population).

Minimum Maximum Average Median Standard Deviation

IP (25) 0.000 0.720 0.335 0.442 0.271
IP (50) 0.000 0.721 0.318 0.377 0.270
IP (75) 0.000 0.736 0.311 0.412 0.270

F (25) 0.542 0.874 0.736 0.754 0.089
F (50) 0.524 0.901 0.768 0.775 0.082
F (75) 0.497 0.920 0.778 0.791 0.086

The numbers in graph show that our method ensures higher slogan
scores with each new iteration of genetic algorithm, for a given experi-
mental cases. Examples of slogans for one specific run of the algorithm
are listed in the following two lists. The first list contains 10 best rated
initial slogans and the second one contains 10 best rated final slogans
for the case when the size of the population was set to 25. Evaluation
scores are in the brackets.

Initial population:

1 The lucky player to sign the language in (0.714)

2 it should enjoy lead without learning line (0.706)

3 collection remains available more. fit more (0.647)

4 growing child have (0.600)

5 not a speed in a generator (0.595)

64 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4. Average slogans’ scores in relation to the number of evaluations.

6 Where the dream lives the environment (0.594)

7 Coke on the legal test (0.592)

8 called skip (0.560)

9 add to Coke Capazoo (0.559)

10 also stories that provide alternatives might read due as our com-
munity (0.527)

Final slogans:

1 love to take The Coke size (0.906)

2 rampage what we can take more (0.876)

3 love the man binds the planetary Coke (0.870)

4 devour what we will take later (0.859)

5 you can put The original Coke (0.850)

6 lease to take some original nose candy (0.848)

7 contract to feast one’s eyes the na keep (0.843)

Automated Slogan Production Using a Genetic Algorithm 65

8 it ca taste some Coke in August (0.841)

9 hoy despite every available larger be farther (0.834)

10 you Can love the simple Coke (0.828)

The analysis of initial populations and final slogans in all runs of ex-
periments shows that the majority of slogans are semantically incoherent
and have grammatical errors.

Our system currently lacks an evaluation function for detection or
correction of these mistakes.

Some seemingly good slogans can be found already in the initial popu-
lations. The evaluation function seems not yet aligned well with human
evaluation, as such slogans often do not make it to the final round.

5. Conclusions

The proposed slogan generation method works and could be poten-
tially useful for brainstorming. The genetic algorithm ensures that new
generations of slogan candidates have higher evaluation scores. The crit-
ical part of the method is the evaluation function, which is inherently
hard to formalize and needs further improvement. The definitions of
evaluation sub-functions are currently too simplified. We believe that
the refinement of semantic and sentiment evaluation functions would
increase the quality of slogans, not only their scores.

The current algorithm is suitable only for production of slogans in
English, because there is a wide range of lexical and semantic resources
for it. There is a possibility of generating slogans in a language with
different characteristics, for instance Slovenian. However, the lack of
resources and different language properties would require a lot of work
in order to adapt our algorithm for a non-English language.

There are also many other ideas for the future work that would im-
prove the quality of slogans. One is checking for grammatical errors
and correcting them if possible. New weights for the evaluation could
be computed periodically with semi-supervised learning on manually as-
sessed slogans. Also, control parameters for GA could be adaptively
calculated during the optimization process [14].

Acknowledgment

This research was partly funded by the European Union, European
Social Found, in the framework of the Operational Programme for Hu-
man Resources Development, by the Slovene Research Agency and sup-
ported through EC funding for the project ConCreTe (grant number
611733) and project WHIM (grant number 611560) that acknowledge

66 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of
the European Commission.

References

[1] T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, 1996.

[2] S. Bird, E. Klein, and E. Loper. Natural language processing with Python.
O’Reilly Media, 2009. http://www.nltk.org/

[3] M. Davies. N-grams data from the Corpus of Contemporary American English
(COCA). Downloaded from http://www.ngrams.info on April 15, 2014.

[4] T. De Smedt and W. Daelemans. Pattern for Python. J. Mach. Learn. Res.,
13:2063–2067, 2012.

[5] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu. Evolutionary Com-
putation. CRC Press, 2000.

[6] J. H. Holland. Adaption in Natural and Artificial Systems. MIT Press, 1992.

[7] R. Manurung, G. Ritchie, and H. Thompson. Using genetic algorithms to create
meaningful poetic text. J. Exp. Theor. Artif. In., 24:43–64, 2012.

[8] M. Marneffe, B. MacCartney, and C. Manning. Generating typed dependency
parses from phrase structure parses. In Proc. 5th International Conference on
Language Resources and Evaluation (LREC), pages 449–454, 2006.

[9] G. A. Miller. WordNet: A Lexical Database for English. Comm. ACM, 38:39–41,
1995.

[10] C. S. Montero and K. Araki. Is it correct?: towards web-based evaluation of
automatic natural language phrase generation. In Proc. Joint Conference of the
International Committee on Computational Linguistics and the Association for
Computational Linguistics (COLING/ACL), pages 5–8, 2006.

[11] R. G. Morris and S. H. Burton. Soup over bean of pure joy: Culinary ruminations
of an artifcial chef. In Proc. 1st IEEE International Conference on Communi-
cation in China (ICCC), pages 119–125, 2012.

[12] Nodebox. http://nodebox.net/code/index.php/Linguistics

[13] G. Özbal, D. Pighin, and C. Strapparava. BRAINSUP: Brainstorming Support
for Creative Sentence Generation. In Proc. 51st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 1446–1455, 2013.

[14] G. Papa. Parameter-less algorithm for evolutionary-based optimization. Com-
put. Optim. Appl., 56:209–229, 2013.

[15] Wikipedia. http://en.wikipedia.org/wiki/Coca-Cola on April 29, 2014.

A COMPARISON OF SEARCH SPACES

AND EVOLUTIONARY OPERATORS IN

FACIAL COMPOSITE CONSTRUCTION

Joseph James Mist
School of Physical Sciencese

University of Kent, Canterbury, United Kingdom

jm441@kent.ac.uk

Stuart James Gibson
School of Physical Sciencese

University of Kent, Canterbury, United Kingdom

s.j.gibson@kent.ac.uk

Christopher John Solomon
School of Physical Sciencese

University of Kent, Canterbury, United Kingdom

c.j.solomon@kent.ac.uk

Abstract In this paper three experiments concerning the use of interactive evolu-
tionary algorithms in the creation of facial composites are reported. A
reduced dimension human evaluation based search space is created from
a larger search space using a pairwise face comparison task. The human
reduced search space is used in the comparison of two mutation op-
erators and two recombination operators. Finally, three search spaces
are compared: large, human reduced, and a mathematically reduced
search space. No statistically significant differences are found between
the performances of the operators or the search spaces.

Keywords: Facial composites, Interactive evolutionary algorithm.

1. Introduction

An unknown perpetrator may be seen committing a crime by one or
more people. In these circumstances it is often useful to create a pictorial

67

68 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

likeness of the perpetrator’s face based on an eyewitness’s description.
Such a likeness, known as a facial composite, may subsequently be used
in a criminal investigation for the purpose of locating a suspect. The
traditional method for facial composite construction involves a witness
selecting individual facial features from a catalogue or database. A com-
posite operator then assembles the selected features to form a face image.
However, psychological research has shown that humans recognise faces
not by their individual components but as whole objects [2,8]. It is also
known that people are better able to recognise faces than they can recall
and describe them. Accordingly, a holistic method for facial composite
construction has been developed that uses the cognitive Gestalt pro-
cesses involved in face recognition. Two commercial systems based on
these principles were developed in the early 2000s; EvoFIT [4] and EFIT-
V (originally called EigenFIT) [5]. EFIT-V is now used frequently by
the majority of police constabularies in the UK and by law enforcement
agencies in many other countries.

The holistic approach requires a multidimensional search space or,
more appropriately, a face-space in which an approximate likeness to
any face can be represented by single point. The location of this point
with respect to the origin of the face-space may be encoded as a string
of coordinates. This is achieved through the use of a face model.

Here, and in our related previous work, we use a face model [1] that is
constructed by processing a set of training images and determining their
principal components (PCs) (see Section 2.1). The PCs are typically
ordered according to the amount of image variance in the training set
they explain. Hence, the first component is numerically more important
than the second component which is more important than the third etc.
Due to the imperfect nature of human face recognition, it is very likely
that the required face-space can be constructed using a relatively small
number of PCs and the other PCs can be discarded with no perceptible
deterioration in performance. A distinction should also be made between
an ordering of PCs according to numerical importance and an ordering
according to perceptual importance. Using human evaluation to select n
PCs may provide an n-dimensional face-space which accounts for more
perceptual variation than simply using the first n PCs returned by a
principal components analysis as calculated by computer software. This
idea is investigated in Section 4.

In simple terms, a facial composite is constructed by searching the
face-space for an acceptable facial likeness. The search is achieved by an
iterative process whereby faces, generated by the model, are assessed by
the witness according to their similarity to the perpetrator. This itera-

Comparison of search spaces & evolutionary operators in facial composites 69

tive process immediately suggests the use of an interactive evolutionary
algorithm (IEA).

IEAs differ from evolutionary algorithms (EAs) in one major respect:
human evaluation replaces the fitness function. The use of human eval-
uation places a number of limitations on the use of IEAs which are
generally not present in EAs. The most obvious two effects are that the
total number of fitness evaluations that can be performed by the user
and the number of possible fitness values it is feasible to assign to an
individual are both limited [9]. The IEA used in the second and third
experiments of this paper is detailed in Section 2.2.

Intuitively, selection of an appropriate IEA, associated operators, and
the values of any associated parameters may have an effect on the
composite creation process. Real valued interactive genetic algorithms
(IGAs) are used in both EvoFIT and EFIT-V. Design decisions such as
the population size, the mutation rates, and the use of elitism were made
with the aid of virtual users that attempt to model how human users
evaluate individuals in a generation. Very little work has been done to
compare the performances of different IEAs for use in the creation of
facial composites. A series of small experiments evaluating the perfor-
mances of various nature-inspired metaheuristic algorithms have been
conducted [6, 7]. The results indicate that the choice of algorithm has
some effect on the recognition rates of the composites.

The focus of this paper is the comparison of search spaces and evolu-
tionary operators in facial composite construction. In the first of three
experiments reported in this paper, a 12-dimensional ‘human reduced’
face-space is constructed using human evaluation of the differences be-
tween pairs of faces from the ‘large’ 30-dimensional face-space. The
second experiment compares the performances of two different mutation
operators and two different recombination operators using a task which
requires participants to create composites from memory. In the third ex-
periment a ‘mathematically reduced’ face-space, in which only the first
12 PCs are used, is constructed. The performances of searches using the
large, the human reduced and the mathematically reduced face-spaces
are compared using the same composite creation task.

2. Theory

2.1 The Face Model

The set of photographs used in the training set to build the face models
used in the experiments reported in this paper is composed of 27 males
and 63 females of various ages. A number of points common to all of the
photographs are landmarked. These common points are facial features

70 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

such as the corners of the eyes, the bottom of the chin, and the outline
of the eyebrows. The set of landmarks on a particular face form a face
shape. Thus, there is one face shape for each face in the training set.
Each face shape consists of 190 two-dimensional landmarks and thus the
resulting shape model has 380 dimensions.

The mean face shape s̄ is found by aligning the face shapes using an
iterative Procrastes alignment process. Principal components analysis
(PCA) is used to reduce the 380-dimensional shape model to a smaller
number of dimensions. Any face shape s can be approximated to ŝ in
the shape model using

ŝ = Psbs + s̄ (1)

where Ps are the PCs of the shape model ordered from most important
(the PCs which account for the most variance in the data) to least im-
portant and bs are parameters that determine how the shape PCs are
combined to make the face shape.

In order to create the texture model, each photograph in the training
set is partitioned using its landmark points and Delaunay triangulation.
Piecewise affine transforms are used to map the texture information (the
pixel values of the photographs in the training set) from each training
photograph’s face shape to the mean face shape to form normalised
texture patterns. PCA is then used to find a texture model with fewer
dimensions than that formed by the tens of thousands of pixels within
each normalised texture pattern. As with the face shapes, any face
texture g may be approximated using

ĝ = Pgbg + ḡ. (2)

where Pg are the PCs of the face texture ordered from the most impor-
tant to least important and bs are parameters that determine how the
texture PCs are combined to make the face texture. Finally, a face-model
is created from the combined shape and texture models using PCA to
further reduce the number of dimensions in the final face-space. Thus,
the appearance model parameters, c, of any face can be approximated
to ĉ using

ĉ = QT

[
wbs

bg

]
≡ QT

[
wPT

s (ŝ− s̄)
PT

g (ĝ − ḡ)

]
(3)

where Q are the appearance PCs of the training set ordered from the
most important to the least important and w is a weighting scale that
scales the shape parameters such that equal significance is assigned to
shape and texture.

New faces can be created by setting the values of an n-dimensional
parameter vector c and performing the above process in reverse. Starting

Comparison of search spaces & evolutionary operators in facial composites 71

with the extraction of b

b =

n∑

i=1

qici (4)

where qi is the i-th column of matrix Q in Equation 3. The shape
and texture parameters bs and bg are extracted from b and are used in
Equations 1 and 2 to find the shape parameters s and texture parameters
g. The pixel intensities in g are rearranged into a two-dimensional (or
three-dimensional for colour images) array of pixels which then form an
intermediate face image with mean face shape. Aspects of the edge of the
face image which were due to the landmarking process had a dominant
unwarranted effect on the perception of the face. To counter this effect
the generated face texture was inserted and blended into a softened
background. The resulting image was subsequently warped according to
the shape parameters, s, to form the final face image.

2.2 The IEA Used

The IEA used is a simple real valued IGA which we refer to as the
simple IGA. The representation used is an n-dimensional real valued
vector where n is the number of dimensions in the face-space.

In the simple IGA each individual in the following generation has two
parents and each pair of parents produces only one child. Eight new
individuals are needed to fill the following generation (as the best indi-
vidual from the previous generation is carried through to the following
generation). Thus, a mating pool of sixteen parents is required.

Stochastic universal sampling is used to select parents to go into the
mating pool. The simple IGA follows Frowd’s method [3] and allows
only three levels of selection: preferred (best), selected, and not se-
lected. When building the sampling wheel it was decided that all of the
selected individuals are assigned equal sized wedges except the preferred
individual which is assigned a double sized wedge.

Two recombination methods are used in the experiments reported in
this paper: uniform crossover and arithmetic crossover, and two muta-
tion methods are used: nonuniform mutation and Gaussian replacement.

In the implementation of uniform crossover used each gene’s value
in an offspring has an equal chance of coming from either parent. In
the implementation of arithmetic crossover used each gene’s value in an
offspring is the mean of the values for that gene in the parents.

In the nonuniform mutation used in this paper the mutated gene value
c′i is given by c′i = ci+σi ·m ·N (0, 1) where σi is the standard deviation
(SD) of the data on the i-th PC, m is the mutation factor set by the
user on the interface, and N(0, 1) is a random number from the Gaussian

72 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

distribution. Gaussian replacement is the name given in this paper to an
analogous method to the uniform mutation operator. In uniform muta-
tion, there is some probability pm for each gene in an offspring’s genotype
that its value will be replaced by a uniformly distributed random value
where ci, c

′
i ∈ [Lower limit,Upper limit]. The Gaussian replacement op-

erator is similar except that c′i is a random number taken from N(0, 1)
and multiplied by the SD of the data on the i-th PC. c′i has the further
restriction that it is bounded by the hyperrectangle which designates
the edge of the face space, that is ci, c

′
i ∈ [−2.5, 2.5] SDs. The mutation

probability is set by the mutation slider and is restricted to the range
[0, pmax] where pmax = 5/ (the dimensionality of the face space).

The population size is limited by three factors: the number of images
that can be displayed on the screen simultaneously, the time required
to create each image, and the cognitive burden placed on the user when
comparing the images. After considering these three factors a population
size of nine was chosen.

3. The User Interface for Experiments 2 and 3

A screenshot of the interface developed for the experiment is given in
Figure 3. Every generation the participants would choose a preferred
composite that best resembled the face they were trying to recreate and
select it using the left mouse button. The participants also had the
option of selecting any composites that they thought were also good
by selecting them using the right mouse button. Anywhere from zero to
eight composites could be selected with the right mouse button. A green
border was placed around the composite the participant preferred, a yel-
low border for those composites the participant thought were also good,
and a black border for those composites that were not selected. Once
they were satisfied that they had selected the best match and any other
matches they considered to be good, the participant would go to the
next generation by pressing the ‘Next’ button. The preferred composite
was carried forward into the next generation. The participants would
continue the process until they thought they had successfully recreated
the target face, or until they thought no further improvement was possi-
ble, by clicking on the ‘Finish’ button. It was observed during previous
(unpublished) experiments that using a self adaptive step size in an IEA
often resulted in the algorithm becoming stuck at a suboptimal solution.
This problem was addressed by adding a slider which enabled the user
to set the mutation value manually. However, many participants did not
adjust the mutation slider. Thus, the mutation slider was decremented
by 0.03 per generation by the software (the slider’s range was [0, 1]). A

Comparison of search spaces & evolutionary operators in facial composites 73

‘back’ button was included which enabled the participant to go back to
the previous generation and make alternative selections or adjust the
mutation slider if they were not satisfied with the current generation.

