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Preface

Bioinspired optimization methods is an umbrella term for stochastic
optimization methods that are based on principles or models of biological
systems. This class of methods, such as evolutionary algorithms and
swarm intelligence algorithms, are nowadays indispensable for solving
complex optimization problems in science, engineering and business.

This volume contains recent theoretical and practical contributions to
the field of bioinspired optimization presented at the Seventh Interna-
tional Conference on Bioinspired Optimization Methods and their Ap-
plications (BIOMA 2016), held in Bled, 18-20 May 2016. The purpose
of biennial BIOMA conferences is to provide a forum for presentation
and discussion of the latest theoretical and applied results in bioinspired
optimization methods and their applications. It is organized since 2004
by Jozef Stefan Institute. During these years BIOMA became a respect-
ful conference with well known lively discussion among researchers and
practitioners working in the field of bioinspired computation.

This year we received 25 papers and each paper received three re-
views. The reviews were performed by 30 members of the international
program committee. In the reviewing procedure, 17 papers were selected
for presentation at the conference, which is 68% of the submissions. To-
gether with two invited contributions the conference proceedings contain
19 papers by 45 (co)authors from 11 countries.

The first BIOMA 2016 keynote talk, “A Survey of Model-Based Meth-
ods for Global Optimization” given by prof. dr. Thomas Bartz-Beielstein
from TH Koln — Technology, Arts, Sciences, Germany, focuses on fun-
damental aspects of surrogate-model based optimization and recent ad-
vances in this field. The second keynote talk, “Parallel Multi-Objective
Evolutionary Algorithms” given by prof. dr. El-Ghazali Talbi from
University Lille 1, France, provides a unified taxonomy of parallel multi-
objective evolutionary algorithms.

Theoretical contributions presented at the conference include sensitiv-
ity analysis, parameter control, statistical comparison analysis, impact
of quality indicators of multi-objective evolutionary algorithms, ensem-
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bles of surrogates, adaptive approaches, worst case estimation based
on prediction intervals, and other algorithms’ improvements. Reports
on applications come from domains such as network community struc-
ture detection, dynamic vehicle routing, optimization of a manufacturing
quality-control procedure, optimization of water distribution networks,
and optimization of a robust gas sensor.

The BIOMA 2016 conference is supported by the Slovenian Research
Agency and its research programs. Technical sponsors of the conference
are the World Federation of Soft Computing, the Slovenian Artificial
Intelligence Society, and the Jozef Stefan Institute. This conference is
part of a project that has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agreement
No 692286.

In conclusion, we hope that all the aforementioned papers will provide
readers with some glimpse of research presented at BIOMA 2016. We
are grateful to the conference sponsors, members of the program and or-
ganizing committees, the keynote speakers, paper presenters and other
participants for contributing their parts to the conference. We wish you
an inspiring meeting and a pleasant stay in Bled.

Ljubljana, 5 May 2016

GREGOR PAPA AND MARJAN MERNIK
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Abstract  This article describes model-based methods for global optimization. Af-
ter introducing the global optimization framework, modeling approaches
for stochastic algorithms are presented. We differentiate between mod-
els that use a distribution and models that use an explicit surrogate
model. Fundamental aspects of and recent advances in surrogate-model
based optimization are discussed. Strategies for selecting and evaluat-
ing surrogates are presented. The article concludes with a description of
key features of two state-of-the-art surrogate model based algorithms,
namely the evolvability learning of surrogates (EvoLS) algorithm and
the sequential parameter optimization (SPO).

Keywords: Global optimization, Surrogate model.

1. Introduction

Model-based optimization (MBO) plays a prominent role in todays
modeling, simulation, and optimization processes. It can be consid-
ered as the most efficient technique for expensive and time-demanding
real-world optimization problems. Especially in the engineering do-
main, MBO is an important practice. Recent advances in computer
science, statistics, and engineering in combination with progress in high-
performance computing provide tools for handling problems, which were
considered unsolvable only a few decades ago. This article presents a
survey of MBO for global optimization.

Global optimization (GO) can be categorized based on different cri-
teria. For example, the properties of problems to be solved (continuous
versus combinatorial, linear versus nonlinear, convex versus multimodal,
etc.) can be used. This article presents an algorithmic view on global
optimization, i.e., properties of algorithms that search for new solutions
are considered.
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The term GO will be used in this article for algorithms that are trying
to find and explore global optimal solutions with complex, multimodal
objective functions [50]. Global optimization problems are difficult to
solve, because nearly no structural information (e.g., number of local
extrema) is available. Global optimization problems belong to the class
of black-box functions, i.e., functions for which the analytic form is un-
known. Note, the class of black-box functions contains also functions
that are easy to solve, e.g., convex functions, which are not discussed in
the following. This article focuses on difficult black-box functions.

Consider the optimization problem given by

Minimize: f(x) subject to x; < x < xy,

where f : R® — R is referred to as the objective function and x; and
x,, denote the lower and upper bounds of the search space (region of
interest), respectively. This setting arises in many real-world systems
when the explicit form of the objective function f is not readily available,
e.g., if the user has no access to the source code of a simulator.

This survey covers stochastic (random) search algorithms, determin-
istic GO algorithms are not further discussed. Random and stochastic
search will be used synonymously in the remainder of this article.

An iterative search algorithm that uses a stochastic procedure to gen-
erate the next iterate is referred to as a stochastic search algorithm. The
next iterate can be a candidate solution to the GO or a probabilistic
model, where solutions can be drawn from. Stochastic search algorithms
are considered robust and easy to implement, because they do not de-
pend on any structural information of the objective function such as gra-
dient information or convexity. This feature is one of the main reasons
for the popularity of stochastic search in the domain of GO. Stochastic
search algorithms can further be categorized as instance-based or model-
based algorithms [71]. Furthermore, there are basically two model-based
approaches: (a) distribution-based models and (b) surrogate models. We
consider four important representatives of surrogate model based opti-
mization: (i) Multi-fidelity metamodeling uses several models of the same
real system and plays an important role in CFD/FEM based simulation
and optimization. (ii) FEwvolutionary surrogate based optimization ex-
tends the traditional EA framework, and (iii) Ensemble surrogate based
optimization combines two or more different surrogate models.

So far, we have obtained the GO categorization (or taxonomy) based
on algorithms as shown in Fig. 1.