Figure 1. Screenshot of the interface for the facial composite tasks.

4. Experiment 1: Identifying the Most
Perceptually Significant PCs

4.1 Method

In this experiment 32 participants were used to determine which 12
of the 30 PCs of the 30-dimensional (large) face-space are perceptually
the most significant. Thirty pairs of faces were generated from the large
PCA face-space. If a face’s representation in the large face-space is
given by the point c = [c1, c2, . . . , ci, . . . , c30], then each pair of points

74 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(c+k, c−k) representing a pair of faces has coordinates defined by

c±i =

{
±3 SDs if i = k
0 SDs otherwise

(5)

The faces were printed in their respective pairs on matt photographic
paper. Each pair was 5.8 cm high by 10.2 cm wide. Thirty was the
number of pairs chosen because: thirty pairs of faces could fit comfort-
ably on a desk top, the difference between a pair faces becomes more
difficult to discern for the higher-dimensional PCs, and the more pairs
a participant has to sort through the harder the task becomes. This
decision also defined the number of dimensions that were used in the
large face-space.

At the start of the experiment the pairs of faces were arranged ran-
domly in a grid six pairs high by five pairs wide. The participants
were instructed to group the 12 pairs of faces which ‘exhibited the most
within pair dissimilarity’. Once the participants had done this they were
instructed to sort the 12 pairs of faces from the most similar to the least
similar. In preliminary testing, it was observed that the degree of dis-
similarity between pairs of faces became very hard to discern beyond the
12 or so most dissimilar pairs. Accordingly, 12 dimensions were used for
the small search space.

4.2 Results

The 12 most significant PCs perceptually were found to be 1, 2, 3, 4,
5, 6, 7, 9, 13, 14, 15, and 18. Thus, these are the PCs that were used
to build the human reduced face-space. It can be seen that 8 of the 12
PCs in the human reduced face-space are in the first 12 PCs of the large
PCA face-space.

5. Experiment 2: Comparison of Recombination
and Mutation Operators

5.1 Method

In this experiment 15 participants were used to compare two recombi-
nation operators (uniform crossover and arithmetic crossover) and two
mutation operators (Gaussian replacement and nonuniform mutation).

The 12-dimensional human reduced face-space was used in this ex-
periment. This face-space was chosen because it was not thought that
the face-space used would have an effect on the relative performances
of the different recombination and mutation operators. However, it was
thought that a lower-dimensional face-space may lead to a face match
more quickly and thus induce less fatigue in the participants.

Comparison of search spaces & evolutionary operators in facial composites 75

Testing each combination of recombination and mutation operator
required 2 × 2 = 4 runs per participant. Each participant also did a
practice run at the start of the experiment.

The initial population was the same for every run of the experiment
and was designed to be roughly evenly distributed in the human reduced
face-space. To generate the initial population, 1000 points were gener-
ated using a 12-dimensional uniform distribution with the limits being
at ±2.5 SDs on each axis. Matlab’s kmeans function was used to group
the points into nine clusters. The centroids of the nine clusters were
used as the genotypes for the initial population of faces.

At the start of each run the participants were given 10 seconds to
study the target face which they then had to try to recreate from memory
using the interactive evolutionary facial composite process. The target
face was not shown to the participants again until the end of the run.

The target faces were chosen to be equidistant from the centre of the
human reduced face-space.

At the end of every run, the participants were shown the composite
they had just created and were asked to rate its similarity to the target
on a scale from 1 to 10. Immediately after rating their composite the
participants were shown the target face alongside their composite and
asked to rate the similarity between their composite and the target again.

Three sets of objective data were gathered: the time taken to create
the composites, the number of generations it took to create the compos-
ites, and the number of times the back button was used. If the back
button was used more often for a particular operator, it indicates that
the operator is not particularly suitable for the task.

5.2 Results

The means and standard deviations of the measure variables (number
of generations, time taken, number of times the back button was used,
participant rating of their composite without reference to the target,
participant rating of the their composite with reference to the target)
are given in Table 1. Each of the measure variables were subjected to
two-way ANOVA having two mutation operators (nonuniform mutation
and Gaussian replacement) and two recombination operators (uniform
crossover and arithmetic crossover) (Table 2). It can be seen that the
main effects of mutation operator and recombination operator were not
significant for any of the measure variables, nor was the interaction of
the two operators significant.

76 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

T
a
ble

1
.

M
ea
n
s
(sta

n
d
a
rd

d
ev
ia
tio

n
s)

o
f
th
e
d
ep

en
d
en

t
va

ria
b
les

in
th
e
co
m
p
a
riso

n
o
f
m
u
ta
tio

n
a
n
d
reco

m
b
in
a
tio

n
o
p
era

to
rs

in
th
e

crea
tio

n
o
f
fa
cia

l
co
m
p
o
sites.

M
u
ta
tio

n
R
ecom

b
in
ation

G
en
eration

s
B
a
ck

co
u
n
t

T
im

e
tak

en
W

ith
ou

t
ratin

g
W

ith
ratin

g

G
au

ssian
rep

la
cem

en
t

u
n
iform

10.6
(5.10)

0.7
3
(1
.3
3
)

1
9
5
s
(91.5s)

6.27
(1.22)

4.40
(2.10)

G
au

ssian
rep

la
cem

en
t

a
rith

m
etic

12.5
(8.64)

0.4
7
(0
.7
4
)

2
2
2
s
(155s)

5.47
(2.00)

5.07
(2.19)

N
on

u
n
iform

m
u
ta
tio

n
u
n
ifo

rm
11.5

(4.73)
0.8

7
(1
.4
1
)

2
2
0
s
(71.1s)

6.07
(1.03)

4.60
(2.41)

N
on

u
n
iform

m
u
ta
tio

n
arith

m
etic

9.73
(2.49)

0.4
7
(0
.6
4
)

1
8
8
s
(66.2s)

6.07
(1.49)

4.40
(2.32)

T
a
ble

2
.

T
w
o
-w

ay
A
N
O
V
A

o
f
th
e
d
ep

en
d
en

t
va

ria
b
les

in
th
e
co
m
p
a
riso

n
o
f
m
u
ta
tio

n
a
n
d
reco

m
b
in
a
tio

n
o
p
era

to
rs

in
th
e
crea

tio
n
o
f

fa
cia

l
co
m
p
o
sites.

M
u
tation

R
eco

m
b
in
ation

In
teraction

V
ariab

le
F
(1,56)

p
-valu

e
F
(1
,5
6
)

p
-valu

e
F
(1
,56)

p
-valu

e

G
en
eration

s
0.43

0.513
0.0

0
0.946

1.56
0.217

B
a
ck

C
ou

n
t

0.06
0.813

1.4
1

0.240
0.06

0.813
T
im

e
ta
k
en

0.03
0.874

0.0
1

0.904
1.21

0.275
W

ith
ou

t
co
m
p
ariso

n
ratin

g
0.27

0.603
1.1

0
0.300

1.10
0.300

W
ith

com
p
a
riso

n
ra
tin

g
0.16

0.691
0.1

6
0.691

0.55
0.461

Comparison of search spaces & evolutionary operators in facial composites 77

Table 3. Means (standard deviations) of the dependent variables in the comparison
of the large, human reduced and mathematically reduced face-spaces in the creation
of facial composites.

Back Time Without With
Face-space Gens count taken rating rating

Large
10.7 0.50 205s 5.81 4.10
(4.73) (0.55) (80.3s) (1.13) (1.25)

Human 9.38 0.36 186s 6.02 3.95
reduced (4.31) (0.42) (91.8s) (1.08) (1.33)

Mathematically 10.5 0.48 193s 5.86 4.12
reduced (4.75) (0.56) (85.6s) (1.16) (1.82)

6. Experiment 3: Comparison of Face-spaces

6.1 Method

In this experiment 21 participants were used to compare three face-
spaces: a face-space constructed from the first 30 PCs of the PCA analy-
sis (the large face-space), a face-space constructed from the first 12 PCs
(the mathematically reduced face-space), and a face-space constructed
form the 12 most perceptually important PCs identified in the first ex-
periment (the human reduced face-space).

As the results of the second experiment showed no significant differ-
ence between the operators on any of the recorded measures, arithmetic
crossover and nonuniform mutation were arbitrarily chosen as the oper-
ators used for this experiment.

As there were only three test conditions (large face-space, human
reduced face-space, and mathematically reduced face-space) each par-
ticipant performed two runs for each of the test conditions so that they
performed 2× 3 = 6 runs.

The initial populations for each of the face-spaces were constructed
in the same way as that for the second experiment. The target faces
were chosen to be equidistant from the centre of the 30-dimensional
face-space.

6.2 Results

The means and standard deviations of the measure variables over all
of the runs for each of the algorithms are presented in Table 3.

78 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Performing one-way ANOVA on each of the measure variables (av-
eraged over both runs for each of the test conditions) showed that the
differences between the face-spaces were not significant for any of the
measure variables (number of generations: F (2, 60) = 0.51, p = 0.604,
number of times the ‘back’ button was used: F (2, 60) = 0.47, p = 0.629,
time taken: F (2, 60) = 0.28, p = 0.758, without comparison rating:
F (2, 60) = 0.21, p = 0.811, and with comparison rating: F (2, 60) =
0.08, p = 0.926).

7. Conclusion

A human evaluation based reduced face-space for use with an IEA in
the creation of facial composites was derived from a larger PCA based
face-space. The performances of searches for faces in the human reduced
face-space was compared to those of a mathematically reduced face-
space and the larger face-space. The human reduced face-space was also
used in the comparison between different mutation and recombination
operators in the simple IGA.

The prioritisation of the PCs with regards to human evaluation was
found to be similar to the numerical ordering of returned by principal
component analysis itself. The human reduced face-space was found to
share eight of its 12 PCs with the mathematically reduced face-space.
We note that our data set comprised images captured under conditions
of controlled pose, lighting and facial expression. If this were not the
case, one might expect greater differences between the perceptual and
numerical orderings of PCs.

No significant differences in the performances of the searches con-
ducted using the different operators were detected. The difficulty and
uncertain nature of creating a facial composite render any differences in
the performances of the operators or the face-spaces insignificant.

Likewise, no significant differences in the performances of the searches
conducted in the different face-spaces was observed. The implication of
this is that it is possible to reduce the dimensionality of the face model
without any loss of performance.

References

[1] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
In Proc. European Conference on Computer Vision (ECCV), volume 2, pages
484–498, 1998.

[2] G. Davies and D. Christie. Face recall: An examination of some factors limiting
composite production accuracy. J. Appl. Psychol., 67(1):103, 1982.

[3] C. D. Frowd. EvoFIT: A Holistic, Evolutionary Facial Imaging System. PhD
thesis, Department of Psychology, University of Stirling, 2001.

Comparison of search spaces & evolutionary operators in facial composites 79

[4] C. D. Frowd, P. J. B. Hancock, and D. Carson. Evofit: A holistic, evolutionary
facial imaging technique for creating composites. ACM Trans. Appl. Percept.,
1(1):19–39, 2004.

[5] S. J. Gibson, C. J. Solomon, and A. Pallares Bejarano. Synthesis of photographic
quality facial composites using evolutionary algorithms. In Proc. Britsh Machine
Vision Conference, volume 1, pages 221–230, 2003.

[6] B. Kurt, A. S. Etaner-Uyar, T. Akbal, N. Demir, A. E. Kanlikilicer, M. C. Kus,
and F. H. Ulu. Active appearance model-based facial composite generation with
interactive nature inspired heuristics. Lect. Notes Comput. Sc., 4105:183–190,
2006.

[7] C. J. Solomon, S. J. Gibson, and J. J. Mist. Interactive evolutionary generation
of facial composites for locating suspects in criminal investigations. Appl. Soft
Comput., 13(7):3298–3306, 2013.

[8] J. W. Tanaka and M. J. Farah. Parts and wholes in face recognition. Q. J. Exp.
Psychol., 46A:225–245, 1993.

[9] D.-M. Yoon and K.-J. Kim. Comparison of scoring methods for interactive
evolutionary computation based image retouching system. In Proc. 14th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO),
pages 617–618, 2012.

LOCAL SEARCH BASED OPTIMIZATION

OF A SPATIAL LIGHT DISTRIBUTION

MODEL

David Kaljun
Faculty of Mechanical Engineering

University of Ljubljana, Slovenia

david.kaljun@fs.uni-lj.si

Janez Žerovnik
Faculty of Mechanical Engineering

University of Ljubljana, Slovenia

and

Institute of Mathematics, Physics and Mechanics

Ljubljana, Slovenia

janez.zerovnik@fs.uni-lj.si

Abstract Recent development of LED technology enabled production of lighting
systems with nearly arbitrary light distributions. A nontrivial engineer-
ing task is to design a lighting system or a combination of luminaries for
a given target light distribution. Here we use heuristics for solving the
problem restricted to symmetrical distributions. A genetic algorithm
and several versions of local search heuristics are compared showing
that practically useful approximations can be achieved with majority of
the algorithms.

Keywords: Genetic algorithm, Light distribution model, Local search, Iterative im-
provement.

1. Introduction

Nowadays, technology of Light Emitting Diodes (LEDs) enables to
lower the energy consumption of luminaires and to design more efficient
lighting systems that make it possible to deliver the light to the environ-
ment in a controlled way. The many possible designs lead to new prob-
lems of choosing the optimal or at least a very good design depending

81

82 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

on possibly different goals such as optimization of energy consumption,
production cost, and, last but not least, the light pollution of the envi-
ronment. Nowadays, in many cases trial and error method followed by
simulation is used in practice. We believe that using analytical models
and optimization tools may speed up the design and at the same time
possibly improve the quality of solutions. Here we adopt an analytical
model for a version of the general problem, and use heuristic methods
based on the model to provide nearly optimal solutions. The heuristics
used in this study are three versions of local search and a genetic algo-
rithm. We also compute solutions provided by blind random search to
avoid trivialities. The rest of the paper is organized as follows. In the
next section we briefly explain the practical motivation for this research.
Section 3 gives the analytical model and the optimization problem that
is addressed in the paper. In Section 4, the algorithms are outlined.
Experimental results are presented in Section 5. The paper ends with a
summary of conclusions and idea for future work.

2. Motivation

Only a few years ago, emerging new technology of Light Emitting
Diodes (LEDs) was in the first stage of implementation [1]. Meanwhile
the demand to lower the energy consumption of luminaires and to build
more efficient lighting systems that can deliver the light where needed
has pushed the development of high power LEDs. Following the de-
velopment of LEDs, many luminaire manufacturers developed LED lu-
minaires as a replacement for the existing energy inefficient luminaires.
Naturally, the use of LEDs introduces new and unique challenges to the
development engineers. One of these challenges is to design and simulate
an efficient light engine for the luminaire. The light engine consist of
the source which in this case are LEDs, and the appropriate secondary
optics. The choice of the secondary optics is the key in developing a
good system. For designing a good system nowadays technology enables
two options. Having the know-how and the resources, a specific lens to
accomplish the task can be developed. However, the resources coupled
with the development and production of optical elements may be enor-
mous. Therefore a lot of manufactures are using the second option, that
is to use readymade of the shelf lenses. There are specialized companies
in the world that produce different type of lenses for all of the major
brands of LEDs. The trick here is to choose the best combination of
lenses to get the most efficient system. The current practice in develop-
ment process is a trial and error procedure, where the developer chooses
a combination of lenses, and then simulates the system via Monte Carlo

Local Search Based Optimization of a Spatial Light Distribution Model 83

Figure 1. Modeled spatial light distribution presented in polar diagrams.

ray-tracing methods. The success heavily depends on the engineers’ in-
tuition and experience and still needs sizeable computation resources for
checking the proposed design by simulation.

A natural avenue of research related to the second approach is to
replace trial and error method by a more efficient design method based on
analytical and algorithmic tools. For these aim, a theoretical framework
is needed. Among the first known theoretical results is the analytical
model [8] that was proposed for LEDs without secondary optics. Namely,
the usual practical situation is that we have the target light distribution
given by large dataset of points in the space with (desired or measured)
light intensity. The idea of [8] that is at the same time already a part
way towards the solution is to fit the data with suitable functions that
in turn can provide a construction of a light engine which approximates
the target light distribution. Later we will explain a modification of the
analytical model of [8] that we use in our study where we successfully
approximate symmetric spatial distributions. The general problem is
much more challenging. Development of a useful analytical model for
general case is to the best of our knowledge an open research problem.
Having the target light distribution in a manageable form, the design of
the light engine may be possible. Depending on the application, several
questions/tasks are natural, for example: (1) design the engine having
exactly (or, approximately) the target light distribution (2) design such
engine using as few LEDs as possible (3) design such engine as cheap as
possible. A combination of these goals may be of interest which in turn
leads to a number of multicriteria optimization problem(s).

3. Analytical Model and Problem Definition

The fact that there are many different LEDs with different beam pat-
terns and many different secondary optics to choose from indicates that

84 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

providing a general analytical model for all of them is presumably a very
challenging open research problem. Therefore in this study we restrict
attention only to LED-lens combinations that have symmetrical spatial
light distribution. In other words, the cross section of the surface which
represents the spatial distribution with a section plain that is coincident
with the vertical axis of the given coordinate system is alike at every
azimuthal angle of offset. This enables us to define the analytical model
in two dimensions, so it describes a curve rather a surface. To produce
the desired surface, we just revolve the given curve around the central
vertical axis with the full azimuthal angle of 360◦. Three examples from
our dataset are given in Figure 1. For the special case of symmetrical
spatial light distribution, an analytic model for the radiation pattern of
a single LED without the secondary optics was proposed in [8]. The au-
thor proposed two different models, one based on Gaussian and one on
cosine-power function. Based on our preliminary manual test fittings of
the models to measured data of three randomly chosen lenses from the
dataset [5] we use here we have concluded that the cosine-power func-
tions I (Θ) = a ∗ cos(Θ − b)c have slight advantage over the Gaussian
ones. Another argument is that the cosine-power functions seem to be
a more natural choice in this context because there are basic LEDs with
simple secondary optics for which the light distribution can be approxi-
mated with a single cosine-power function. We therefore start with the
analytical model from [8] using cosine functions:

M (Θ) =
∑

i

ai ∗ cos(Θ − bi)
ci (1)

It was observed in [8] that a sum of only three cosine-power func-
tions is sufficient in most cases. Our preliminary tests confirmed this
observation, so we assumed that the sum of three cosine-power func-
tions will probably be enough to fit LEDs with lenses that have sym-
metric radiation patterns with sufficient quality. In addition to the pa-
rameters of the original model, we introduce a normalizing parameter
Imax, as this simplifies (unifies) the range of the other three parame-
ters: a = {0, 0.001, 0.002, . . . , 1}, b = {−90,−89.9,−89.8, . . . , 90} and
c = {0, 1, 2, . . . , 100}, for all test lenses. Doing all of the above we have
rewritten the definition (1) as follows:

I (Θ) = Imax

∑

i

ai ∗ cos(Θ − bi)
ci (2)

The expression (2) thus represents our analytical model to fit LEDs
with attached secondary optics and symmetric spatial light distribution.

Local Search Based Optimization of a Spatial Light Distribution Model 85

The goodness of fit is as usual [8, 10] defined to be minimizing the
root mean square error (RMS), formally defined as:

RMS =

√
1

M

∑

i

[I(Θi)m − I(Θi)]
2 (3)

For a sufficiently accurate fit, the RMS value must be less than 5%
[8, 10]. On the other hand, current standards and technology allows up
to 2% noise in the measured data. Therefore, the target results of the
fitting algorithms are at less than 5% RMS error, but at the same time
there is no practical need for less than 1% or 2% RMS error.

We will assume that all the data are written in the form of vectors v
= (polar angle [Θ], intensity [I]). In reality, measured photometric data
from the lens manufacturers are available in one of the two standard
coded formats. That are the IESNA photometric digital format *.ies
[11] used primarily in the USA and the European format EULUMDAT
*.ldt [2]. Conversion of the data in the two standard formats can easily
be transformed into the list of vectors. In addition, due to the novel
parameter Imax each dataset will be normalized during the preprocessing
so that in each instance the maximal intensity of the vectors will be 1,
and the normalizing value Imax is given as additional input value to the
algorithms.

The problem can formally be written as:

INPUT: Imax and a list of vectors v= (polar angle [Θ], intensity [I])
TASK: Find parameters (a1, b1, c1, a2, b2, c2, a3, b3, c3) that minimize
the RMS error (3).

Different fitting algorithms were used to minimize RMS error. The
algorithms are presented and compared in the next sections.

4. Fitting Algorithms

In this section we describe five fitting algorithms. As the main objec-
tive of this study was to obtain good solutions to the practical problem,
the algorithms were chosen with this primary goal in sight. The selec-
tion is thus quite arbitrarily, and there may be some other algorithms
or some other versions that might outperform the selected versions.

Note that here the problem is a continous optimization problem and
hence, compared to discrete optimization, there are even more possibil-
ities to define a neighborhood for the local search based heuristics. In
fact, the neighborhoods we use can be seen as variable neighborhoods
[7], although they are all similar. Of course, there may be other neigh-
borhoods that would be worth consideration. The reason we keep the

86 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

selected neighborhoods and did not try to look for other possibilities is
simply the fact that they already gave us results of sufficient quality.
Another natural question that may be asked here is why use discrete op-
timization heuristics on a continuous optimization problem. First, there
is no analytical solution for MST best approximation of this type of func-
tions, and second, in order to apply continuous optimization methods
such as the Newton method, usually we need a good approximation in
order to assure convergence. As the target RMS error is between 1% and
5%, the fine approximation based on continuous optimization methods
could be used as postprocessing. On the other hand, in view of the at
least 2% noise in the data, this postprocessing is not of practical interest
in this case.

We have started our experiments with two basic local search algo-
rithms, steepest descent and iterative improvement, where in both cases
the neighborhoods were defined in the same way, explained in more de-
tail below. We call this neighborhood fixed stepsize neighborhood. The
third local search algorithm is a variation of iterative improvement where
we introduce random step size; roughly speaking, given a step size and
direction as before, we randomly make a step in the direction that is at
most as long as in the fixed size neighborhood search. Naturally, when-
ever local search is used, the multi start version is worth consideration.
As preliminary testing of multi start version was not competitive with
single longer runs, therefore we decided to use a more advanced heuristics
that would on one hand take advantage of the seemingly successful local
search and possibly accumulate information obtained by independent lo-
cal searches. Our choice was to use a genetic algorithm. Finally, we also
run and compare results of a simple generation of random solutions.

4.1 Steepest Descent – SD

The algorithm begins with the initialization of the initial function
parameter values that are a1 = a2 = a3 = 0.5, b1 = b2 = b3 = 0, and
c1 = c2 = c3 = 1. Next it initializes the search step values which are
for da = 0.01, for db = 1 and for dc = Imax

10 giving the 512 neighbors of
the initial solution: (a1 ± da, b1 ± db, c1 ± dc, a2 ± da, b2 ± db, c2 ± dc,
a3±da, b3±db, c3±dc). If there is a neighbor with better RMS value, the
search moves to the neighbor with minimal RMS value (if there are more
minimal neighbors, all are chosen with the same probability). If none
of the 512 is better than the current solution a new set of neighboring
solutions are generated, this time with a double step. It goes for ten steps
and if there still is no better solution it breaks the search, multiplies the
step value with 0.9, so the step is finer, and begins the search from start

Local Search Based Optimization of a Spatial Light Distribution Model 87

in the neighborhood of the current solution. The algorithm stops when
the number of generated solutions reaches Tmax.

4.2 Iterative Improvement – Fixed Neighborhood –

IF

The algorithm uses the same neighborhood as SD. Instead of con-
sidering all 512 neighbors at once, the algorithm generates a neighbor
randomly, and moves to the neighbor if its RMS value is better than
the current RMS value. If no better neighbor is found after 1000 trials,
it is assumed that no better neighbor exists. As above, the algorithm
changes to a new neighborhood, this time with a double step. It goes for
ten steps and if there is still no better solution, it breaks the search, mul-
tiplies the step value with 0.9, so the step is finer and begins search from
the start in the neighborhood of the current solution. The algorithm
stops when the number of generated solutions reaches Tmax.

4.3 Iterative Improvement – Random Neighborhood

– IR

The search begins as the previous two algorithms. It initializes the
same initial function parameter values. Next it initializes the search step
value within a range, rather than a static fixed value. The ranges are
for da1 = da2 = da3 = {−0.1,−0.099,−0.098, . . . , 0.1}, for db1 = db2 =
db3 = {−9,−8.9,−8.8, . . . , 9} and dc1 = dc2 = dc3 = {−10,−9,−8, . . . ,
10}. It begins generating solutions, using the step range around the
initial solution and calculating their RMS error. As soon as it generates
a better solution, it stops, shifts the focus on that solution, resets the step
range to the initial value, and continues the search in the neighborhood
of the new best solution. If after 400000 generated solutions no better
is found, than the step range gets doubled, and the search continues
in the current neighborhood with a larger neighborhood. The stopping
condition are the same as before, whichever is achieved first stops the
search.

4.4 Genetic Algorithm – GA

The genetic algorithm mimics the evolutionary behavior [4,6,9]. Three
genetic operators are used. The natural selection [4] where the best in a
population survive, mutation [9] where randomly chosen parameters of a
surviving solution are changed producing a new solution, and crossover
[4,6,9] or breading where a new solution is created by randomly combin-

88 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ing and crossing parameters from two randomly chosen solutions that
have survived from the previous generation.

The algorithm begins with the generation and calculation of one hun-
dred and fifty thousand solutions for the zero population. It then chooses
via the natural selection ten best solutions. These ten are then locally
optimized with the algorithm that implements the iterative improve-
ment with random neighborhood for sixty thousand iterations. After
that it generates the next generation from the ten best solutions of
the previous generation. It generates twenty-five thousand mutant so-
lutions and twenty-five thousand crossover solutions. More precisely,
the mutation operator works as follows: in the randomly chosen in-
dividual, one to nine parameters are chosen to be changed (mutated)
by adding to the current parameter value a randomly chosen value
for da1 = da2 = da3 = {−0.01,−0.009,−0.008, . . . , 0.01}, for db1 =
db2 = db3 = {−0.25,−0.24,−0.23, . . . , 0.25} and dc1 = dc2 = dc3 =
{−2.5,−2.4,−2.3, . . . , 2.5}. The crossover operation takes two randomly
chosen individuals and choses one to nine parameters to be changed. The
new parameter values are generated by calculating the difference of the
according parameter pair of the two individuals (a1ia2i, b1i − b2i, c1i −
c2i), randomly choosing a value larger than zero and smaller than the
calculated difference and adding the chosen value to the smaller param-
eter value of the pair. Then it chooses the best ten from that generation
and optimizes them. It compares the optimized solutions from the pre-
vious generation and the current one. Again it chooses the ten best from
both. After that it begins with the generation of the next generation,
following the same steps as before.

The stopping condition is based on the number of generated solutions
as for other algorithms. In our experiment, the usual number of gen-
erated solutions was four million, which here means that the algorithm
stops when it optimizes the best solutions of generation five.

4.5 Blind Random Search – RAN

Tmax times generates random values of the parameters, evaluates the
RMS error, and remembers the best so far solution.

5. Results

We discuss the results of a comparative experiment in which all the
algorithms were run with Tmax = 4 million. All algorithms were saving
a log file during the runtime process, so we can extract the values at any
particular time of the process.

Local Search Based Optimization of a Spatial Light Distribution Model 89

Table 1. RMS error after 4 million calculating operations.

Lens/Algorithm SD IF RAN IR GA

C13353 3.991 3.408 7.013 8.671 3.061

CA11265 2.775 2.372 4.936 4.798 2.729

CA11268 2.227 2.229 4.100 2.471 2.578
CA11483 3.100 3.066 4.130 3.387 3.141
CA11525 3.150 1.108 3.217 1.907 1.087

CA11934 3.940 2.514 4.196 3.543 2.909

CA12392 1.636 1.641 3.424 2.445 2.277
CA13013 1.202 0.695 2.136 2.241 0.916

CP12632 5.537 5.493 4.918 4.974 4.362

CP12633 2.431 2.415 4.063 3.708 2.347

CP12636 2.348 2.107 4.571 4.217 2.479
FP13030 2.267 2.257 3.762 3.659 2.414

For the purpose of the algorithm evaluation, we have chosen a set of
real available lenses to be approximated. The set was chosen from the
online catalogue of one of the biggest and most present manufacturer in
the world Ledil Oy Finland [5]. The choosing from the broad spectrum
of lenses in the catalogue was based on the decision that the used LED is
Cree XP-E [3], and the demand that the lenses have a symmetric spatial
light distribution. We have preserved the lens product codes from the
catalogue, so the reader can find the lens by searching the catalogue for
the code from the first column in table 1 .

5.1 Quality Comparison

In the Table 1 below the overall best solutions after the long runs of
all algorithms on all twelve instances from the dataset are given. Recall
that the results are acceptable if they have RMS values lover than 5%
and that the approximation better than 1% is not of any use because of
the noise in data. The best two results for each instance are in bold.

First, observe that all the algorithms in most of the cases give ac-
ceptable results, i.e. lower than 5 which is the same as 5% recalling the
meaning of the normalizing parameter Imax. If we take a closer look,
at the values we can see that the iterative improvement with fixed size
IF is the winner when counting the number of best solutions, achiev-
ing the best solution in six out of twelve instances. The second best is
the genetic algorithm with four best solutions, followed by the steepest

90 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 2. RMS error after 750 thousand calculating operations.

Lens/Algorithm SD IF RAN IR GA

C13353 6.617 4.284 9.252 9.909 3.784

CA11265 3.,477 2.700 7.282 5.073 4.183
CA11268 2.376 2.620 5.893 2.471 2.932
CA11483 4.181 3.400 4.130 3.784 3.641

CA11525 3.813 3.395 4.811 3.789 1.601

CA11934 4.032 1.662 4.988 3.543 3.789
CA12392 1.814 1.661 3.597 2.717 2.577
CA13013 2.804 3.115 2.136 2.241 1.331

CP12632 9.501 9.839 8.474 5.054 4.703

CP12633 2.465 4.511 4.757 4.296 2.613

CP12636 5.000 6.297 5.506 4.217 3.803

FP13030 2.800 5.679 6.611 3.659 3.233

descent with two. Second, comparing the three local search algorithms
and the genetic algorithm in terms of the quality of their best solutions
on particular instances, we see that all best solutions are within 1%. We
can conclude that all four are fairly comparable in terms of the expected
quality of the solution. On the other hand, the blind random search
on average does not produce as good results as the other four, however
it may luckily guess good solutions, in one case even the best solution
obtained (on instance CP12632).

As we have so many results of acceptable quality, a natural question is
whether the time limit chosen above could be shortened. The long runs
in our implementations took 30 minutes for every run on a Intel Core
I3-4130 @ 3,5 Ghz, programmed in C++. (The code was not optimized).
Therefore it is interesting to compare shorter runs, see Table 2.

The shorter runs again show that most algorithms achieve the 5%
error bound already in short runs. It may be interesting to note that
the genetic algorithm is the only one that in the short runs finds so-
lutions under 5% bound for all instances. In addition, it is also the
winner in eight out of twelve cases looking the best obtained solution.
We also observe that in short runs, the two algorithms based on fixed
size neighborhood outperform the random size neighborhood iterative
improvement. As expected, blind random search is not competitive on
average, however curiously it is the winner on one instance.

Local Search Based Optimization of a Spatial Light Distribution Model 91

Finally, comparing the speed of convergence we observe that all of
the algorithms have a very steep convergence curve, a typical example
is given in Figure 2.

Figure 2. Linear interpolation of the approximation runtime process of CA13013
lens.

6. Conclusions

The goal of this part of the research was to design an efficient algo-
rithm to fit an analytic model to the measured data of LED and sec-
ondary lens combination with symmetric spatial light distribution. We
have designed several algorithms, and tested them on real lens data. The
results of the test showed that, four of the algorithms produce approx-
imations of acceptable quality. As the dataset used for testing includes
a good variation of realistic LED and secondary lens combinations we
can conclude that the practical approximation and design problem has
been solved.

From theoretical viewpoint it is interesting to note that the genetic
algorithm was very competitive, in short runs comparison even the best
among the tested algorithms. Of course, it is well known that with fine
tuning of parameters most of metaheuristics can be adopted to be very
successful on a particular dataset. However, here we should add that our
study started with testing the neighborhoods for local search and only

92 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

in the last part of the research we used the genetic algorithm. So in this
case the parameter tuning of all algorithms took about the same effort.
We thus believe that the comparison is fair also from this viewpoint.

The study presented here gave important information about the num-
ber of complexity of solving the general problem in the case of instances
with symmetric spatial light distribution. Future work includes adapta-
tion of the model to lenses with asymmetric spatial light distribution.
Based on the new models, the heuristic data fitting that would lead
to the construction of desired light engines, analogous to the work pre-
sented here may be possible. The general model will presumably include
a larger number of parameters which in turn most probably means larger
search spaces and more challenging optimization problems.

Acknowledge

This work is supported in part by ARRS, the research agency of Slove-
nia.

References

[1] Escaping the bulb culture: the future of LEDs in architectural illumination.
LEDs magazine, (1):13–15, April 2005.

[2] I. Ashdown. Thinking Photometrically Part II. In LIGHTFAIR 2001 Pre-
Conference Workshop, March 2001.

[3] Cree Inc. http://www.cree.com/led-components-and-modules/products/

xlamp/discrete-directional/xlamp-xpe. Accessed 2014.

[4] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms. 2nd Edition. John
Wiley & Sons, 2004.

[5] Ledil Oy. http://www.ledil.com/. Accessed 2014.

[6] M. Mitchell. An Introduction to Genetic Algorithms. 5th Edition. MIT Press,
1999.

[7] N. Mladenovic, P. Hansen, and J. Brimberg. Sequential clustering with radius
and split criteria. Cent. Eur. J. Oper. Res., 21(Suppl. 1):95–115, 2013.

[8] I. Moreno and C.-C. Sun. Modeling the radiation pattern of LEDs. Opt. Ex-
press., 16(3):1808–1819, February 2008.