The remainder of this article is structured as follows. After intro-
ducing instance-based stochastic search algorithms (category [2.1]), Sec-
tion 2 describes modeling approaches for stochastic algorithms, i.e., it
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E[i] Deterministic
[2] Random Search
[2.1] Instance based
[2.2] Mcdel based optimizaticn (MBO)
[2.2.1] Distribution based
[2.2.2] Surrogate Mcdel Based Optimization (SBO)
[2.2.2.1] Single surrogate based
[2.2.2.2] Multi-fidelity based
[2.2.2.3] Evolutionary surrogate based
[2.2.2.4] Ensemble surrogate based

Figure 1: Taxonomy of model-based approaches in GO

refers to category [2.2.]. This category will be referred to as model-based
optimization (MBO).

We differentiate between models, which use a distribution ([2.2.1])
and models that use an explicit surrogate model ([2.2.2]). Model-based
optimization is the first choice for many optimization problems in in-
dustry. Section 3 describes typical applications, illustrating the practi-
cal relevance of MBO. Fundamental aspects of and recent advances in
surrogate-model based optimization are discussed in Section 4. Strate-
gies for selecting and evaluating surrogates are presented in Section 5.
Two MBO algorithms, namely EvoLLS and SPO, are presented in Sec-
tion 6. Finally, a summary and an outlook are given in Section 7.

2. Stochastic Search Algorithms
2.1 Instance-Based Algorithms

Instance-based algorithms (]2.1]) maintain a single solution, x, or pop-
ulation, P(t), of candidate solutions. The iteration or time step is de-
noted as t. The construction of new candidate solutions depends ex-
plicitly on the previously generated solutions. Simulated annealing [36],
evolutionary algorithms (EAs) [4], and tabu search [19] are prominent
representatives of this category. The key elements of instance-based al-
gorithms are shown in Algorithm 1.

2.2 MBO: Model-Based Algorithms

Model-based optimization algorithms ([2.2]) generate a population of
new candidate solutions P’(t) by sampling from a model (or a distri-
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Algorithm 1 Instance-based Algorithm

: t = 0. SetInitialPopulation(P)

. Evaluate(P).

while not TerminationCriterion() do
Generate a set of new candidate solutions P’(t ) according to a
specified random mechanism.

5. Update the current population P(t+1) based on population P(t)

and candidate solutions in P’(t).

6:  Evaluate(P(t + 1)).

7 t=1t+ 1.

8: end while

bution). The model (distribution) reflects structural properties of the
underlying true function f. They are based on the idea that by adapting
the model (or the distribution), the search is directed into regions with
improved solutions.

One of the key ideas in MBO is the replacement of expensive, high fi-
delity, fine grained function evaluations, f(x), with evaluations, f(x), of
an adequate cheap, low fidelity, coarse grained model, M. After present-
ing typical examples in Section 3, two different approaches for generating
cheap models will be presented in Section 4.

3. Applications of MBO

Simulation-based design of complex engineering problems, e.g., struc-
tural design of vehicles, use computational fluid dynamics (CFD) and
finite element modeling (FEM) methods. The solvers require a large
number of computer simulations to guarantee an exact solution. Hence,
this is one of the most popular and successful application areas for MBO.
There are two variants of MBO in this field of application: (i) meta-
model (category [2.2.2.1]) and (ii) multi-fidelity approximation (category
[2.2.2.2]) approaches. The former approach uses one or several differ-
ent metamodels, whereas the latter uses several instances with different
parameterizations of the same metamodel.

3.1 Metamodels

There are several publications that describe metamodeling approaches
in aerospace design. The development of effective numerical methods
for managing the use of approximation concepts in optimization for a
31-variable helicopter rotor design, which was part of a collaboration
between Boeing, IBM, and Rice University, is described by Booker et
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al. [7, 8]. Giannakoglou [18] discusses an aerodynamic shape design
problem. Queipo et al. [51] present a multi-objective optimal design of
a liquid rocket injector and discuss fundamental problems that arise in
MBO. A surrogate-assisted evolutionary optimization framework, which
is applied to an airfoil shape optimization problem using computational
fluid dynamic is presented in [70]. Forrester and Keane [17] describe
recent advances of MBO in aerospace design.

The design of ship propellers in the field of ship propulsion technol-
ogy is described by Emmerich and Hundemer [14]. The authors model
the features of a propeller design as a function of its resulting efficiency,
torque coefficients, thrust coefficients, and cavitation. An implementa-
tion of a first-order potential-based panel method is used to calculate
the hydrodynamic performance of a given propeller.

Li et al. [44] describe the optimization of feature detectors in ultra-
sound images. They present a study of radial basis function networks
(RBFN) for metamodeling in heterogeneous, i.e., mixed-integer, param-
eter spaces.

Although the application of metamodeling techniques has progressed
remarkably in the past last decades, the question remains “How far have
we really come?” This issue is addressed in [59].

3.2 Multi-Fidelity Approximation

In addition to metamodels, multi-fidelity metamodeling methods have
been developed. Multi-fidelity metamodeling uses several models of the
same real system, where each model has its own degree of detail repre-
senting the real process. A typical example is the use of several simula-
tion models with different grid sizes in FEM [26].

Sun et al. [60] describe a multi-fidelity optimization approach for sheet
metal forming process. Further examples of multi-fidelity metamod-
eling are presented in [63]. The authors analyze the performance of
Kriging [33] when multi-fidelity gradient data is introduced along with
multi-fidelity function data to approximate black-box simulations.

Koziel et al. [39] present a methodology for fast multi-objective an-
tenna optimization with co-Kriging. Co-Kriging is an extension of Krig-
ing, which uses the correlations between the models of various fidelities,
so that cheap- and expensive simulation data can be combined into one
metamodel [15, 35]. Co-Kriging-based sequential design strategies are
presented by Le Gratiet and Cannamela [43]. The authors simulate a
spherical tank under internal pressure. Further applications from the wa-
ter industry are published by Razavi et al [53]. Tuo et al. [62] proposed
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a finite-element analysis with its mesh density as the tuning parameter.
A problem in casting simulation is used to illustrate this approach.

Kleijnen [37] presents an overview of the most recent approaches in
simulation practice. The book covers multi-fidelity metamodeling as
well.

4. Key Elements of MBO

This section describes two different MBO approaches: (i) distribution
based ([2.2.1]) and (ii) surrogate-model based optimization ([2.2.2.]).
4.1 Distribution-Based Approaches

If the metamodel is a distribution, the most basic form of an MBO
can be implemented as shown in Algorithm 2:

Algorithm 2 Distribution-based Algorithm

1: t = 0. Let p(t) be a probability distribution.

2: while not TerminationCriterion() do

3. Randomly generate a population of candidate solutions P(t) from
p(t).

4:  Evaluate(P(t)).

. Update the distribution using population (samples) P(t) to gen-
erate a new distribution p(¢ + 1).

6: t=t+1.

7. end while

Distribution-based algorithms generate a sequence of iterates (proba-
bility distributions) {p(¢)} with the hope that

p(t) — p* as t — oo,

where p* is a limiting distribution, which assigns most of its probability
mass to the set of optimal solutions. So it is the probability distribution
(as opposed to candidate solutions as in instance-based algorithms) that
is propagated from one iteration to the next.

Estimation of distribution algorithms (EDA) are popular distribution-
based algorithms, which became popular in the field of evolutionary al-
gorithms [41]. Variation operators such as mutation and recombination,
which modify candidate solutions (so-called individuals in EA), were
replaced by a distribution based procedure: the new population of can-
didate solutions is generated according to the probability distribution
induced or estimated from the promising candidate solution from the
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current population. Larraaga and Lozano [41] review different ways of
using probabilistic models as EDA instantiations.

Although distribution-based approaches play an important role in
GO, they will not be discussed further in this article. The reader is
referred to [24]. The authors discuss advantages and outline many of
the different types of EDAs. In addition, Hu et al. [25] present recent
approaches and a unified view on distribution-based approaches. We
will concentrate on surrogate model-based approaches, which have their
origin in statistical design and analysis of experiments, especially in re-
sponse surface methodology.

4.2 Surrogate Model-Based Approaches

In general, surrogates are used, when the outcome of a process cannot
be directly measured. Surrogates imitate the behavior of the real model
as closely as possible, while being computationally cheaper to evaluate.
The surrogate model is also known as a response surface, metamodel,
approximation, coarse grained, or simply the cheap model. Simple sur-
rogate models are constructed using a data-driven approach. They can
be refined by integrating additional points or domain knowledge, e.g.,
constraints, into the surrogate.

A minimalistic surrogate model-based optimization (SBO) algorithm is
shown in Algorithm 3. A wide range of surrogates was applied in the last

Algorithm 3 Surrogate Model Based Optimization (SBO) Algorithm

1: t = 0. SetInitialPopulation(P(t))

2: Evaluate(P(t))

3: while not TerminationCriterion() do
Use P(t) to build a cheap model M (t)
P'(t + 1) = GlobalSearch(M (t))
Evaluate(P’(t 4 1))

P(t+1)CP(t)+ P (t+1)
t=t+1

end while

decades. Classical regression models such as polynomial regression or
response surface methodology [9], support vector machines (SVM) [65],
artificial neural networks [72], radial basis functions [49], or Gaussian
process (GP) models, which are sometimes referred to as design and
analysis of computer experiments or Kriging [2, 11, 38, 56, 57] are the
most prominent approaches. Forrester et al. [16] present a comprehen-
sive introduction to SBO with several examples. Table 1 in [66] lists
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popular metamodeling techniques and the related components such as
experimental design, sampling methods, metamodels, and model fitting
techniques.

4.3 Surrogate-Assisted Evolutionary Algorithms

Surrogate-assisted evolutionary algorithms (category [2.2.2.3]) are evo-
lutionary algorithms that decouple the evolutionary search and the di-
rect evaluation of the objective function. A cheap surrogate model, M,
replaces evaluations of an expensive objective function, f.

A combination of a genetic algorithm and neural networks for aero-
dynamic design optimization is suggested in [22]. Ratle [52] creates an
approximate model of the fitness landscape using Kriging interpolation
to accelerate the convergence of EAs. Jin and et al. [31] investigate
the convergence property of an evolution strategy (ES) with neural net-
work based fitness evaluations. Emmerich et al. [13] present several
MBO approaches for ES. Jin [30] presents a survey of surrogate-assisted
evolutionary algorithms approaches. Jin and Sendhoff [32] use cluster-
ing techniques and neural networks ensembles to reduce the number of
function evaluations. Branke and Schmidt [10] propose not evaluate ev-
ery candidate solution (individual), but to just estimate the objective
function value of some of the individuals. The reduction in the number
of function evaluations is obtained by estimating an individual’s func-
tion value on the basis of previously observed objective function values
of neighboring individuals. Zhou et al. [70] present a surrogate-assisted
EA framework, which uses computationally cheap hierarchical surrogate
models constructed through online learning to replace the exact compu-
tationally expensive objective functions during evolutionary search.

5. Quality Criteria: How to Select Surrogates

The model building and selection process is crucial for the effectivity
and efficiency of SBO. Fundamental for the improvement of a selected
surrogate model as well as for the selection of an alternative surrogate
model type is the evaluation of the expensive (true) objective function,
which requires the determination of sample points. In the selection of
adequate sample points, two conflicting goals have to be satisfied. The
sample points can be selected with respect to

m exploration, i.e., improving the model quality (related to the model
M) or

m  exploitation, i.e., improving the optimization and determining the
optimum (related to the objective function f).
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Furthermore, regarding the model choice, the user can decide whether
to use a

= single model, i.e., one unique global model is used during the op-
timization or

= multiple models, i.e., an ensemble of different, possibly local, mod-
els.

The static SBO uses a single, global surrogate model, which is usually
refined by adaptive sampling. The same model type, e.g., Kriging inter-
polation, is used during the optimization. This is category [2.2.2.1] in
Fig. 1.

5.1 Model Refinement

Adaptive sampling, a well-known selection strategy, proceeds as fol-
lows: An initial model, which uses a limited amount of sample points
from the expensive objective function, is refined during the optimization.
Adaptive sampling identifies new points, so-called infill points. Adap-
tive sampling tries to find a balance between exploration, i.e., improving
the overall, global quality of the surrogate model, and exploitation, i.e.,
improving the local quality (in the region of the actual optimum), of
the surrogate model. A popular adaptive sampling method is expected
improvement (EI) [34, 45], which is discussed in [33]. The EI approach
handles the initialization and refinement of a surrogate model, but not
the selection of the model itself. The popular efficient global optimiza-
tion (EGO) algorithm uses a Kriging model, because Kriging inherently
determines the prediction variance, which is necessary for the EI crite-
rion.