[9] D. Simon. Evolutionary Optimization Algorithms. John Wiley & Sons, 2013.

[10] C.-C. Sun, T.-X. Lee, S.-H. Ma, Y.-L. Lee, and S.-M. Huang. Precise optical
modeling for led lighting verified by cross correlation in the midfield region. Opt.
Lett., 31:2193–2195, 2006.

[11] The Subcommittee on Photometry of the IESNA Computer Committee. IESNA
standard file format for the electronic transfer of photometric data and related
information. Technical Report ANSIDESNA LM-63-02, Illuminating Engineer-
ing Society of North America, 2002.

PARALLEL CUDA IMPLEMENTATION

OF THE DESIRABILITY-BASED SCALA-

RIZATION APPROACH FOR MULTI-

OBJECTIVE OPTIMIZATION PROBLEMS

Eren Akca
HAVELSAN A.Ş., Ankara, Turkey

erenakca88@gmail.com

Ökkes Tolga Altınöz
Department of Electrical and Electronics Engineering

Faculty of Engineering and Architecture, TED University, Ankara, Turkey

tolga.altinoz@tedu.edu.tr

Sadi Uçkun Emel
HAVELSAN A.Ş., Ankara, Turkey

semel@havelsan.com.tr

Asım Egemen Yilmaz
Electrical and Electronics Engineering Department

Ankara University, Ankara, Turkey

aeyilmaz@eng.ankara.edu.tr

Murat Efe
Electrical and Electronics Engineering Department

Ankara University, Ankara, Turkey

efe@eng.ankara.edu.tr

Tayfur Yaylagul
HAVELSAN A.Ş., Ankara, Turkey

tyaylagul@havelsan.com.tr

93

94 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Abstract In this study, we present the results obtained for the parallel CUDA im-
plementation of the previously proposed desirability-based scalarization
approach for the solution of the multi-objective optimization problems.
Our simulations show that compared to the sequential Java implemen-
tation, it is possible to find the same solutions (up to 16-time faster
manner) by parallel CUDA implementation. We also try to outline
our experiences of troubleshooting throughout the implementation as
guidelines for upcoming researchers working in the same field.

Keywords: Aggregation, CUDA, Desirability functions, Genetic algorithm, GPGPU
programming, Multi-objective optimization, Parallelization, Scalariza-
tion.

1. Introduction

The problem for determining the best possible solution set with re-
spect to multiple objectives is referred to as a multi-objective (MO)
optimization problem. There are many approaches for the solution of
these kinds of problems. The most straightforward approach, the so-
called “scalarization” or “aggregation” is nothing but to combine the
objectives in order to obtain a single-objective [6]; and the most com-
mon method of this sort is the weighted sum [5,7, 8].

The solution of the MO optimization problem is a set that contains
trade-off solutions [11]. On the other hand, the problem instance defined
via the scalarization technique yields a single solution. In order to find
another trade-off solution, the parameters throughout the scalarization
process shall be varied, and the resulting problem instance (which is
different than the previous one) shall be solved. For the particular case
in which the problem is bi-objective (with the objective functions f1 and
f2) and the weighted-sum method is applied, the aggregated objective
function is w1f1 + (1 − w1)f2, where the weight w1 is a real number
between 0 and 1. By varying this weight, a new single-objective problem
instance (and a new solution) is obtained. Obviously, for this simple case,
the parameter setup of the “scalarization scheme” consists of only the
weight w1. For higher number of objectives and different scalarization
techniques, the scalarization scheme might address a parameter set with
multiple elements.

Scalarization techniques were popular in 1980s and early 1990s, prior
to development of powerful multi-objective optimization algorithms such
as the Non-Dominated Sorting Genetic Algorithm (NSGA) [10], NSGA-
II [3] or Vector Evaluated Genetic Algorithm (VEGA) [9], etc. After
the development of these powerful and successful multi-objective op-
timization algorithms, scalarization techniques were considered to be
old-fashioned, and they were abandoned. By the time, especially af-

Parallel CUDA Implementation of the Desirability-Based Scalarization 95

ter the evolution and rapid development of multi-core architectures in
2000s, researchers have started to reconsider and revisit the scalarization
techniques since these techniques are usually suitable for parallelization
when carefully implemented. In this study, with a similar motivation,
we demonstrate how one of these techniques can be parallelized and im-
plemented on the General Purpose Graphic Processing Units (GPGPUs)
via the Compute Unified Device Architecture (CUDA) framework.

2. The Main Idea Beneath the Scalarization and
the Weighted Sum Approach

As stated in the previous section, the main aim in a multi-objective
optimization problem is to find a set of trade-off solutions. The opti-
mality of a particular solution is determined via the definition of “dom-
ination” in the Pareto space. In Figure 1, the pictorial descriptions of
the domination and the set of non-dominated solutions (i.e. the Pareto
front) are given for a simple bi-objective problem.

Figure 1. Pictorial descriptions of domination and the Pareto front.

In order to obtain a set of solutions for a bi-objective optimization
problem via the weighted-sum method (for which the aggregated objec-
tive function w1f1 + (1 − w1)f2 is constructed), the weight w1 shall be
varied between 0 and 1 in a systematical manner; and a new solution
shall be found for each value of w1. Even though this approach seems to
be simple and well-working, it fails especially when the Pareto front is
concave (totally or between two particular points in the Pareto space).
In order to illustrate this, let us try to understand the main idea be-
neath the weighted-sum approach. As seen in Figure 2, the aggregated
objective function w1f1 + (1−w1)f2 corresponds to a line in the Pareto
space (particularly the f1f2 plane). Throughout the optimization pro-
cess, in which c = w1f1 + (1 − w1)f2 is minimized, the corresponding

96 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

line is shifted by preserving its slope. Eventually, the solution obtained
is nothing but the intersection of the corresponding line with the Pareto
front curve (which is considered to be convex, for the time being) as seen
in Figure 3.

Figure 2. Pictorial description of the solution via the weighted sum approach for
convex Pareto front.

Figure 3. Pictorial description of how different solutions can be found by altering
the weight in the weighted sum approach for convex Pareto front.

As seen in Figure 2, the slope of the line is determined by the weight,
and altering this parameter will yield a different line. As seen in Figure 3,
altering the weight would yield a different solution (in case the Pareto
front is convex).

On the other hand, let us consider the case for which the Pareto front
is concave between two points A and B as seen in Figure 4. In this
case, the point B is found as a solution. In case the weight is altered
as seen in Figure 5, the point A is found as an alternative solution.
Unfortunately, in such a case, even if the weight is altered in its whole
range, no points on the Pareto front other than A and B can be found
by this approach [2]. Without a topological proof, this can be observed
pictorially by intersecting different-slope lines with this concave Pareto
front in Figures 4 and 5.

Since it is impossible to know whether the Pareto front is convex
or concave in real life problems, the weighted-sum approach cannot
be applied confidently. Hence, in this study we propose to apply the
desirability-functions (by altering their shapes systematically) for scalar-
ization as defined in [1]. The next section is devoted to description of
this method.

Parallel CUDA Implementation of the Desirability-Based Scalarization 97

Figure 4. Pictorial description of the solution via the weighted sum approach for
concave Pareto front (where the point B is found as the solution).

Figure 5. Pictorial description of the solution by altering the weight in the weighted
sum approach for concave Pareto front (where the point A is found as the alternative
solution).

3. Desirability Function-Based Scalarization

Previously in [1], an alternative scalarization method utilizing the
so-called desirability functions was proposed. The concept of the desir-
ability functions was first introduced by Harrington in 1965 for multi-
objective industry quality control. After the proposition of the desir-
ability function concept, Deringer and Suich [4] introduced different de-
sirability function formulations. The main idea beneath the desirability
functions is as follows:

The desirability function is a mapping from the domain of real
numbers to the range set [0, 1].

The domain of each desirability function is one of the objective
functions; and it maps the values of the relevant objective function
to the interval [0, 1].

98 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Depending on the desire about minimization of each objective func-
tion (i.e. the minimum/maximum tolerable values), the relevant
desirability function is constructed.

The overall desirability value is defined as the geometric mean of
all desirability functions; this value is to be maximized.

Particularly, for a bi-objective optimization problem in which the
functions f1 and f2 are to be minimized, the relevant desirability func-
tions d1(f1) and d2(f2) can be defined as in Figure 6. The desirability
functions are not necessarily defined to be linear; certainly, non-linear
definitions shall also be made as described in [1]. Throughout this study,
we prefer the linear desirability functions.

Figure 6. The linear desirability functions constructed for the bi-objective opti-
mization problem.

In [1], a method for extraction of the Pareto front was proposed by
altering the shapes of the desirability functions in a systematical manner.
Particularly, by:

Fixing the parameters f1max tol
and f2max to seen in Figure 6 at

infinity, and

Varying the parameters f1min tol
and f2min tol

systematically,

it is possible to find the Pareto front regardless of its convexity or con-
cavity. This claim can be illustrated for the bi-objective case as follows:
as seen in Figure 7, the parameters f1min tol

and f2min tol
determine the

sector which is traced throughout the solution. The obtained solution
corresponds to a point for which the geometric mean of the two desirabil-
ity values. As seen in Figure 8, even in the case of concave Pareto front,
the solution can be found without loss of generality. In other words,
unlike the weighted-sum approach, the method proposed in [4] does not
suffer from the concave Pareto fronts.

In [1], the applicability and the efficiency of the proposed scalarization
approach was demonstrated via some multi-objective benchmark func-
tions. Each single-objective problem (i.e. the scalarization scheme) was

Parallel CUDA Implementation of the Desirability-Based Scalarization 99

Figure 7. Pictorial description of the solution via the desirability-function based
approach for convex Pareto front.

Figure 8. Pictorial description of the solution via the desirability-function based
approach for concave Pareto front.

solved with Particle Swarm Optimization. Despite no explicit demon-
stration or proof, it was claimed that:

There were no limitations about the usage of Particle Swarm Opti-
mization; i.e. any other heuristic algorithm could be incorporated
and implemented.

The proposed method can be easily parallelizable.

In this study, we demonstrate the validity of these claims by incorpo-
rating the Genetic Algorithm in the proposed method, and performing
a parallel implementation on GPGPUs via the CUDA framework. The
next section is devoted to the implementation details.

4. Parallel CUDA Implementation of the
Desirability Function-Based Scalarization

The main idea of our parallel implementation throughout this study
is illustrated in Figure 9. Each scalarization scheme is handled in a sep-
arate thread; after the relevant solutions are obtained, they are gathered
in a centralized manner to constitute the Pareto front from which the
human decision maker picks a solution according to his/her needs. This

100 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

approach ensures that the number of solutions found that can be found
in parallel is limited by the capability of the GPGPU card used. If the
problem is a mission-planning problem as in our case, the two objectives
might be “minimizing the overall mission completion time” and “min-
imizing the overall mission risk”; and the Pareto front is a plethora of
various alternative mission plans with different overall completion time
and risk values. In this case, the planner (or the commander) will pick
up a solution (i.e. a mission plan to be executed) by using his/her own
initiative. Regardless of the choice, it will be certain that the particular
picked solution will be non-dominated.

Figure 9. Pictorial description of the parallel CUDA implementation of the
desirability-function based approach.

As stated before, we implemented an elitist Genetic Algorithm for
verification of the aforementioned claims. The parallel CUDA imple-
mentation was compared to the sequential Java implementation in the
environment seen in Table 1. The Genetic Algorithm parameters used
throughout the simulations are given in Table 2.

Table 1. The environment in which the simulations are run.

Device and Global Memory Quadro K5000 and 4GB

CUDA Cores 1536

GPU and Memory Clock Rate 706 MHz and 2700 MHz

Memory Bus Width 256-bit

Maximum Number of Threads
per MP and Block 2048 and 1024

CUDA Driver and Capability 5.5 and 3.0

Parallel CUDA Implementation of the Desirability-Based Scalarization 101

Table 2. Genetic Algorithm parameters throughout the simulations.

Chromosome size 16-bit

Population size 100

Number of generations (iterations) 100

Elitism Rate 0.2

Mutation Rate 0.1

Crossover Rate 0.9

It was seen that both implementations (sequential Java and parallel
CUDA) were able to find the same solutions but in different elapsed
times. As seen in Figure 10, if the number of Pareto front solutions
increase, the advantage of the parallel CUDA appears dramatically.

Figure 10. Comparison of the sequential Java and the parallel CUDA implementa-
tions.

These results show how efficient the parallel CUDA implementation
will be in case numerous Pareto solutions are required by the decision
maker in a multi-objective optimization problem.

5. Lessons Learned and Future Work

Throughout the implementation, we have experienced and observed
the following:

Memory allocations shall be made in advance in a bulk manner,
since such operations deteriorate parallelism in case they are made

102 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

one by one. Bulk memory allocation and pointer assignment for
usage of each thread is possible in our case, since it is quite straight-
forward to determine how much memory will be required by the
Genetic Algorithm (since the parameters listed in Table 2 are def-
inite).

Random number generation is another issue. Various alternative
approaches can be preferred:

– To generate each random number at the CPU when required
and to transfer it to the GPU: This is the least efficient and
the slowest approach.

– To generate all random numbers at the CPU prior to the
solution and to transfer them to the GPU: This is better
than the previous one.

– To generate each random number directly at the GPU with
no CPU-GPU communication need: This is the most efficient
and the fastest approach. GPU generated random numbers
demonstrate sufficient randomness features.

Windows operating systems assigns a default 2-second time-out
for the processes initiated at the peripheral devices. As seen in
Figure 10, for our problem, the duration of the execution of each
CUDA thread was about 3 seconds (which exceeds the 2-second
time-out), causing the relevant process to be killed by the Win-
dows operating system prior to completion. This problem was
resolved by brute-force editing (and setting it to higher values) of
the relevant key value in the registry.

The results shown in Figure 10 were obtained without any paral-
lel/concurrent implementation of the single-objective optimization prob-
lem. As seen in Figure 11, some steps in the Genetic Algorithm can be
executed in a parallel or concurrent manner.

More specifically, the computation of the objective and the fitness
functions for the individuals in the Genetic Algorithm population can
be performed concurrently on GPGPUs, in case the stream mechanism in
CUDA is utilized as seen in Figure 12. The impact of such a modification
in the implementation might not be drastic for the benchmark problems
since they usually consist of computationally cheap functions. But in
case of computationally expensive functions as in our mission-planning
problem, the advantage of utilization of the streams is expected to be
quite dramatic. As a future work, our aim is to perform the utilization
of the streams as well as the shared memories in the GPGPUs, which
are not being used in the current implementation.

Parallel CUDA Implementation of the Desirability-Based Scalarization 103

Figure 11. The steps of the Genetic Algorithm with indications of parallelization.

Figure 12. The step of the Genetic Algorithm which can be executed concurrently
via utilization of the stream mechanism in CUDA.

In conclusion, in this study we have demonstrated that it is possible
to achieve up to 16 times faster GPU implementations for the multi-
objective problems via a careful and intelligent CUDA implementation.
Further improvements in the implementation shall be made in the near
future. Moreover, we have verified the claims in [4] and demonstrated
the efficiency of the proposed approach.

Acknowledgement

This study was made possible by grants from the Turkish Ministry
of Science, Industry and Technology (Industrial Thesis - San-Tez Pro-
gramme and HAVELSAN; with Grant Nr. 01568.STZ.2012-2) and the
Scientific and Technological Research Council of Turkey – TUBITAK
(with Grant Nr. 112E168). The authors would like to express their
gratitude to these institutions for their support.

104 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

References

[1] O. T. Altinoz, A. E. Yilmaz, and G. Ciuprina. A Multiobjective Optimization
Approach via Systematical Modification of the Desirability Function Shapes. In
Proc. 8th International Symposium on Advanced Topics in Electrical Engineer-
ing, pages 23–25, 2013.

[2] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. A new scalarization technique
to approximate Pareto fronts of problems with disconnected feasible sets. J.
Optimiz. Theory App., appeared online, June 2013, DOI 10.1007/s10957-013-
0346-0.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE T. Evolut. Comput., 2:182-197, 2002.

[4] G. Derringer and R. Suich. Simultaneous optimization of several response vari-
ables. J. Qual. Technol., 12:214–219, 1980.

[5] J. Keski and R. Silvenneinen. Norm methods and partial weighting in multicri-
teria optimization of structures. Int. J. Num. Meth. Eng., 24:1101–1121, 1987.

[6] R. Marler and S. Arora. Transformation methods for multiobjective optimiza-
tion. Eng. Optimiz., 37:551–569, 2009.

[7] R. Marler and S. Arora. The weighted sum method for multi-objective opti-
mization: new insights. Struct. Optimization, 41:853–862, 2010.

[8] S. F. P. Saramago and V. Steffen, Jr. Optimization of trajectory planning of
robot manipulators taking into account the dynamic of the system. Mech. Mach.
Theory, 33:883–894, 1998.

[9] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic
algorithms. In Proc. International Conference on Genetic Algorithm and their
Applications, 1985.

[10] N. Srinivas and K. Deb. Multi-Objective function optimization using non-
dominated sorting genetic algorithms. Evolutionary Computation, 2:221-248,
1995.

[11] H. Trautmann and J. Mehmen. Preference-based pareto optimization in certain
and noisy environments. Eng. Optimiz., 41:23–38, 2009.