But there is no proof that Kriging is the best choice. Alternative
surrogate models, e.g., regression trees, support vector machine, or lasso
and ridge regression may be better suited. An a priory selection of the
best suited surrogate model is conceptually impossible in the framework
treated in this article, because of the black-box setting described in
Section 1.

5.2 Multiple Models

Instead of using one surrogate model only, several models M;, ¢ =
1,2,...,p, can be generated and evaluated in parallel. Each model uses
the same candidate solutions (from the population P) and results from
expensive function evaluations.

Multiple models can also be used to partition the search space. The
tree-based Gaussian process (TGP) approach uses regression trees to
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partition the search space into separate regions and to fit local GP sur-
rogates in each region [21]. Nelson et al. [47] propose an algorithm,
that creates a tree-based partitioning of an aerodynamic design space
and employs independent Kriging surfaces in each partition. Couckuyt
et al. [12] propose to combine an evolutionary model selection (EMS)
algorithm with the EI criterion in order to dynamically select the best
performing surrogate model type at each iteration of the EI algorithm.
A new expensive sample point, x’, is chosen based on the EI criterion at
each iteration step t. The point x’ itself is based on the best surrogate
model found by the EMS algorithm.

In the last decade, ensembles of surrogate models gained popularity
(category [2.2.2.4]) in Fig. 1. Zerpa et al. [69] use multiple surrogate
models and build an adaptive weighted average model of the individual
surrogates. Goel at al. [20] explore the possibility of using the best
surrogate model or a weighted average surrogate model instead of one
single model. Model quality, i.e., the errors in surrogates, is used to
determine the weights assigned to each model. Sanchez et al. [55] present
a weighted-sum approach for the selection of model ensembles. The
models for the ensemble are chosen based on their performance and the
weights are adaptive and inversely proportional to the local modeling
errors.

Recent approaches such as the evolvability learning of surrogates ap-
proach implement local models for each offspring individually [42]. This
results in an adaptive semi-partition [40] of the search space.

5.3 Criteria for Selecting a Surrogate

Note, this paragraph does not consider the selection of a new sample
point as done in EI. Here, we consider criteria for the selection of one
(or several) surrogate models, e.g., Kriging models or SVMs [65].

Conventionally, surrogate models are assessed and chosen according
to their estimated true error [29, 58]. The mean absolute error (MAE)
and the root mean square error (RMSE) are commonly used as per-
formance metrics. Error measures are discussed in [28]. Willmott and
Matsuura [67] presents a comparison of MAE and RMSE. Generally,
attaining a surrogate model that has minimal error is the desired fea-
ture. Methods from statistics, statistical learning [23], and machine
learning [46], such as the simple holdout approach, cross-validation, and
the bootstrap are used to choose adequate surrogate models. Tenne and
Armfield [61] propose a surrogate-assisted memetic algorithm which gen-
erates accurate surrogate-models using multiple cross-validation tests.
However, the definition of the corresponding training sets (sampling)
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represents a critical issue for the accuracy and efficiency of the meta-
models.

The model error is not the only criterion for selecting surrogate mod-
els. In contrast to the surrogate model selection approaches so far, the
evolvability learning of surrogates approach [42], which will be presented
in Section 6.1, uses fitness improvement for determining the quality of
surrogate models in enhancing search improvement.

6. Examples
6.1 Evolvability Learning of Surrogates

The evolvability learning of surrogates (EvoLS) algorithm, which is
introduced by Le et al. [42], belongs to the category of surrogate-assisted
evolutionary algorithms ([2.2.2.3]).

The authors of EvoLS recommend selecting surrogate models that
enhance search improvement in the context of optimization. EvoLS pro-
cesses information about the (i) different fitness landscapes, (ii) state
of the search, and (iii) characteristics of the search algorithm to sta-
tistically determine the so-called evolvability of each surrogate model.
The evolvability of a surrogate model estimates the expected improve-
ment of the objective function value that the new candidate solution has
gained after a local search has been performed on the related surrogate
model. Three basic steps are necessary for calculating the evolvability
(a detailed calculation is presented in [42]):

m Variation. Let x denote the parent and y be the offspring gen-
erated from x by evolutionary variation operators, e.g., mutation
and/or recombination. Le at al. [42] make a simplified assumption
of uniformity in the offspring distribution. Let V(R) denote the
volume of an n-dimensional cuboid

_ ; (%) (4)
f= LSH}V{% b max A }}

i=1,..,n

The density distribution is modeled as

B [ 1/(R) ifyeR
P(y|P(t),x) =U(R) = { 0 otherwise.
The evolutionary variation operators recombination and uniform
mutation force the offspring to be located in the n-dimensional
region R. To determine the probability at time step ¢ of moving
from parent x via stochastic variation, the followoing weights can
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be used:

S is Py [P(t),x)

The weight measures the influence of the samples (y;, var(y;i)) on
the evolvability.

m Local search. After recombination and mutation, a local search is
performed. It uses a local metamodel, M, for each offspring. The
local optimizer, s, uses an offspring y as an input and returns y*
as the refined offspring. The local optimizer on the surrogate model
guarantees (theoretically) convergence to the stationary point of
the exact objective function [1, 48].

m  Evolvability. Finally, the evolvability measure can be estimated as

follows: P
Boa(x) = f(x) = Y fy]) x wi(x).
i=1
6.2 Sequential Parameter Optimization

Early versions of the sequential parameter optimization (SPO) com-
bined methods from design of experiments (DOE), response surface meth-
odology (RSM), design and analysis of computer experiments (DACE),
and regression trees for the analysis of algorithms [3, 5, 6]. The SPO
was developed as a tool for the analysis and for an understanding of the
working principles of EAs. The SPO tools might as well be integrated
into the evolutionary loop and therefore improve performance of an EA.
This consideration lays the cornerstone for the development of the SPO
as an optimizer.

Subsequent versions of the SPO use a sequential, model based ap-
proach to optimization. Nowadays, the SPO is an established parameter
tuner and an optimization algorithm, which has been extended in several
ways. For example, Hutter et al. [27] benchmark an SPO derivative, the
so-called sequential model-based algorithm configuration (SMAC) proce-
dure, on the BBOB set of blackbox functions. They demonstrate that
with a small budget of 10 x d evaluations of d-dimensional functions,
SMAC in most cases outperforms the state-of-the-art blackbox optimizer
CMA-ES.

The most recent version, SPO2, is currently under development. It
will integrate state-of-the-art ensemble learners. The SPO2 ensemble
engine can be briefly outlined as follows: The portfolio of surrogate
models includes a pleiotropy of metamodels such as regression trees and
random forest, least angle regression (LARS), and Kriging. The SPO2
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ensemble engine uses cross validation to select an improved model from
the portfolio of candidate models [64]. It implements methods for cre-
ating a weighted combination of several surrogate models to build the
improved model and methods, which use stacked generalization to com-
bine several level-0 models of different types with one level-1 model into
an ensemble [68]. The level-1 training algorithm is typically a relatively
simple linear model.

Preliminary results indicate that the SPO2 ensemble engine can lead
to significant performance improvements of the SPO algorithms, which
is illustrated by the following example: Rebolledo et al. [54] present a
comparison of different data driven modeling methods. The first instance
of a data driven linear Bayesian model is compared with several linear
regression models, a Kriging model and a genetic programming model.
The models are built on industrial data for the development of a robust
gas sensor. The data contain limited amount of samples and a high
variance. The mean square error of the models implemented in a test
dataset is used as the comparison strategy. Two sensors were tested in
this comparison. The mean squared errors are as follows. Linear model
(0.76), OLS (0.79), lasso (0.56), Kriging (0.57), Bayes (0.79), and genetic
programming (0.58). SPO2 obtained an MSE of 0.38, which outperforms
the best model. Results from the second sensor read as follow: Linear
model (0.67), OLS (0.80), lasso (0.49), Kriging (0.49), Bayes (0.79), and
genetic programming (0.27). Here, SPO2 obtained an MSE of 0.29.

This first real-world application example demonstrates the potential
of SBO with ensembles (category [2.2.2.4]).

7. Summary

Especially in the engineering domain, model-based approaches are
probably the most efficient methods for expensive and time-demanding
real-world optimization problems. This article proposed a taxonomy of
model based algorithms for global optimization problems. The taxon-
omy was developed from an algorithm-centered perspective. The catego-
rization scheme, which started with a bird’s eye view on GO, was refined
as summarized in Fig. 1. Finally, working principles of two state-of-the-
art MBO algorithms were shown. EvoLS, which constructs a metamodel
for every new candidate solution, and SPO2, which uses an ensemble
engine to combine a broad variety of surrogate models. The survey
presented in the first sections of this article as well as the examples in
Section 6 emphasize the trend to ensemble based metamodels.
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Abstract  This paper describes a general overview of parallel multi-objective evo-
lutionary algorithms (MOEA) from the design and the implementation
point of views. A unified taxonomy using three hierarchical parallel
models is proposed. Different parallel architectures are considered. The
performance evaluation issue of parallel MOEA is also discussed.

Keywords: Multi-objective optimization, Parallel evolutionary algorithms.

1. Motivation

On one hand, multi-objective optimization problems (MOPs), such as
in engineering design and life science, are more and more complex and
their resource requirements to solve them are ever increasing. Real-life
MOPs are often NP-hard, and CPU time and/or memory consuming.
Although the use of multi-objective evolutionary algorithms (MOEAs)
allows to significantly reduce the computational complexity of the solv-
ing algorithms, the latter remains time-consuming for many MOPs in
diverse domains of application, where the objective function and the
constraints associated to the problem are resource (e.g., CPU, memory)
intensive and the size of the search space is huge. Moreover, more and
more complex and resource intensive MOEAs are developed to obtain a
good approximation of the Pareto front in a reasonable time.

On the other hand, the rapid development of technology in design-
ing processors (e.g., multi-core processors, dedicated architectures), net-
works (local networks (LAN) such as Myrinet and Infiniband or wide
area networks (WAN) such as optical networks), and data storage make
the use of parallel computing more and more popular. Such architectures
represent an effective opportunity for the design and implementation of
parallel multi-objective optimization algorithms. Indeed, sequential ar-
chitectures are reaching physical limitations (speed of light, thermody-

21



22 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

namics). Nowadays, even laptops and workstations are equipped with
multi-core processors, which represent one class of parallel architecture.
Moreover, the ratio cost/performance is constantly decreasing. The pro-
liferation of powerful processors and fast communication networks have
shown the emergence of dedicated architectures (e.g GPUs), clusters of
processors (COWSs), networks of workstations (NOWs), large-scale net-
works of machines (Grids) and Clouds as platforms for high performance
computing.

Parallel computing can be used in the design and implementation of
MOEAs for the following reasons:

m Speedup the search to approximate the Pareto front: The
goal here is to reduce the search time. This helps designing in-
teractive optimization methods which is an important issue for
multi-criteria decision making. This is a also an important aspect
for some class of problems where there are hard requirements on
search time such as in dynamic MOPs and time-critical operational
MOPs such as “real-time” planning and control.

s Improve the quality of the obtained Pareto solutions: some
parallel models for MOEAs allow to improve the quality of Pareto
solutions. Indeed, exchanging information between algorithms will
alter their behavior in terms of searching in the landscape associ-
ated to the MOP. The main goal in a cooperation between algo-
rithms is to improve the quality of Pareto solutions. Both con-
vergence to better Pareto solutions and reduced search time may
happen. Let us notice that a parallel model for MOEAs may be
more effective than a sequential algorithm even on a single proces-
sor.

» Improve the robustness: a parallel MOEA may be more robust
in terms of solving in an effective manner different MOPs and dif-
ferent instances of a given problem. Robustness may be measured
in terms of the sensitivity of the algorithm to its parameters and
the target MOPs.

m Solve large scale MOPs: parallel MOEAs allow to solve large
scale instances of complex MOPs. A challenge here is to solve
very large instances that cannot be solved on a sequential machine.
Another similar challenge is to solve more accurate mathematical
models associated to different MOPs. Improving the accuracy of
mathematical models increases in general the size of the associ-
ated problems to be solved. Moreover, some optimization prob-
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lems need the manipulation of huge databases such as data mining
problems.