DIFFERENTIAL EVOLUTION FOR

SELF-ADAPTIVE TRIANGULAR

BRUSHSTROKES

Uroš Mlakar
Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia

uros.mlakar@um.si

Janez Brest
Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia

janez.brest@um.si

Aleš Zamuda
Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia

ales.zamuda@um.si

Abstract This paper proposes a lossy image representation where a reference im-
age is approximated by an evolved image, constituted of variable number
of triangular brushstrokes. The parameters of each triangle brush are
evolved using differential evolution, which self-adapts the triangles to
the reference image, and also self-adapts some of the control parame-
ters of the optimization algorithm, including the number of triangles.
Experimental results show the viability of the proposed encoding and
optimization results on a few sample reference images.

Keywords: Differential evolution, Evolutionary computer vision, Evolutionary art,
Image-based modeling, Self-adaptation, Triangular brushstrokes.

1. Introduction

In this paper, evolvable lossy image representation utilizing an image
compared to its evolved generated counterpart image, is proposed. The

105

106 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

image is represented using a variable number of triangular brushstrokes
[5], each consisting of triangle position and color parameters. These pa-
rameters for each triangle brush are evolved using differential evolution
[3,10], which self-adapts the control parameters, including the proposed
self-adaptation for the number of triangles to be used. Experimental
results show the viability of the proposed encoding and evolution con-
vergence for lossy compression of sample images.

The approach presented is built upon and compared with [5], by ad-
dressing and also extending the original challenge. Namely, the challenge
introduced in [5] uses triangles in trying to build an approximate model
of an image [5]. The triangle is an efficient brush shape for this challenge,
since it covers more pixels than a single point, and also allows overlaying
and blending of colors over several regional surface pixels, which lines
can not. Also, an arbitrary triangle shape is less constrained than any
further point-approximated shape, and also other shapes can be built
by combining several triangles.

Instead of genetic programming in [5], in this paper differential evolu-
tion is used with a fixed size tree-like chromosome vector, which is cut-off
self-adaptively to form codon and anti-codon parts of the chromosome.
Also, our approach uses a modified challenge, where we can reconstruct
the model for the reference image solely using the evolved model with-
out using the reference image, whereas the [5] needs the reference image
when drawing pixels to the canvas in deciding which pixels match the
reference image for accepting them into the evolved canvas. Also, in
this paper the triangle brushstroke encoding differes and is proposed
especially designed for an efficient DE encoding.

In the following section, related work is presented, then the proposed
approach is defined. In Section 4, the experimental results are reported.
Section 5 concludes the paper with propositions for future work.

2. Related Work

In this section, related work on evolutionary computer vision, evolu-
tionary art, image representation, and evolutionary optimization using
differential evolution, are presented. These topics are used in the pro-
posed method, defined in the next section.

2.1 Image-Based Modeling, Evolutionary Computer

Vision, and Evolutionary Art

Image-based approaches to modeling include processing of images,
e.g. two-dimensional, from which after segmentation certain features
are extracted and used to represent a geometrical model [7]. For art

Differential Evolution for Self-Adaptive Triangular Brushstrokes 107

drawings modeling, automatic evolutionary rendering has been applied
[2, 9]. In [11] animated artwork is evolved using an evolutionary algo-
rithm. Then, Izadi et al. [5] evolved triangular brushstrokes challenge
using genetic programming for two-dimensional images, using unguided
and guided searches on a three or four branch genetic program, where
roughly 5% similarity with reference images was obtained on average
per pixel. In this paper, we build upon and compare our new approach
with [5], by addressing and also extending its challenge. After extending
the challenge, we optimize it using DE, which is described in the next
section.

2.2 Evolutionary Optimization Using Differential

Evolution

Differential evolution (DE) [10] is a floating-point encoding evolution-
ary algorithm for continuous global optimization. It has been modified
and extended several times with various versions being proposed [4]. DE
has also been applied to remote sensing image subpixel mapping [14],
image thresholding [8], and for image-based modeling using evolutionary
computer vision to reconstruct a spatial procedural tree model from a
limited set of two dimensional images [12,13]. Neri and Tirronen in their
survey on DE [6] concluded that, compared to the other algorithms, a
DE extension called jDE [3], is superior to the compared algorithms in
terms of robustness and versatility over a diverse benchmark set used in
the survey. Therefore, we choose to apply jDE in this approach.

The original DE has a main evolutionary loop where a population
of vectors is computed within each generation. For one generation,
counted as g, each vector xi, ∀i ∈ {1, ...,NP} in the current population
of size NP , undergoes DE evolutionary operators, namely the mutation,
crossover, and selection. Using these operators, a trial vector (offspring)
is produced and the vector with the best fitness value is selected for the
next generation. For each corresponding population vector, mutation
creates a mutant vector vi,g+1 (‘rand/1’ [10]):

vi,g+1 = xr1,g + F (xr2,g − xr3,g), (1)

where the indexes r1, r2, and r3 are random and mutually different
integers generated in from set {1, ...,NP}, which are also different from
i. F is an amplification factor of the difference vector, mostly within
the interval [0, 1]. The term xr2,g − xr3,g denotes a difference vector,
which is named the amplified difference vector after multiplication with
F . The mutant vector vi,g+1 is then used for recombination, where with
the target vector xi,g a trial vector ui,j,g+1 is created, e.g. using binary

108 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

crossover:

ui,j,g+1 =

{
vi,j,g+1, if rand(0, 1) ≤ CR or j = jrand,

xi,j,g otherwise,
(2)

where CR denotes the crossover rate, ∀j ∈ {1, ...,D} is a j-th search pa-
rameter of D-dimensional search space, rand(0, 1) ∈ [0, 1] is a uniformly
distributed random number, and jrand is a uniform randomly chosen
index of the search parameter, which is always exchanged to prevent
cloning of target vectors. Since the jDE self-adapts the F and CR con-
trol parameters to generate the vectors vi,g+1 and ui,g+1, corresponding
values Fi and CRi, ∀i ∈ {1, ...,NP} are updated prior to their use in the
mutation and crossover mechanisms:

Fi,g+1 =

{
Fl + rand1 × Fu if rand2 < τ1,

Fi,g otherwise,
(3)

CRi,g+1 =

{
rand3 if rand4 < τ2,

CRi,g otherwise,
(4)

where {rand1, ..., rand4} ∈ [0, 1] are uniform random floating-point num-
bers and τ1 = τ2 = 0.1. Finally, the selection operator evaluates and
compares the trial to current vector and propagates the fittest:

xi,g+1 =

{
ui,g+1 if f(ui,g+1) < f(xi,g),

xi,g otherwise.
(5)

3. Differential Evolution for Self-Adaptive
Triangular Brushstrokes

In this section, the encoding aspect, genotype-phenotpye rendering,
and evaluation mechanisms of the proposed approach are defined.

3.1 Encoding Aspect

We encode an individual compressed image into a DE vector as fol-
lows. A DE vector x = (x1, x2, ..., x8Tmax , F,CR, TL, TU) is composed of
floating-point scalar values packed sequentially as {xj : ∀j ∈ {1, ...,D +
4}}, starting with a triangles-coding part of length D = 8Tmax, and
the rest are the self-adaptive control parameters of the vector to be used
during the DE. The self-adaptive control parameters part of the x vector
encodes and uses the scaling factor F and crossover rate CR as in the
jDE [3]; then the TL

i , T
U
i ∈ {1, .., Tmax} control parameters follow.

Differential Evolution for Self-Adaptive Triangular Brushstrokes 109

The self-adaptive TL
i and TU

i control parameters determine index-wise
triangles encoded in the vector x to be used for rendering the evolved im-
age, i.e. the portion of x to render an image is {xj : ∀j ∈ {TL, ..., TU}}.

In this paper, we propose to have the whole vector represent a triangle
set, organized similar to serializing a tree as a linear vector in visiting
nodes by depth-first search. However, the leaf nodes are mostly exposed
to being cut-off, whereas the root node is encoded in the middle of the
vector and the near-root nodes are therefore more protected in being
retained, since they are more anchored due to cut-offs mostly around
the codon edges. After being included into a new trial vector, all nodes
have an equal probability of having their triangle data changed.

In this way, the TL and TU allow us to render only a sub-portion
of the triangles set, similarly to taking an inseparable portion of a GP
tree traversal as in [5]. This gives us an arbitrary length render set, and
keeps the crossover of anti-codon to help us find the number of triangles
Ti ∈ {1, ..., Tmax}, which is more suitable for image approximation:

Ti =

{
TU
i − TL

i + 1 if TL
i < TU

i

(Tmax − TL
i) + TU

i otherwise.
(6)

The TL
i and TU

i are updated similarly to the Fi control parameter:

TL
i,g+1 =

{
⌊randL1 × Tmax⌋ if randL2 < τL,

TL
i,g otherwise,

(7)

TU
i,g+1 =

{
⌊randU1 × Tmax⌋ if randU2 < τU,

TU
i,g otherwise,

(8)

where τL = τU = τ1 = 0.1 of the jDE.

3.2 Genotype-Phenotype Rendering

A DE vector xi,∀i ∈ {1, ...,NP} encoded using floating-point num-
bers xi,j,∀j ∈ {1, ...,D + 4} constituting a genotype is rendered into a
phenotype image zi = {zi,x,y} of Rx width and Ry height in pixels, to
be compared against a reference image z∗ as follows.

The triangle brushstrokes (Figure 1) are represented as (cx, cy, r, α1,
α2, b

Y, bCb, bCr), where cx ∈ [0, ..., Rx), cy ∈ [0, ..., Ry), and r ∈ [0, Rx/√
Tmax] define the circumscribed circle center and radius for the triangle

to be rendered; α1 ∈ [1◦, 360◦) and α2 ∈ [1◦, 180◦) define the points
of this triangle on its circumscribed circle; and bY ∈ [16, 236), bCb ∈
[16, 241), and bCr ∈ [16, 241) are the color components of the brush for
the triangle contained pixels.

110 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 1. The triangle brush definition and the circumscribed circle.

The triangles’ vertices encoded by i-th DE vector construct Ti tri-
angles, each triangle Tk = (cx,k, cy,k, rk, α1,k, α2,k),∀k ∈ {1, ..., Ti} (Tk

being packed as xi = {xi,j}, j = 8k + m, m ∈ {1, ..., 8}), defining the
vertices of a triangle P1,k, P2,k, and P3,k:

P1,k = ⌊(cx,k + rk cosα1,k, cy,k + rk sinα1,k)⌋ , (9)

P2,k = ⌊(cx,k + rk cos(α1,k + π), cy,k + rk sin(α1,k + π))⌋ , (10)

P3,k = ⌊(cx,k + rk cosα2,k, cy,k + rk sinα2,k)⌋ . (11)

The brush color bYCbCr
k = (bYk , b

Cb
k , bCr

k) is first transformed into RGB
color model as bRGB

k = (bRk , b
G
k , b

B
k) (b

R
k , b

G
k , b

B
k ∈ [0, 255]), where:

bRk =
⌊
1.164(bYk − 16) + 1.596(bCr

k − 128)
⌋

(12)

bGk =
⌊
1.164(bYk − 16) − 0.813(bCr

k − 128) − 0.391(bCb
k − 128)

⌋
(13)

bBk =
⌊
1.164(bYk − 16) + 2.018(bCb

k − 128)
⌋

(14)

For each triangle Tk, a solid color is rendered without antialiasing over
the triangle brush area rasterizing [1] with a transparency factor of 1/Ti:

bk =

⌊
255

Ti

bRGB
k

⌋
. (15)

This is analogous to blending the triangle as a part-transparent layer
within the evolved image Z i =

∑
k zk,x,y and computes R, G, and B

color layers for the pixels of the i-th individual:

zk,x,y =
∑

Tk over (x,y)

bk,x,y =
∑

Tk over (x,y)

⌊
255

Ti
bRGB
k,x,y

⌋
, (16)

Differential Evolution for Self-Adaptive Triangular Brushstrokes 111

where Tk over (x, y) denotes each triangle being rendered over the pixel
(x, y) such that bk,x,y contains the rendered pixels of a brushstroke.
Triangles defined possibly over the edges of image canvas are drawn by
clipping away pixels outside of the canvas area.

The initialization of a genotype is such that the cx, cy, α1, α2, b
Y, bCb,

bCr, TL
i , and TU

i are initialized uniform randomly to integer values within
their respective definition intervals, while r is kept as a floating-point.
All parameters are however evolved as floating-point scalar values in DE.

3.3 Evaluation

Evaluation of the phenotype image Z i to be compared against a refer-
ence image Z ∗ is as follows. A reference image Z ∗ is represented as RGB-
encoded colored pixels integer values in layers Z ∗ = {(zRx,y, zGx,y, zBx,y)}.

To obtain a difference assessment value, the following comparison met-
ric is used for comparing an evolved image Z = Z i to Z

∗:

f(Z) = 100×

Ry−1∑

y=0

Rx−1∑

x=0

| z∗Rx,y − zRx,y | + | z∗Gx,y − zGx,y | + | z∗Bx,y − zBx,y |

3× 255 ×RxRy
.

(17)

4. Experiments

The following experiments assess the viability of the approach on dif-
ferent control parameters, each with several independent runs. The pa-
rameter sets are as follows: the DE population size NP = {25, 50, 100}
and Tmax = {10, 20, ..., 150}, thereby for each run RNi={0,1,...,51} this
counts for total of 45 parameter sets, i.e. 2340 independent runs. The
maximum number of function evaluations (MAXFES) used is same as
with [5], MAXFES is 1e+5. For image rendering, basic GDI+ is used.

4.1 Obtained Results

The obtained fitness values at the MAXFES termination of 1e+5, over
different parameters of Tmax and NP , are seen in Tables 1 and 2. The
best values obtained overall for an image are marked in bold text font.
The fitness convergence graphs for these best runs are seen in Figure 2,
where after the initialization, the fitness is roughly below 40 (i.e. 40%
similarity with reference), then drops below 15 for all test images and
even further to slightly above 6 for two of them.

The convergent obtained results depend on the MAXFES used being
same as with [5], but also NP and Tmax, as reported below. From Ta-

112 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1. Obtained fitness over Tmax and NP : test instances Liberty and Palace.

Liberty Palace

NP Tmax Best Worst Average STD Best Worst Average STD

25 10 8.29 11.99 9.93096 0.8233 8.69 13.69 10.1362 0.9655
25 20 8.03 13.14 10.0935 1.0845 7.83 11.5 9.12173 0.8092
25 30 8.41 13.74 10.0525 1.1712 7.52 11.1 8.97942 0.7992
25 40 8.13 12.81 10.4408 1.1416 7.34 11.36 8.91788 0.8922
25 50 8.49 13.37 10.6767 1.1768 7.65 12.53 8.87442 0.9788
25 60 7.95 14.65 10.9858 1.4284 7.9 11.88 8.99673 0.8761
25 70 8.28 14.21 11.4075 1.3630 7.79 13.17 9.50327 1.0482
25 80 8.72 15.89 11.7554 1.6330 7.97 12.34 9.43558 0.9765
25 90 8.84 16.24 12.1342 1.6608 8.41 13.54 9.82 1.2756
25 100 9.01 16.74 12.4798 1.7521 8.62 12.96 9.83635 0.8869
25 110 8.07 16.78 12.7412 1.7849 9.01 14.42 10.4119 1.2468
25 120 9.67 16.14 12.8467 1.7359 8.93 15.13 10.3858 1.3149
25 130 10.16 17.96 13.2692 1.7193 9.02 14.2 10.2858 1.0292
25 140 9.29 17.99 13.7029 1.7886 8.29 13.51 10.7779 1.0299
25 150 10.82 18.56 14.0373 1.6573 9.89 14.91 11.1206 1.0586
50 10 7.51 9.69 8.45077 0.4198 7.43 11.84 8.68058 0.8825
50 20 6.78 8.99 7.80173 0.4987 7.1 11.39 8.79173 0.9592
50 30 6.89 9.17 7.81788 0.5119 7.53 12.58 9.75654 1.1186
50 40 6.77 9.87 8.0375 0.6578 8.27 12.24 10.0575 0.9537
50 50 7.08 10.61 8.39923 0.7056 7.97 13.14 10.3338 1.1009
50 60 7.15 10.4 8.67115 0.7472 8.59 12.49 10.7817 1.0754
50 70 7.46 10.9 9.1025 0.8666 7.58 12.8 10.7744 1.1086
50 80 7.6 11.4 9.47981 0.8689 9.15 13.11 11.3802 1.0178
50 90 8.05 12.65 9.67346 0.9115 9.97 13.41 11.5227 0.9315
50 100 8.75 11.75 10.0152 0.7824 8.55 13.62 11.4356 0.9923
50 110 8.93 13.63 10.6356 0.9682 9.32 13.77 12.0712 0.9579
50 120 9.22 13.01 10.7502 0.9840 9.77 14.21 12.429 0.8972
50 130 9.42 12.59 11.0527 0.7707 11.37 14.07 12.7387 0.6134
50 140 9.99 13.39 11.5719 0.7815 9.69 15.5 12.9317 0.9708
50 150 10.2 14.56 12.2633 1.0702 9.58 15.36 12.8092 1.1717
100 10 7.1 9.12 7.98596 0.4241 7.91 13.88 10.9573 1.8019
100 20 6.85 9.77 7.83962 0.5360 8.86 14.59 12.1117 1.2862
100 30 7.15 11.8 8.49077 1.1563 9.59 16.15 12.9098 1.0589
100 40 7.22 13 8.86327 1.1092 9.65 14.97 13.2477 1.1543
100 50 7.41 12.75 9.34846 1.3939 11.01 15.52 13.8606 0.9750
100 60 8.06 12.97 9.77731 1.1539 11.5 16.14 14.1856 1.1234
100 70 8.67 13.28 10.1954 1.3722 10.77 16.32 14.3629 1.1713
100 80 8.73 14.48 11.0929 1.4093 10.98 17.06 14.9348 1.1679
100 90 9.04 14.92 11.3594 1.3483 11.1 16.8 15.104 1.2586
100 100 9.4 16.13 11.6604 1.4952 10.8 17.62 15.36 1.2330
100 110 10.17 15.68 12.3365 1.5685 13.01 17.86 16.0202 0.9744
100 120 10.26 15.45 12.3358 1.5076 11.07 17.99 15.6113 1.6455
100 130 10.22 16.19 13.2212 1.6108 12.33 18.37 16.4085 1.3168
100 140 11.42 16.65 13.7808 1.5502 11.64 18.35 16.1229 1.4990
100 150 11.35 18.68 14.6113 1.9726 10.11 18.34 16.2929 2.0056

Differential Evolution for Self-Adaptive Triangular Brushstrokes 113

Table 2. Obtained fitness over Tmax and NP : test instances Vegetables and Baboon.