In this paper, a clear difference is made between the parallel design
aspect and the parallel implementation aspect of MOEAs. A unifying
view of parallel models for MOEAs is presented. The implementation
point of view deals with the efficiency of parallel MOEAs on a target
parallel architecture using a given parallel language, programming en-
vironment or middleware. Different architectural criteria, which affect
the efficiency of the implementation, will be considered: shared memory
versus distributed memory, homogeneous versus heterogeneous, shared
versus non shared by multiple users, local network versus large network.
Indeed, those criteria have a strong impact on the deployment tech-
nique employed such as load balancing and fault-tolerance. Depend-
ing on the type of parallel architecture used, different parallel and dis-
tributed languages, programming environments and middlewares may be
used such as message passing (e.g., MPI), shared memory (e.g., multi-
threading, OpenMP, CUDA), remote procedural call (e.g., Java RMI,
RPC), high-throughput computing (e.g., Condor), and grid computing
(e.g., Globus).

This paper is organized as follows. In Section 2, the main parallel
models for designing MOEAs are presented. Section 3 deals with the
implementation issues of parallel MOEAs. In this section, the main
concepts of parallel architectures and parallel programming paradigms,
which interfere with the design and implementation of parallel MOEAs
are outlined. The main performance indicators that can be used to eval-
uate a parallel multi-objective search algorithms in terms of efficiency
are detailed.

2. Parallel Design of Multi-Objective
Metaheuristics

In terms of designing parallel MOEAs, three major parallel models
are identified. They follow the three hierarchical levels (Table 1):

m Algorithmic-level: in this model, independent or cooperating
self-contained MOEAs are used. It is a problem-independent inter-
algorithm parallelization. If the different MOEAs are independent,
the search will be equivalent to the sequential execution of the
algorithms in terms of the quality of Pareto solutions. However,
the cooperative model will alter the behavior of the MOEAs and
enable the improvement in terms of the quality of Pareto solutions.
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m Tteration-level: in this model, each iteration of a MOEA is par-
allelized. It is a problem-independent intra-algorithm paralleliza-
tion. The behavior of the MOEA is not altered. The main ob-
jective is to speedup the algorithm by reducing the search time.
Indeed, the iteration cycle of MOEAs on large populations, espe-
cially for real-world MOPs, requires a large amount of computa-
tional resources.

= Solution-level: in this model, the parallelization process handles
a single solution of the search space. It is a problem-dependent
intra-algorithm parallelization. In general, evaluating the objective
functions or constraints for a generated solution is frequently the
most costly operation in MOEAs. In this model, the behavior of
the search algorithm is not altered. The objective is mainly the
speedup of the search.

Table 1: Parallel models of MOEAs.

Parallel Problem Behavior Granularity Goal
model dependency

Algorithmic-level  Independent Altered MOP algorithm  Effectiveness
Iteration-level Independent  Non altered Iteration Efficiency
Solution-level Dependent Non altered Solution Efficiency

2.1 Algorithmic-Level Parallel Model

In this model, many MOEAs are launched in parallel. They may
cooperate or not to solve the target MOPs.

2.1.1 Independent algorithmic-level parallel model. In
the independent-level parallel model, the different MOEAs are executed
without any cooperation. The different MOEAs may be initialized with
different populations. Different parameter settings may be used for the
MOEAs such as the mutation and crossover probabilities. Moreover,
each search component of an MOEA may be designed differently: encod-
ing, search operators (e.g., variation operators), objective functions, con-
straints, fitness assignment, diversity preserving, elitism. This parallel
model is straightforward to design and implement. The master/worker
paradigm is well suited to this model. A worker implements an MOEA.
The master defines the different parameters to use by the workers and
determines the best found Pareto solutions from those obtained by the
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different workers. In addition to speeding up the MOEA, this parallel
model enables to improve its robustness [29].

This model raises particularly the following question: is it equivalent
to execute k MOEAs during a time t and to execute a single MOEA
during k % t? The answer depends on the landscape properties of the
problem (e.g., distribution of the Pareto local optima).

2.1.2 Cooperative algorithmic-level parallel model. In the
cooperative model for parallel MOEAs, the different MOEAs are ex-
changing information related to the search with the intent to compute
a better and more robust Pareto front [30]. In general, an archive is
maintained in parallel to the current population. This archive contains
all Pareto optimal solutions generated during the search.

In designing this parallel cooperative model for any MOEA, the same
design questions need to be answered:

m The exchange decision criterion (When?): the exchange of
information between the MOEAs can be decided either in a blind
(periodic or probabilistic) way or according to an “intelligent”
adaptive criterion. Periodic exchange occurs in each algorithm
after a fixed number of iterations; this type of communication is
synchronous. Probabilistic exchange consists in performing a com-
munication operation after each iteration with a given probability.
Conversely, adaptive exchanges are guided by some characteristics
of the multi-objective search. For instance, it may depend on the
evolution of the quality of the Pareto front. A classical criterion is
related to the update of the archive, in which a new Pareto solution
is generated.

m The exchange topology (Where?): the communication ex-
change topology indicates for each MOEA its neighbor(s) regard-
ing the exchange of information, i.e., the source/destination algo-
rithm(s) of the information. The ring, mesh and hypercube regular
topologies are the most popular ones.

» The information exchanged (What?): this parameter spec-
ifies the information to be exchanged between the MOEAs. In
general, the information exchanged is composed of:

— Pareto solutions: this information deals with any selection
strategy of the generated Pareto solutions during the search.
In general, it contains solutions from the current population
and/or the archive. The number of selected Pareto optimal
solutions may be an absolute value or a percentage of the sets.
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— Search memory: this information deals with a search memory
of a MOEA excluding the Pareto optimal solutions. This
information deals with any element of the search memory
that is associated to the involved MOEA.

» The integration policy (How?): analogously to the informa-
tion exchange policy, the integration policy deals with the usage
of the received information. In general, there is a local copy of
the received information. The local copies of the information re-
ceived are generally updated using the received ones. The Pareto
solutions received will serve to update the local Pareto archive.
For the current population, any replacement strategy can be used
(e.g., random, elitist). For instance, the best Pareto set is simply
updated by the best between the local best Pareto set and the
neighboring best Pareto set. Any replacement strategy may be
applied on the local population by the set of received solutions.

Few of such parallel search models have been especially designed for
multi-objective optimization [29].

The other well known parallel model for MOEASs, the cellular model.
may be seen as a special case of the island model where an island is
composed of a single individual. Traditionally, an individual is assigned
to a cell of a grid. The selection occurs in the neighborhood of the indi-
vidual. Hence, the selection pressure is less important than in sequential
MOEAs. The overlapped small neighborhood in cellular MOEAs helps
exploring the search space because a slow diffusion of Pareto solutions
through the population provides a kind of exploration, while exploita-
tion takes place inside each neighborhood. Cellular models applied to
complex problems can have a higher convergence probability to better
solutions than panmictic MOEAs [17].