Vegetables Baboon

NP Tmax Best Worst Average STD Best Worst Average STD

25 10 14.13 17.21 15.7269 0.7148 15.02 18.59 16.38 0.7128
25 20 12.56 18.03 14.5658 0.9850 13.44 17.12 15.3815 0.8129
25 30 12.33 15.98 13.9215 0.8475 12.99 19.03 15.0204 1.1150
25 40 11.62 16.21 13.674 1.0436 11.99 16.85 14.4342 1.0135
25 50 12.16 17.08 13.88 1.0726 11.39 17.62 14.4573 1.2299
25 60 11.64 17.88 13.6438 1.2155 11.74 17.51 14.8038 1.2229
25 70 11.29 17.15 13.9056 1.3790 11.88 17.9 14.6267 1.3495
25 80 11.61 16.6 14.0871 1.3881 12.11 17.13 14.3606 1.2815
25 90 11.63 17.96 14.1062 1.4428 11.93 19.41 14.6644 1.5269
25 100 11.34 17 14.4533 1.4694 11.7 18.77 14.7642 1.7438
25 110 11.74 19.66 14.6085 1.7664 12.02 19.11 15.0046 1.7605
25 120 12.26 17.91 14.7737 1.5726 12.2 18.5 15.6467 1.6086
25 130 12.1 19.75 14.6338 1.9283 13.01 19.5 15.4254 1.5505
25 140 11.94 19.01 14.7635 1.6282 12.64 19.37 15.8235 1.8458
25 150 12.82 18.7 14.6487 1.3015 13.13 20.17 15.7952 1.6923
50 10 13.03 15 14.0723 0.4674 13.86 16.52 14.9192 0.5494
50 20 11.66 13.26 12.4644 0.3184 11.8 14.54 13.271 0.5569
50 30 11.12 13.59 12.2425 0.6528 11.59 13.62 12.5506 0.5732
50 40 10.94 14.1 12.1848 0.6656 11.1 13.84 12.3137 0.6090
50 50 11.04 13.92 12.2946 0.7609 11.34 14.36 12.4075 0.6304
50 60 11.29 15.86 12.5506 0.9222 11.25 14.1 12.3662 0.6161
50 70 11.18 15.21 12.6104 0.8682 11.54 14.57 12.5437 0.6510
50 80 11.32 15.26 12.8619 0.7658 11.07 15.56 12.9473 0.8087
50 90 11.84 15.28 13.0077 0.8038 11.32 16.2 12.857 1.0291
50 100 11.72 15.8 13.5058 0.9565 11.85 15.72 13.2658 0.7972
50 110 12.02 15.92 13.5204 0.8750 11.98 15.56 13.4275 0.7805
50 120 11.9 16.87 13.829 1.1151 12.43 15.66 13.5106 0.7265
50 130 12.51 15.97 14.094 0.8855 12.64 16.32 14.085 0.8259
50 140 12.16 17.07 14.8198 1.2154 12.54 16.31 14.15 0.8865
50 150 13.11 17.98 14.9838 1.2072 13.08 18 14.8765 1.0178
100 10 12.56 16.19 13.9815 0.8083 13.49 16.19 14.5367 0.5672
100 20 11.84 16.45 13.4704 1.0483 12.02 15.87 13.8244 0.8747
100 30 11.83 17.64 13.9133 1.3335 12 15.76 13.7206 0.9727
100 40 12.01 17.95 14.6354 1.3660 11.63 17.01 13.6467 1.3582
100 50 11.87 17.35 14.9156 1.4272 11.99 17.48 14.1658 1.5554
100 60 12.32 18 15.21 1.5119 12.12 17.46 14.5021 1.4517
100 70 12.13 18.05 15.6513 1.2457 12.12 17.16 14.3881 1.3782
100 80 12.9 18.86 16.2008 1.4121 12.13 17.56 14.8656 1.4214
100 90 12.32 20.04 16.3233 1.7789 12.25 18.66 15.2558 1.5144
100 100 12.98 20.55 16.7275 1.7119 13.09 18.42 15.5398 1.5064
100 110 13.76 20.18 17.2896 1.5242 13 19.62 15.84 1.6164
100 120 13.12 20.62 17.626 1.5807 13.34 19.58 16.4725 1.5223
100 130 13.52 20.12 17.9052 1.3516 13.84 19.6 16.9367 1.7362
100 140 14.08 20.52 18.216 1.6975 14.3 21 17.4387 1.7372
100 150 14.97 21.19 19.1221 1.2128 14.75 21.13 17.9488 1.6872

114 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 2. Fitness convergence during optimization, for best runs of each test image.

Figure 3. The evolved and the reference images.

bles 1 and 2, we choose to report further evolved images upto MAXFES
of 1e+6 with all images. The best approximated images after MAXFES
of 1e+6 are shown in the Figure 3 which shows the evolution of the four
images. In each line of Figure 3, the best fitting vectors upto MAXFES
of 1e+6 in generations g = {0, 100, 200, 400, 700, 1200, 2000}, and the
final generation, are shown, then the rightmost the corresponding refer-
ence image. Figure 4 shows for each test image, dynamics of the number
of triangle brushes in current best vector during generations, displaying
varying convergent best Ti values across images.

Differential Evolution for Self-Adaptive Triangular Brushstrokes 115

Figure 4. Number of best vector brushstrokes, for best runs of each test image.

Our approach searches for a representative image model and the values
obtained such as 6.77, can roughly be compared to the 4.83 of [5]. Such
representation of the problem also makes our NP parameter have higher
value, since we have no guided search and the problem is therefore more
general. Also, our approach does not use a dynamically re-allocatable
morphable variable-size tree structure as in genetic programming encod-
ing, inspite it rather uses a fixed size vector and limits its brushstrokes
set by two simple bounds, making the approach faster for execution.

5. Conclusion

This paper presents an evolvable lossy image representation, approx-
imating an image by comparing it to its evolved generated counterpart
image. The image is represented using a variable number of triangular
brushstrokes, each consisting of a triangle position and color parameters.
These parameters for each triangle brush are evolved using differential
evolution, which self-adapts the control parameters for mutation and
crossover. Also, the proposed DE extension splits the DE vector in the
codon and anticodon parts, where the triangles material is used only
from the codon part, adjusting the genetic tree center and its borders,
together with the number of triangle brushstrokes to be rendered. Exper-
imental results show the viability of the proposed encoding and evolution
convergence for the lossy representation of reference images, where fit-
ness is displayed dependent on the population size, maximal number of

116 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

function evaluations allowed, maximal number of triangles used in image
representation, and different input reference images. Future work can
include addressing different encoding aspects, evolutionary operators,
control-parameters update, Euclidean distance for colors comparison,
and more case studies on input images with different properties.

References

[1] B. D. Ackland and N. H. Weste. The edge flag algorithm — a fill method for
raster scan displays. IEEE T. Comput., 30(1):41–48, 1981.

[2] P. Barile, V. Ciesielski, M. Berry, and K. Trist. Animated drawings rendered
by genetic programming. In Proc. 11th Annual Conference on Genetic and
Evolutionary Computation (GECO), pages 939–946, 2009.

[3] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-Adapting Con-
trol Parameters in Differential Evolution: A Comparative Study on Numerical
Benchmark Problems. IEEE T. Evol. Comput., 10(6):646–657, 2006.

[4] S. Das and P. N. Suganthan. Differential Evolution: A Survey of the State-of-
the-art. IEEE T. Evolut. Comput., 15(1):4–31, 2011.

[5] A. Izadi, V. Ciesielski, and M. Berry. Evolutionary non photo–realistic ani-
mations with triangular brushstrokes. Lect. Notes Artif. Intell., 6464:283–292,
2010.

[6] F. Neri and V. Tirronen. Recent Advances in Differential Evolution: A Survey
and Experimental Analysis. Artif. Intell. Rev., 33(1-2):61–106, 2010.

[7] L. Quan. Image-Based Modeling. Springer, 2010.

[8] S. Rahnamayan and H. R. Tizhoosh. Image thresholding using micro opposition-
based Differential Evolution (Micro-ODE). In Proc. IEEE World Congress on
Computational Intelligence (WCCI), pages 1409–1416, 2008.

[9] J. Riley and V. Ciesielski. Fitness landscape analysis for evolutionary non-
photorealistic rendering. In Proc. IEEE Congress on Evolutionary Computation
(CEC), pages 1–9, 2010.

[10] R. Storn and K. Price. Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. J. Global Optim., 11:341–359,
1997.

[11] K. Trist, V. Ciesielski, and P. Barile, P. Can’t see the forest: Using an evolu-
tionary algorithm to produce an animated artwork. In Arts and Technology,
Springer, Berlin, Heidelberg, 2010, pages 255–262.

[12] A. Zamuda and J. Brest. Vectorized procedural models for animated trees re-
construction using differential evolution. Information Sciences, 278:1–21. 2014.

[13] A. Zamuda, J. Brest, B. Bošković, and V. Žumer. Differential Evolution for Pa-
rameterized Procedural Woody Plant Models Reconstruction. Appl. Soft Com-
put., 11(8):4904–4912, 2011.

[14] Y. Zhong and L. Zhang. Remote sensing image subpixel mapping based on
adaptive differential evolution. IEEE T. Syst. Man Cy. B, 42(5):1306–1329,
2012.

EXTENDED FINITE-STATE MACHINE

INFERENCE WITH PARALLEL ANT

COLONY BASED ALGORITHMS

Daniil Chivilikhin
Computer Technologies Laboratory

St. Petersburg National Research University of Information Technologies, Mechanics

and Optics, Saint-Petersburg, Russian Federation

chivdan@rain.ifmo.ru

Vladimir Ulyantsev
Computer Technologies Laboratory

St. Petersburg National Research University of Information Technologies, Mechanics

and Optics, Saint-Petersburg, Russian Federation

ulyantsev@rain.ifmo.ru

Anatoly Shalyto
Computer Technologies Laboratory

St. Petersburg National Research University of Information Technologies, Mechanics

and Optics, Saint-Petersburg, Russian Federation

shalyto@mail.ifmo.ru

Abstract This paper addresses the problem of inferring extended finite-state ma-
chines (EFSMs) with parallel algorithms. We propose a number of par-
allel versions of a recent EFSM inference algorithm MuACO. Two of
the proposed algorithms demonstrate super-linear speedup.

Keywords: Extended finite-state machine, Induction, Learning, Parallel algorithm,
Synthesis learning

1. Introduction

The automata-based programming paradigm [6] allows to infer the
logical structure of software automatically using behavior examples and
temporal properties [8]. This logical structure is expressed in the form of

117

118 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

an extended finite-state machine (EFSM), which is quite appropriate for
reactive (event-based) systems [9]. The EFSM acts as a controller in an
automated-controlled object, which consists of an EFSM and a controlled
object (software system). The EFSM receives input events from event
suppliers, and sends commands to the controlled object, which processes
them and makes corresponding actions (e.g. calls its methods). By using
search-based optimization such as evolutionary algorithms [2] to auto-
matically infer EFSMs from examples of desired behavior, and also by
incorporating temporal properties that the target program should sat-
isfy, we can get correct-by-design control programs automatically. This
is in contrast with the traditional approach when the system is first
designed and implemented and only then it is tested and verified.

The main issue in this scheme is that the problem of inferring EF-
SMs from behavior examples is extremely computationally hard. Even
sophisticated algorithms require a long time to find EFSMs in quite sim-
ple cases [8]. Therefore, in order to bring automata-based programming
closer to being practically applicable in industry, efficient parallel EFSM
inference algorithms are needed.

An example of early work in parallel algorithms for FSM inference is
[7], where a parallel genetic algorithm (GA) was used to synthesize FSMs
from input/output sequences. Recent publications on EFSM inference
such as [8] and [3] do not study parallel implementations.

In this work we study parallelization schemes for the Mutation-Based
Ant Colony Optimization (MuACO) algorithm proposed in [3], which
proved to be more efficient than GA for the problem of FSM inference.
A number of parallel versions of MuACO are presented and experimen-
tally evaluated on a shared-memory multi-core machine. Some of the
presented parallel algorithms demonstrate super-linear speedup.

The rest of this paper is structured as follows. Section 2 gives an
overview of the MuACO algorithm. In Section 3 the EFSM inference
problem is described. Section 4 describes the proposed parallel algo-
rithms. Experimental results are presented in Section 5 and Section 6
concludes.

2. MuACO: Mutation-Based Ant Colony
Optimization

In this section we briefly describe MuACO. We only discuss details
that are essential to understand what is done in this paper. For a full
description of the algorithm please refer to [3].

MuACO works with a special graph called a search graph, where nodes
correspond to FSMs and edges correspond to EFSM mutations. Each

EFSM Inference with Parallel ACO Based Algorithms 119

Figure 1. An example of an extended finite-state machine with three states. Each
edge is marked with an input event and Boolean formula over the input variables
(before the slash) and a sequence of output actions (after the slash).

search graph edge has associated pheromone and heuristic information
values. The algorithm uses two types of EFSM mutation operators. The
first mutation operator selects a random transition in the EFSM and
changes its destination state to a new state, which is selected uniformly
and randomly from the set of all states, excluding the old destination
state of the transition. The second mutation operator with a certain
probability modifies the set of transitions in each state. It can either
delete a transition from a state, or add a new random transition to the
state.

The algorithm starts off with a randomly generated solution (EFSM).
Then, on each colony iteration a number of ants are launched to search
for solutions. Each ant starts with the node of the search graph asso-
ciated with the best-so-far solution. The ant has a limited number of
steps. On each step it either:

creates a number of new solutions by mutating its current solution
and moves to the one having the largest fitness function value;

or probabilistically selects the next node from the existing succes-
sors of the current node.

When all ants have finished searching for solutions, pheromone values
are updated for all graph edges. If for a fixed number of colony iterations
the best fitness value does not increase, the algorithm is restarted. In the
original MuACO the algorithm was restarted from a randomly generated
solution. However, in this work we found that it is more efficient to take
the best-so-far solution as the initial one, manually decreasing its fitness
value to prevent immediate stagnation.

3. Extended Finite-State Machine Inference

An extended finite-state machine is a septuple 〈S, s0,Σ,∆, Z, δ, λ〉,
where S is a set of states, s0 ∈ S is the initial state, Σ is a set of

120 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

input events and ∆ is a set of output actions. Z is a set of Boolean
input variables, δ : S × Σ × 2Z → S is the transitions function and
λ : S × Σ × 2Z → ∆∗ is the actions function. EFSMs in the inference
algorithms are encoded in the form of full transition tables, where each
cell corresponds to a transition in a certain state triggered by an event.

In the so-called specification-based EFSM inference the user provides
some behavior samples that the target program should demonstrate.
For instance, one could provide test examples [8], test scenarios [10] or
negative scenarios. The user may also specify temporal properties that
the EFSM should satisfy. In this work we use test scenarios and temporal
properties expressed in Linear Temporal Logic (LTL).

A test scenario is a sequence of triples 〈e, ϕ,O〉 called scenario el-
ements, where e is an event, ϕ is a Boolean formula over the input
variables and O is a sequence of output actions. An EFSM is said to
be compliant with a scenario element in state s if it has a transition
from this state marked with e, ϕ and O. Correspondingly, an EFSM
is compliant with a test scenario if it is compliant with all scenario ele-
ments in the corresponding states when scenario elements are processed
sequentially. For example, the EFSM in Figure 1 is compliant with sce-
nario 〈B,x, (z0)〉〈B,x, (z0)〉〈A, true, ()〉 and is not compliant with sce-
nario 〈B,x, (z0)〉〈A, true, (z1)〉.

A LTL formula consists of problem-specific propositional variables
Prop, Boolean logical operators, and a set of temporal operators, such
as G (Globally in the future), X (neXt), F (in the Future), etc. For
the case of LTL formulae expressing properties of EFSMs, the set of
propositional variables can include terms:

∀e ∈ Σ : wasEvent(e) – a transition marked with event e has been
triggered;

∀a ∈ ∆ : wasAction(a) – a transition marked with action a has
been triggered.

The problem is therefore to find an EFSM with a given number of
states that is compliant with all given test scenarios and LTL formulae.
This problem was previously tackled in [8] with a genetic algorithm.
We adopt a fitness function f proposed in that work to evaluate the
degree of an EFSM’s compliance with test scenarios and LTL formulae.
The fitness function is based on string edit distance [4] and a specially
developed EFSM verifier.

EFSM Inference with Parallel ACO Based Algorithms 121

4. Parallel MuACO Algorithms

In this paper we propose a number of parallel versions of MuACO.
These were implemented on a shared-memory machine but can be straight-
forwardly extended to work on a cluster of separate machines. All pre-
sented approaches implement the coarse-grained parallelization scheme,
i.e. when the interaction between algorithms is rare.

4.1 Independent Parallel MuACO

In the first and simplest algorithm we call the Independent Parallel
MuACO, a number of algorithm instances is launched in parallel for the
same problem. That is, having m processors, m MuACO algorithms are
launched in parallel, each from a separate randomly generated initial so-
lution. An important detail is to provide each algorithm with a separate
random number generator.

The motivation to this simple approach is that the problems MuACO
deals with are combinatorial ones. In most cases a single fitness com-
putation does not take much CPU time, however many solutions have
to be evaluated in order to find the optimal one. By using a number
of parallel independent search algorithms we increase the amount of dif-
ferent solutions explored during the same time period, thus, possibly,
decreasing the amount of time needed to find the optimal one.

4.2 Parallel MuACO with Shared Best Solutions

The second step is to see if adding some interaction between inde-
pendent MuACO instances can increase performance. The conventional
interaction scheme in parallel evolutionary algorithms is to migrate some
solutions between individual populations of algorithms running in paral-
lel (see, for example, [1]). However, due to the nature of MuACO, there
is no clear way of adopting this scheme in our case, since MuACO does
not keep a population of solutions.

Therefore, one of the easiest ways of adding interaction is to keep
a cache of best solutions found by each algorithm and share it among
them. Suppose with have m MuACO algorithms running in parallel.
Let K be an array of length m for storing best found solutions, with Ki

reserved for the i-th algorithm (Figure 2). Each i-th algorithm updates
the value of Ki each time it finds a solution better than the one stored
there. When a sequential MuACO comes to a stagnation state, it is
restarted from its best found solution as described in Section 2. In this
parallel variant the stagnated i-th algorithm will be restarted, taking

122 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

MuACO0 MuACO1 MuACO2

K0 K1 K2

Figure 2. Parallel MuACO with shared best solutions.

Ki

Kj

C0

Crossover

Cbest

Figure 3. Parallel MuACO with crossover and shared best solutions: the best
solution of the i-th thread Ki is crossed over with a remote thread best solution Kj .
White nodes at the left represent a part of the i-th algorithm’s search graph.

Kj as the initial solution, where j is selected uniformly randomly from
{0 . . . i− 1, i+ 1 . . . m− 1}.

4.3 Parallel MuACO with Crossover

As the algorithm described above, this third and final version of par-
allel MuACO uses a cache of shared best solutions, but also adopts a
crossover operator as in genetic algorithms.

On each colony iteration of the i-th MuACO (before ants are launched)
a random solution Kj (j 6= i) is picked from the cache of shared best
solutions K. A crossover operator is applied to this solution Kj from a
remote algorithm and the best solution Ki found by the i-th algorithm.
The offspring produced by the crossover operator are then evaluated
with the fitness function f , and only one child solution Cbest with the
best fitness value is left (Figure 3).

This solution Cbest is added to the search graph of the i-th algorithm
as a child of the best-so-far solution. In the consequent colony itera-
tion one ant will be launched from Cbest, and the rest of the ants will
be launched, as before, from the node associated with the best-so-far
solution.

EFSM Inference with Parallel ACO Based Algorithms 123

0 2 4 6 8 10 12 14 16
number of processors

0
2
4
6
8

10
12
14
16
18

sp
ee

du
p

Independent
Shared best

Crossovers+Shared best
Crossovers

Figure 4. Speedup plots for different parallel MuACO algorithms.

Of course, the crossover operator applied here is problem-specific.
Here we studied two crossover operators used in EFSM inference. The
first crossover operator randomly mixes the transition tables of the two
parent EFSMs and is thus called “Simple”. The second crossover opera-
tor called “Test-based” proposed in [8] takes into account the transitions
of the parent EFSMs the were used during fitness evaluation. The type
of crossover is selected uniformly and randomly each time it has to be
applied.

5. Experiments

Prior to conducting experiments the parameter values of sequential
MuACO were automatically selected using the irace package [5]. This
package implements a racing protocol and allows to derive appropriate
parameter values that allow the algorithm to perform efficiently on a
certain class of problem instances.

All algorithms were run on 50 randomly generated problem instances.
Each of them was derived from a random EFSM with 10 states. For
each problem instance each algorithm was run until finding an EFSM
that satisfies all test scenarios and LTL formulae. To calculate speedup
we measured the average wall clock running time of the sequential algo-
rithm and divided it by the average running time of a particular parallel
MuACO algorithm.

The following parallel algorithms were compared:

124 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

0 2 4 6 8 10 12 14 16
number of processors

0

500

1000

1500

2000

2500

3000

3500
Ti
m
e,
 s
ec
.

MuACO Independent
MuACO Crossovers

GA Independent

Figure 5. Execution time of independent and crossover parallel MuACO in com-
parison to independent parallel GA.

independent parallel MuACO (“Independent”);

parallel MuACO with shared best solutions (“Shared best”);

parallel MuACO with crossovers, each algorithm is restarted from
its own best solution (“Crossovers”);

parallel MuACO with crossovers and shared best solutions (“Cross-
overs + Shared best”).

We used a machine with a 24-core AMD Opteron 6234 2.4 GHz pro-
cessor. Experimental results in the form of speedup plots are shown in
Figure 4. The mean runtime of the sequential MuACO was 1392 seconds.

As can be seen from Figure 4, all parallel MuACO algorithms demon-
strate an increase of performance as the number of used processors grows.
All algorithms are pretty much the same for the case of two processors.
The “Independent” algorithm with no interaction is the worst among
them, demonstrating a speedup of only about 8 for 16 processors. How-
ever, theoretically it is very robust, since for this algorithm performance
will never decrease with the increase of the processors amount.

The “Shared best” algorithm scales well up until 8 processors, how-
ever its performance does not significantly change when 16 processors
are used. And only two algorithms that use crossovers demonstrate
super-linear speedup all the way, with the “Crossovers” algorithm be-

EFSM Inference with Parallel ACO Based Algorithms 125

ing on average slightly better than “Crossovers+Shared best” for 2–8
processors.

The plot in Figure 4, however, only displays speedup measured from
mean execution time of the algorithms. To verify the statistical signifi-
cance of the differences between parallel algorithm performance, we used
the Wilcoxon statistical test [11]. The test was applied to each pair of
algorithms, comparing the distributions of running time for the case of
16 processors. The results of statistical tests are presented in Table 1.

As expected, the performance of all parallel algorithms (2–5) signif-
icantly differs from the performance of the single-thread MuACO (1),
which is indicated by small p-values in the first row of the table. Al-
gorithms with crossover (4) and (5) are significantly better than inde-
pendent parallel MuACO (2). For the case of 16 processors, algorithms
with crossover yield similar running time (p-value = 0.939).

We also implemented an independent parallel version of the GA from [8].
GA parameters were also tuned using irace. Plots showing mean exe-
cution time of this GA in comparison with independent and crossover
parallel MuACO are shown in Figure 5. It can be seen that the indepen-
dent GA is always slower than independent MuACO, which is in turn
always slower than crossover MuACO. The independent GA is 2–9 times
slower than crossover MuACO.

Table 1. Wilcoxon test p-values for algorithms Single (1), Independent (2), Shared
best (3), Crossovers (4), Crossovers+Shared best (5).

(1) (2) (3) (4) (5)

(1) – 1.602 × 10−8 1.946 × 10−9 6.581 × 10−14 4.067 × 10−14

(2) – – 0.8582 0.103 0.128

(3) – – – 0.026 0.025

(4) – – – – 0.939

(5) – – – – –

6. Conclusion and Future Work

We have proposed several parallel versions of the MuACO EFSM
inference algorithm. It has been shown that the use of crossover in
parallel MuACO significanly improves performance. Parallel MuACO
algorithms with crossover demostrated super-linear speedup.

126 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Future work includes creating a hybrid GA–MuACO parallel algo-
rithm where solutions will be exchanged between GA and MuACO in-
stances.

Acknowledgements

This work was financially supported by the Government of Russian
Federation, Grant 074-U01, and also partially supported by RFBR, re-
search project No. 14-01-00551 a.

References

[1] E. Alba. Parallel evolutionary algorithms can achieve super-linear performance.
Information Processing Letters, 82(1):7–13, 2002.

[2] T. Back, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computa-
tion. 1st edition. IOP Publishing Ltd., 1997.

[3] D. Chivilikhin and V. Ulyantsev. MuACOsm: a new mutation-based ant colony
optimization algorithm for learning finite-state machines. In Proc. 15th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO),
pages 511–518, 2013.

[4] V. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707, 1966.

[5] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The irace

package, iterated race for automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

[6] A. A. Shalyto. Software automation design: algoritmization and programming
of problems of logical control. J. Comput. Syst. Sc. Int., 6:899–916, 2000.

[7] S. Tongchim and P. Chongstitvatana. Parallel genetic algorithm for finite-state
machine synthesis from input/output sequences. In Proc. Conference on Genetic
and Evolutionary Computation (GECCO), pages 20–24, 2000.

[8] F. Tsarev and K. Egorov. Finite state machine induction using genetic algo-
rithm based on testing and model checking. In Proc. 13th Annual Conference
on Genetic and Evolutionary Computation (GECCO), pages 759–762, 2011.

[9] D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The State-
mate Approach. 1st edition McGraw-Hill, 1998.

[10] V. Ulyantsev and F. Tsarev. Extended finite-state machine induction using SAT-
solver. In Proc. 10th International Conference on Machine Learning and Appli-
cations and Workshops (ICMLA), pages 346–349, 2011.

[11] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bull.,
1(6):80–83, 1945.

EMPIRICAL CONVERGENCE ANALYSIS

OF GENETIC ALGORITHM FOR SOLVING

UNIT COMMITMENT PROBLEM

Domen Butala
Financial Mathematics, Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

domen.butala@yahoo.com

Dejan Velušček
Department of Mathematics, Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

dejan.veluscek@fmf.uni-lj.si

Gregor Papa
Computer Systems Department

Jožef Stefan Institute, Ljubljana, Slovenia

and

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

gregor.papa@ijs.si

Abstract This paper presents an implementation and empirical convergence anal-
ysis results of genetic algorithm for solving unit commitment problem
in a power market. Various parameter settings are presented includ-
ing an algorithm with a sequence of parameters, also called a variable-
structure genetic algorithm. Implemented algorithm successfully solves
both small and large scale problems and shows how much more efficient
variable-structure genetic algorithm is in practice.

Keywords: Convergence analysis, Genetic algorithm, Empirical results, Unit com-
mitment problem.

127

128 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

1. Introduction

In a power market total production has to meet the demand, net
exports and system reserves over a given period of time, subject to the
start-up and shut-down times of the generating units. The objective is
to minimize the total costs of production while satisfying the start-up
and shut-down time constraints. In reality power generating units are
not only minimizing costs but also maximizing their profit.

The solution of a unit commitment is a complex optimization problem.
It is one of the most widely studied problems in Electrical Engineering.
A number of different techniques have been proposed to solve it as Mixed
Integer Programming (MIP) [4] or an alternative Mixed Integer Linear
Programming (MILP) [1]. Also Lagrangian Relaxation (LR) [4], Benders
Decomposition [10], Evolutionary Programming (EP) [7] and Dynamic
Programming (DP) are used.

Power generating units can reschedule their commitments (decisions)
over and over again. They can do a reschedule when they believe that
some parameters have changed enough to affect their decisions. This
means that power plants can sell the energy in a futures market, later
buy it back and finally commit their schedules on a day-ahead (or often
called spot) power auction. If the market price of a certain product
in futures market is higher than the expected spot price, power plants
with lower marginal prices decide to sell (part of) the energy in advance.
When this is not the case, they decide to wait and sell the energy on a
day-ahead power auction.

In this paper we will focus not only on the implementation part of the
algorithm but also on the convergence analysis. With empirical analysis
we will briefly try to justify the relevance of theoretical convergence
analysis demonstrated in the section 2.

2. Convergence Analysis

In this section we present three important theorems from [5] and [2].
The first theorem tells us something about an upper bound on the con-
vergence speed and the last two tell us under which conditions we can
expect a genetic algorithm (GA) to converge. Based on the presented
theorems we do an empirical analysis and try to evaluate theoretical re-
sults in practice for a problem of unit commitment using the GA in a
power market.

2.1 An Upper Bound on the Convergence Speed

Next theorem tells us an upper bound for convergence of the GA.

Empirical Convergence Analysis of GA for Unit Commitment Problem 129

Theorem 1 [5] Let the size of population of the GA be n ≥ 1, coding

length l > 1, mutation probability 0 < pm ≤ 1
2 and let { ~Xt, t ≥ 0} be the

Markov chain population, π(t) distribution of tth generation of ~Xt and π
be the stationary distribution. Then it holds

||π(k) − π|| ≤ (1− (2pm)nl)k.

Theorem 1 identifies us next relationships.

Bigger than the mutation probability, faster the convergence.

Bigger than the population size and coding length, slower the con-
vergence.

But on the other hand it is well known that algorithms with parame-
ters set like this affect negatively on a long term convergence of the GAs.
This was shown by studies [3], [8], [12] but also by many others. In sec-
tion 2.2 let us take a closer look at two theorems which tells us that in
case of a very big population with “small enough” mutation probability
the GA converges in probability to a global optimum.

2.2 Convergence of Homogenous Algorithm

Theorem 2 [2] Let a, b, c > 0 be constants and i intensity perturbations
of algorithm. If it holds

m >
an+ c(n − 1)∆⊗

min(a, b/2, cδ)
, (1)

then

∀x ∈ SN : lim
i→∞

lim
t→∞

P ([Xi
t] ⊂ f∗|Xi

0 = x) = 1.

Theorem 2 tells us that we can, with a big enough population, solve
an optimization problem. Additionally we can completely arbitrarily
choose the parameters a, b and c. If we choose very big c, then we
rule out the importance of δ because it holds min(a, b/2) ≤ cδ. If it
is ∆⊗ a constant and N becomes very big, we can always successfully
tackle with a problem. ∆⊗ represents the difficulty of adopting new and
better solutions. Condition 1 is quite rough regarding the population size
limit m. It is important that perturbation mechanism lets the process
visit the whole space, even though random perturbations could be very
small. That is why the role of crossover is not crucial (algorithm without
crossover corresponds to the case of b =∞).

130 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.3 Convergence of Inhomogeneous Algorithm

In practice we will not wait for Markov chain to reach the equilibrium
state before we would lower the intensity of perturbations. That is why
we want to lower the intensity gradually depending on time. At the
same time we want to maintain the properties of a limit law. Let us,
from now on, assume that i and t are increasing simultaneously. So, let
the i be increasing function of time, where it holds limt→∞ i(t) =∞.

That is how Markov chain becomes inhomogeneous and transition
probabilities become time dependent. From now on let us define Xt =
Xi

t . We can define convergence power of the increasing sequence i(t)
with λ, for which holds that

i(1)−θ + i(2)−θ + · · ·+ i(t)−θ + . . .

converges for θ > λ and diverges for θ < λ where λ ≥ 0 ∈ R

With T1, . . . , Tt, . . . we set times of successful visits of the chain {Xt}
in S, e.g. Tt = inf{k : k > Tt−1,Xk ∈ S}. Let us focus on behavior of
the chain {XTt}.
Theorem 3 [2]

1 That chain {XTt} would reach f∗ after finite number of steps

∀x ∈ S P (∃U,∀u ≥ U, [XTu] ⊂ f∗|X(0) = x) = 1,

convergence power of sequence i(u) has to be positive constant from
the set of real numbers; θ1, θ2 > 0 ∈ R have to exists to

∑

u≥0

i(u)−θ1 =∞ and
∑

u≥0

i(u)−θ2 <∞.

2 ”If convergence power λ of the sequence i(t) and the population
size m suffice the inequalities

an+ c(n− 1)∆⊗ < λ < min(a, b/2, cδ)m,

then with probability 1 chain {XTt} reaches f∗ after finite number
of steps.

3 Let exist the constant t > 1 ∈ R that for ∀r ∈ N sequences i(⌊tu⌋+
r) and i(u) are logarithmic equivalent. If convergence power λ of
the sequence i(u) and population size m suffice the inequalities

an+ c(n− 1)∆⊗ < min(a, b/2, cδ)m < λ,

then

∀x ∈ S lim
t→∞

P ([Xt] ⊂ f∗|X0 = x) = 1.