The different MOEAs involved in the cooperation may evaluate dif-
ferent subsets of objective functions (Fig. 1). For instance, each MOEA
may handle a single objective. Another approach consists in using a dif-
ferent aggregation weights in each MOEA, or different constraints [22].

Each MOEA may also represent a different partition of the decision
space or the objective space [15, 27]. By this way, each MOEA is destined
to find a particular portion of the Pareto-optimal front.

Another main issue in the development of parallel MOPs is how the
Pareto set is built during the optimization process. Two different ap-
proaches may be considered (Fig. 1):

m  (Centralized Pareto Front: the front is a centralized data structure
of the algorithm that it is built by the MOEAs during the whole
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Parallel multi-objective metaheuristics
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Figure 1: Classification of parallel MOEAs for multi-objective optimization.

computation. This way, the new non-dominated solutions in the
Pareto optimal set are global Pareto optima [1, 5, 28].

m  Distributed Pareto Front: the Pareto front is distributed among
the MOEASs so that the algorithm works with local non-dominated
solutions that must be somehow combined at the end of their work
[8, 18, 19]. No pure centralized approach has been found clearly
motivated by efficiency issues [16]. All the found centralized ap-
proaches are combined with distributed phases where local non-
dominated solutions are considered. After each distributed phase,
a single optimal Pareto front is built by using these local Pareto
optima. Then, the new Pareto front is again distributed for local
computation, and so on.

2.2 Iteration-Level Parallel Model

In this parallel model, a focus is made on the parallelization of each
iteration of MOEAs. The iteration-level parallel model is generally based
on the distribution of the handled solutions. Indeed, the most resource-
consuming part in an MOEA is the evaluation of the generated solutions.
Our concerns in this model are only search mechanisms that are problem-
independent operations such as the generation of successive populations.
Any search operator of an MOEA which is not specific to the tackled
optimization problem is involved in the iteration-level parallel model.
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This model keeps the sequentiality of the original algorithm, and, hence,
the behavior of the MOEA is not altered.

It is the easiest and the most widely used parallel model in MOPs. In-
deed, many MOPs are complex in terms of the objective functions. For
instance, some engineering design applications integrate solvers dealing
with different surrogate models: computational fluid dynamics (CFD),
computational electromagnetics (CEM), or finite element methods (FEM).
Other real-life applications deals with complex simulators. A particu-
larly efficient execution is often obtained when the ratio between com-
munication and computation is high. Otherwise, most of the time can
be wasted in communications, leading to a poor parallel algorithm.

The population of individuals can be decomposed and handled in par-
allel. In master-worker a master performs the selection operations and
the replacement. The selection and replacement are generally sequen-
tial procedures, as they require a global management of the population.
The associated workers perform the recombination, mutation and the
evaluation of the objective function. The master sends the partitions
(subpopulations) to the workers. The workers return back newly evalu-
ated solutions to the master [19] (Fig. 2).

Worker1 Workern

F=(f1,..., fn) f1 f2 fn

Worker1 Workerk

Worker1 Workerk.n

Figure 2: The iteration-level parallel model in parallel MOEAs.

According to the order in which the evaluation phase is performed
in comparison with the other parts of the MOEA, two modes can be
distinguished:
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m Synchronous: in the synchronous mode, the worker manages
the evolution process and performs in a serial way the different
steps of selection and replacement. At each iteration, the master
distributes the set of new generated solutions among the workers
and waits for the results to be returned back. After the results
are collected, the evolution process is re-started. The model does
not change the behavior of the MOEA compared to a sequential
model.

m  Asynchronous: in the asynchronous mode, the worker does not
wait for the return of all evaluations to perform the selection, re-
production and replacement steps. The steady-state MOEA is a
good example illustrating the asynchronous model and its advan-
tages. In the asynchronous model applied to a steady-state MOEA,
the recombination and the evaluation steps may be done concur-
rently. The master manages the evolution engine and two queues
of individuals of a given fixed size: individuals to be evaluated,
and solutions being evaluated. The individuals of the first queue
wait for a free evaluating node. When the queue is full the process
blocks. The individuals of the second queue are assimilated into
the population as soon as possible. The reproduced individuals are
stored in a FIFO data structure, which represents the individuals
to be evaluated. The MOEA continues its execution in an asyn-
chronous manner, without waiting for the results of the evaluation
phase. The selection and reproduction phase are carried out un-
til the queue of non-evaluated individuals is full. Each evaluator
agent picks an individual from the data structure, evaluates it, and
stores the results into another data structure storing the evaluated
individuals. The order of evaluation defined by the selection phase
may not be the same as in the replacement phase. The replace-
ment phase consists in receiving, in a synchronous manner, the
results of the evaluated individuals, and applying a given replace-
ment strategy of the current population.

In some MOEAs (e.g., blackboard-based ones) some information must
be shared. For instance, in ant colony optimization (ACO), the phero-
mone matrix must be shared by all ants. The master has to broadcast
the pheromone trails to each worker. Each worker handles an ant pro-
cess. It receives the pheromone trails, constructs a complete solution,
and evaluates it. Finally, each worker sends back to the master the
constructed and evaluated solution. When the master receives all the
constructed solutions, it updates the pheromone trails [14].
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Ranking methods are used to assign a fitness to each solution of a
population. Those ranking methods are computation-intensive and may
be also parallelized. Updating the archives at each iteration is also a
time consuming task.

2.3 Solution-Level Parallel Model

The main objective of the solution-level parallel model for MOP is to
speedup the search by parallelizing the treatments dealing with single so-
lutions (e.g., objectives evaluation, constraint satisfaction). Indeed, the
evaluation of multiple objective functions in MOPs is the most time-
consuming part into a MOEA. Therefore, several algorithms try to re-
duce this time by means of parallelizing the calculation of the fitness
evaluation [21, 22, 23]. The classical approaches must be adapted to
multi-objective optimization (Fig. 1):

m Functional decomposition: this approach consists in distribut-
ing the different objective functions among the workers, and each
of them computes the value of its assigned function on each solu-
tion. The master will then aggregate the partial results for all the
solutions. Such approach allows a degree of concurrency and the
scalability is limited to the number of objective functions, meaning
often 2 or 3. Moreover, each objective function may be decomposed
into several sub-functions. Then, the degree of concurrency will be
equal to the number of sub-functions.

m Data decomposition: for each data partition of the problem
(database, geographical area, structure, ...), all the objectives of
the problem are evaluated and returned to the master. The master
will aggregate the different results.