Empirical Convergence Analysis of GA for Unit Commitment Problem 131

2.4 Combination of Both Approaches

To be able to successfully use the results of both approaches we have
to slightly correct an algorithm. Let us define a sequence of parameters
{(nt, pm(t)), t ≥} that it holds nt < nt+1 and pm(t) > pm(t+ 1).

Thus, we run the GA with settings (n1, pm(1)) first. Let us define

a solution close to the optimal with ~X1(∞). When it is reached, with

predefined scheme, we rename the population ~X1(∞) to ~X2(0) and use
it as an initial population of the GA with settings (n2, pm(2)). Using
this approach we are increasing the population size and decreasing the
mutation probability thus increasing the algorithm’s efficiency.

We can call such the GA a variable-structure GA [5]. We should
note that the convergence is not a natural property of the GA but it is
followed by elitism property in a selection operator [6].

3. Implementation and Model Description

In this section we will denote a mathematical formulation of the prob-
lem. Based on this we will describe an algorithm for the optimization
problem.

3.1 Problem formulation

min
x
type
i,t

{ T∑

t=1

n∑

i=1

(mpi,tx
type
i,t +max{si,t − si,t−1, 0}sci)

}

n∑

i=1

xtypei,t ≥ PDPt(price), ∀t (2)

si,t =

{
1, ”if xtypei,t > 0,

0, otherwise.

}
, ∀t, i (3)

sti,t = (−1)1−si,t
∑

1{ I=[t−a,t+b]∧ a,b≥0:
si,t=si,t̄ ∀t̄∈I ∧ si,t−a−1=si,t+b+1=1−si,t

} (4)

sti,t ≥ tupi ∨ sti,t ≤ −tdowni, ∀t, i (5)

xi,t = xmaxi,t (6)

Where t = 1, . . . , T is an observed time interval, i = 1, . . . , n is an unit
index and type is a unit type. Furthermore, xtypei,t ∈ R is the production
of unit i of type type in time t, xmini,t is the technical minimum of unit
i in time t, xmaxi,t is the installed capacity of unit i in time t, si,t is a
status of unit i in time t, sti,t represents a number of working or non-
working hours of unit i in time interval “near” t, tupi and tdowni is the

132 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

minimal time interval of unit i in which unit cannot change its status
decision due to the technical limitations, PDPt is a price dependent
production, mpi,t a marginal price of unit i in time t and sci are the
starting costs of unit i.

Goal. A goal of the optimization is to find a solution with minimal
costs to the system. Cost objective function describes costs of the system
in a way that it calculates sum of product of production and marginal
costs and total start-up costs on the whole time interval.

We have to meet the constraints, especially important are the fol-
lowing two. The first one (2) ensures that needed levels of thermal
production are met and the second one (5) ensures that units are not
violating their technical constraints.

At this stage it is important to note that the thermal production
is dependent on the price and cross border commercial flows and vice-
versa. Because both variables are dependent on neighboring markets,
determination of both is a very complex problem. Also note that a more
representative criterion function of a power generating unit is of a form
ax2 + bx + c but in this case we have to find or know the parameters
a, b, c. This is not a content of the article, so we will not discuss this
problem.

3.2 Optimization

Let us write the pseudocode ofthe GA for our problem. This will serve
as a starting point for later discussion.

Algorithm 1 Genetic Algorithm
1: t = 0
2: P (t) = SetInitialPopulation(P)
3: Evaluate(P (t))
4: while not EndingCondition() do
5: t+ = 1
6: P (t) = Selection(P (t − 1))
7: P (t) = Crossover(P (t))
8: P (t) = Mutation(P (t))
9: Evaluate(P (t))

10: end while

Initial Solution. For the initial solution we implemented an algo-
rithm named priority list for a problem of unit commitment. Algorithm
is deterministic, for this reason it returns the same value for the same

Empirical Convergence Analysis of GA for Unit Commitment Problem 133

inputs every time. By using this algorithm we get an initial population
consisting of only one solution, therefore we have to do a trick to get
n different solutions. To differentiate between n initial solutions, we
replicate the one as n-times and then mutate all except one.

Mutation. The idea of a mutation operator is very simple. With
predefined probability, an individual from a population is chosen, on
which a random change is made. But before we do this, we have to
make sure that the change gives a feasible solution.

The operator mutation is built in a way that technical constraints of
mutated units are satisfied first; e.g. minimal up or down times. After
this step we have to check feasibility of constraint (2). If the solution
is feasible we accept it otherwise we save it in the dictionary of rejected
mutations. At the end of the mutation we loop through the dictionary
and check for feasible solutions. We accept all that are feasible. After
the step we empty the dictionary.

Crossover. A crossover operator is the most important operator
in the GA. The goal is to successfully combine two different solutions
to get two better offspring. This operator is the most complex in the
implemented algorithm. In the operator mutation we have already re-
alized that some minor corrections have to be done not to reject too
many (infeasible) solutions. The operator crossover has to apply similar
manipulations.

One-Point Crossover. Let us first present the one-point crossover
operator. Later we will also present the multi-point crossover which is a
partial generalization of this one.

The idea is very simple. First, we randomly determine pairs of pop-
ulations for the crossover and then we randomly determine a crossover
point t which is the same for all units in a pair. Then we cross same
the units within a pair of solutions. If needed we have to “correct” an
infeasible solution to generate a feasible one.

A very important property of the operator is that it crosses only the
same chromosomes (units) under different solutions. For example, in
case of crossing two different units within one solution two units with
different parameters (minimal up or down time, different installed ca-
pacities, maintenance schedules, . . .) would be switched. This has to be
treated differently, e.g. with another operator which would already be a
joint operator of mutation and crossover.

At determination of a crossover point t we have to check if the place is
acceptable for all units in the population. If needed we have to shift the

134 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

time of crossover for a few time periods to left or to right for each unit.
That is how we determine a vector of crossover places T = (t1, . . . , tn)
for a pair of solutions. Because we did one additional operation, we
avoided the violations of minimum up or down times. Now we just have
to check the feasibility under constraint (2). If a solution is feasible and
better, we accept it. Otherwise we correct it with probability p and
reject it with probability 1 − p. If we decide to correct it, we have to
turn additional units on to meet the constraint (2).

Multi-Point Crossover. One-point crossover is a special case of
multi-point crossover. Therefore we can use our knowledge about the
one-point crossover.

The main difference between both is already described by its name.
Using multi-point crossover m we split the coding length to m+ 1 ran-
domly determined intervals. But crossover operator basically stays the
same. Instead of only two intervals [0, t), [t, T] we have m + 1 intervals
[0, t1), [t1, t2), . . . , [tm, T). Doing so we have to provide a feasible solution
for the each interval.

The idea is to construct a feasible solution with the dealing of two
adjacent intervals at the time and basically translating a multi-point
crossover to a one-point crossover. So, we cross the [0, t1), [t1, t2) first,
then the [t1, t2), [t2, t3) until we finally get to the [tm−1, tm), [tm, T).
With translation to a one-point crossover we get all needed instruments
to deal with the problem.

Selection. The selection operator is the simplest operator in the im-
plemented algorithm. There is no need to create or find new and better
offspring but only to “shake” the population and randomly permute n of
the solutions where better solutions have higher probability to be chosen
as offspring.

As we have seen in the section 2.4, one of the most important prop-
erties of selection operator is the property of elitism. Therefore we have
chosen to implement it. Later we will see the algorithm’s behavior with-
out taking into account the elitism property.

4. Results

In this section we present results of the implemented algorithm of the
actual data. To present and study results as unbiased as possible we
compare them on the same data set but with different GA settings. The
goal is to successfully distinguish between the worst and best solutions.
The following parameters

Empirical Convergence Analysis of GA for Unit Commitment Problem 135

crossover and mutation probability,

crossover operator,

selection operator

are chosen based on the theoretical analysis which we try to confirm
with empirical results.

4.1 Assumptions

First let us present the assumptions. The most important condition
is to meet the demand or in our case needs of the thermal production.
Let us call it a price dependent production. We observe two different
time periods; length of the first is 72 hours and length of the second
is 168 hours. In the first we analyze different settings of mutation and
crossover probability, one-point crossover and selection. In the second
we compare both, one-point and multi-point, crossover operators under
the same settings. The number of power plants which appear in the
optimization for specific problem is equal to N . Therefore the size of
our matrices is equal to 72 ×N and 168 ×N .

Each setting is run independently 30 times due to the stochastic prop-
erties of the algorithm. Only one would not suffice in providing unbiased
results.

4.2 Empirical Analysis

Let us analyze impact of the mutation, crossover and selection of the
convergence speed. First we observe a time interval of a length 72 hours
and for crossover operator we use only the one-point crossover (OPC)
to compare results under different parameters but the same conditions.
In this optimization 145 power plants are appearing.

Later we compare one-point and multi-point crossover (MPC) oper-
ators. In this case we observe a time interval of a length 168 hours.
The reason for this is that the results of the algorithm could be oth-
erwise biased due to the time constraints in the optimization. In this
optimization 167 power plants are appearing.

Comparison of various settings on one point crossover. In this
subsection we analyze different settings of the algorithm and compare
the results. Let us present settings Ni for all i in the table below. We
will show 6 different settings which have been obtained by empirical
experiments. Using the selected parameters we are able to show the
impact on the GA’s performance under different domains and, the most
important, various conditions.

136 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1. Parameter settings.

Parameters / Settings N1 N2 N3 N4 N5 N6

Iterations 10,000 10,000 10,000 10,000 10,000 10,000
Population size 30 30 30 60 30 60
Elitism 4 4 4 4 0 4
Crossover OPC OPC OPC OPC OPC OPC
Crossover Probability 50% 75% 50% 50% 50% vary
Mutation Probability

- population 25% 25% 40% 25% 25% vary
- individual 20% 20% 25% 20% 20% vary

The mutation probability is actually lower than it seems. We have to
take a product of both mutation probabilities. In case ofN1 the mutation
probability is equal to 10% (which is equal to 40% times 25%). Note
that we have used 50% probability to correct infeasible solutions in the
crossover operator.

All setting except the setting N6 are constant over time. For the set-
ting N6 we have constructed a sequence of parameter settings to show
how a sequence of settings affect the performance under different do-
mains. The idea is to analyze the algorithm’s performance which explore
the space of feasible solutions more aggressive at the beginning and less
later.

Thus let us define the sequence under different domains which we
obtained by the empirical results. In the interval [0, 1000) iterations
we have set the crossover probability to 75% and mutation probability
pair to (45%, 25%). In the next interval [1000, 2000) we have decreased
the mutation probability to (25%, 20%). In the interval [2000, 5000) we
have decreased crossover probability to 50%. And for the last interval
[5000, 10000) we have decreased mutation probability to (25%, 10%).

For a higher transparency let us present only the average values of a
criterion function of 30 independent runs.

The most obvious thing we see is that the algorithm with the setting
N5 does not converge at all. This confirms that the convergence of the
GA is a consequence of the elitism property.

Let us now compare the crossover’s probability effect. Thus we limit
ourselves to compare the results with parameter settings N1 and N2.
We see that the algorithm with the parameter setting N2 is around
20% more efficient at the beginning but after roughly 200 iterations we
cannot significantly distinct between the efficiency of both. Due to the

Empirical Convergence Analysis of GA for Unit Commitment Problem 137

Figure 1. One point crossover vairous settings.

crossover’s probability the algorithm with the parameter setting N2 is
around 35% slower than the algorithm with the parameter setting N1.

If we only compare the mutation probability effect, we limit ourselves
to parameter settings N1 and N3. Similar to the crossover probability
effect, algorithms with higher probability are more efficient at the begin-
ning, but after few iterations we see that the algorithm with the lower
mutation probability becomes more efficient. For the first roughly 200
iterations the algorithm with the setting N3 is around 20% more efficient
than the algorithm with the setting N1, but after that the algorithm N1

becomes more efficient for about around 10% on average.
Algorithm with the parameter setting N4 is one of the most efficient

at the beginning. In comparison to the N2 or N3 it is more efficient
for about 5%. After few iterations the efficiency becomes comparable to
algorithms with parameter settings N1, N2 and N3. But due to double
the population size the algorithm with this setting needs on average
twice as much time as with other settings for one iteration.

Based on these results we were able to construct a sequence of param-
eter settings. We clearly see that the algorithm with this sequence has
the best result compared to other settings. Speed of the algorithm with
setting N6 is comparable to the algorithm with setting N4, but because
of the overall efficiency it is clearly significantly better. In addition to

138 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

this, we need only around 1,000 iterations to get at least as good a result
as the algorithm with any other setting at 10,000th iteration.

One-Point versus Multi-Point Crossover. Let us now analyze
and compare both crossover operators. We compare operators on the
same data set with the same parameter settings. In this case we do the
optimization on a time interval of 168 hours.

Table 2. Parameter settings.

Parameters / Settings N7 N8

Iterations 10,000 10,000
Population size 30 30
Elitism 4 4
Crossover MPC OPC
Crossover Probability 50% 50%
Mutation Probability

- population 25% 25%
- individual 20% 20%

Figure 2. Multi point vs one point crossover.

We see a similar pattern than when comparing the algorithm with
higher and lower crossover probabilities. At the beginning the algorithm
with multi-point crossover is significantly (20%) more efficient, but later
one-point crossover gets an advantage of 10% on average. This is due to
the fact that closer we get to a sub-optimal solution, harder it is to find
a better solution and therefore smaller steps should be taken to find it.

Empirical Convergence Analysis of GA for Unit Commitment Problem 139

We see that the difference between best solutions of the algorithm
with selected parameters is minimal, but the range between the best
and worst solution of each setting at the 10,000th iteration is for 37%
smaller in the N7 case. This could tell us that with this setting we are
able to find a better solution with a higher probability but it also could
tell us that it is more likely to stay in the local optima. The algorithm
with the setting N7 maintains the advantage though due to the more
efficient starting iterations and the fact that it is on average slower only
for about 15-20%.

Thus if we would like to optimize a time interval of which length is ap-
propriate for multi-point crossover, it is good to combine and apply both
when constructing a sequence of parameter settings. First we should use
multi-point crossover and later one-point crossover.

5. Conclusion

We have seen that the parameter settings of the algorithm can strongly
affect on the performance properties and the efficiency. Empirical re-
sults have shown theoretical analysis as valid for the unit commitment
problem solved by the GA. Regardless of that, detailed analysis of the
algorithm settings on real data should be done for each of the goals to
get the best results possible. This can be a time consuming, however
worth the effort due to the performance and efficiency gains. Further
projects in the future could be an implementation of a self-adaptive GA
[11]. That is how we would be able to find a good enough (or even opti-
mal) parameter settings. On the other hand one has to be aware of the
difficulty of finding better feasible solutions. This means that we will,
sooner or later, reach the performance limit.

In this article we have successfully analyzed and compared different
algorithm settings and were able to differentiate between them. We did
not focus on finding a global optimum on a chosen data set. We have also
shown successfully that a variable-structure GA can drastically improve
the efficiency of the algorithm.

References

[1] M. Carrion and J. Arroyo. A computationally efficient mixed-integer linear for-
mulation for the thermal unit commitment problem. IEEE T. Power Syst.,
21(3):1371–1378, 2006.

[2] R. Cerf. Asymptotic Convergence of Genetic Algorithms. Adv. Appl. Probab.,
30(2):521–550, 1998.

[3] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.
The University of Michigan, Ann Arbor, 1975.

140 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[4] A. Fragioni, C. Gentile, and F. Lacalandra. Tighter Approximated MILP Formu-
lations for Unit Commitment Problems. IEEE T. Power Syst., 24(1):105–113,
2009.

[5] Y. Gao. An Upper Bound on the Convergence Rates of Canonical Genetic Al-
gorithms. Complexity International, Vol. 5, 1998.

[6] M. Iosifescu. Finite Markov Processes and Their Applications.Wiley, Chichester,
1980.

[7] K. A. Juste, H. Kita, and E. Tanaka. An evolutionary programming solution to
the unit commitment problem. IEEE T. Power Syst., 14(4):1452–1459, 1999.

[8] Y. Leung, Y. Gao, and Z. B. Xu. Degree of population diversity: A perspective
on premature convergence in genetic algorithms and its Markov chain analysis.
IEEE T. Neural Networ., 8(5), 1165–1176, 1996.

[9] J. A. López, J. L. Ceciliano-Meza, I. Guillén, and R. N. Gómez. A Heuristic
algorithm to solve the unit commitment problem for real-life large-scale power
systems. International Journal of Electrical Power & Energy Systems, 49:287-
295, 2013.

[10] T. Niknam, A. Khodaei, and F. Fallahi. A new decomposition approach for the
thermal unit commitment problem. Appl. Energy, 86(9):1667–1674, 2009.

[11] G. Papa. Parameter-less algorithm for evolutionary-based optimization. Com-
put. Optim. Appl., 56 (1):209–229, 2013.

[12] G. G. Robertson. Population size in classifier systems. In Proc. 5th International
Conference on Machine Learning, pages 142–152, 1988.

[13] W. Snyder, H. Powell, and J. Rayburn. Dynamic programming approach to unit
commitment. IEEE T. Power Syst., 2(2):465–473, 1987.