In the multi-objective context, the scalability of this model is limited
by the number of objectives and the number of sub-functions per objec-
tive. The scalability could be improved again if the different objective
functions are simultaneously parallelized.

2.4 Hierarchical Combination of the Parallel Models

The three presented models for parallel MOEAs may be used in con-
junction within a hierarchical structure [26]. The parallelism degree
associated with this hybrid model is very important. Indeed, this hy-
brid model is very scalable; the degree of concurrency is k *m *n, where
k is the number of MOEAs used, m is the size of the population, and
n is the number of partitions or tasks associated to the evaluation of a
single solution.
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3. Parallel Implementation of MOEASs

Parallel implementation of MOEAs deals with the efficient mapping
of a parallel model of MOEASs on a given parallel architecture.

3.1 Parallel Architectures

Parallel architectures are evolving quickly. The main criteria of par-
allel architectures, which will have an impact on the implementation of
parallel MOEAs, are: memory sharing, homogeneity of resources, re-
source sharing by multiple users, scalability, and volatility. Those crite-
ria will be used to analyze the different parallel models and their efficient
implementation. A guideline is given for the efficient implementation of
each parallel model of MOEAs according to each class of parallel archi-
tectures.

Shared memory/Distributed memory architectures: in shared
memory parallel architectures, the processors are connected by a shared
memory. There are different interconnection schemes for the network
(e.g., bus, crossbar, multistage crossbar). This architecture is easy to
program. Conventional operating systems and programming paradigms
of sequential programming can be used. There is only one address space
for data exchange but the programmer must take care of synchronization
in memory access, such as the mutual exclusion in critical sections. This
type of architecture has a poor scalability (from 2 to 128 processors
in current technologies) and a higher cost. An example of such shared
memory architectures are SMPs (Symmetric Multiprocessors) machines
and multi-core processors.

In distributed memory architectures, each processor has its own mem-
ory. The processors are connected by a given interconnection network
using different topologies (e.g., hypercube, 2D or 3D torus, fat-tree, mul-
tistage crossbars). This architecture is harder to program; data and/or
tasks have to be explicitly distributed to processors. Exchanging infor-
mation is also explicitly handled using message passing between nodes
(synchronous or asynchronous communications). The cost of communi-
cation is not negligible and must be minimized to design an efficient par-
allel MOEA. However, this architecture has a good scalability in terms of
the number of processors. In recent years, clusters of processors (COWs)
became one of the most popular parallel distributed memory architec-
tures. A good ratio between cost and performance is obtained with this
class of architectures.

Homogeneous/Heterogenous parallel architectures: parallel
architectures may be characterized by the homogeneity of the used pro-
cessors, communication networks, operating systems, etc. For instance,
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COWs are in general homogeneous parallel architectures. The prolifer-
ation of powerful workstations and fast communication networks have
shown the emergence of heterogeneous networks of workstations (NOWs)
as platforms for high performance computing. This type of architecture
is present in any laboratory, company, campus, institution, etc. These
parallel platforms are generally composed of an important number of
owned heterogeneous workstations shared by many users.

Shared/Non shared parallel architectures: most massively par-
allel machines (MPP) and clusters of workstations (COW) are generally
non shared by the applications. Indeed, at a given time, the proces-
sors composing those architectures are dedicated to the execution of a
single application. NOWs constitute a low-cost hardware alternative to
run parallel algorithms but are in general shared by multiple users and
applications.

Local network (LAN)/Wide-area network (WAN): massively
parallel machines, clusters and local networks of workstations may be
considered as tightly coupled architectures. Large networks of worksta-
tions and grid computing platforms are loosely coupled and are affected
by a higher cost of communication. During the last decade, grid com-
puting systems have been largely deployed to provide high performance
computing platforms. A computational grid is a scalable pool of hetero-
geneous and dynamic resources geographically distributed across mul-
tiple administrative domains and owned by different organizations [9].
Two types of Grids may be distinguished:

s High-Performance Computing Grid (HPC Grid): this grid
interconnect supercomputers or clusters via a dedicated high-speed
network. In general, this type of grid is non-shared by multiple
users (at the level of processors).

» Desktop Grid: this class of grids is composed of numerous owned
workstations connected via non dedicated network such as the in-
ternet. This grid is volatile and shared by multiple users and
applications.

Volatile/Non volatile parallel architectures: desktop grids con-
stitute an example of volatile parallel architectures. In a volatile parallel
architecture, there is a dynamic temporal and spatial availability of re-
sources. In a desktop grid or a large network of shared workstations,
volatility is not an exception but a rule. Due to the large scale nature of
the grid, the probability of resource failure is high. For instance, desktop
grids have a faulty nature (e.g., reboot, shutdown, failure).

The following table 2 recapitulates the characteristics of the main par-
allel architectures according to the presented criteria. Those criteria will



Parallel Multi-Objective Evolutionary Algorithms 33

be used to analyze the efficient implementation of the different parallel
models of MOEAs.

Table 2: Characteristics of the main parallel architectures.

Criteria Memory Homogeneity Sharing Network Volatility
SMP Multi-core Shared Hom Yes or No Local No
COW Distributed Hom or Het No Local No
NOW Distributed Het Yes Local Yes
HPC Grid Distributed Het No Large No
Desktop Grid Distributed Het Yes Large Yes

Hom: Homogeneous, Het: Heterogeneous.

3.2 Dedicated Architectures

Dedicated hardware represents programmable hardware or specific ar-
chitectures that can be designed or re-used to execute a parallel MOEA.
The best known dedicated hardware is represented by Field Programmable
Gate Arrays (FPGAs) and Graphical Processing Unit (GPU).

FPGAs are hardware devices that can be used to implement digital
circuits by means of a programming process [31]. The use of the Xilinx’s
FPGASs to implement different MOEAs is more and more popular. The
design and the prototyping of a FPGA-based hardware board to execute
parallel MOEAs may restrict the design of some search components.
However, for some specific challenging optimization problems with a
high use rate such as in bioinformatics, dedicated hardware may be a
good alternative.

GPU is a dedicated graphics rendering device for a workstation, per-
sonal computer, or game console. Recent GPUs are very efficient at ma-
nipulating computer graphics, and their parallel SIMD structure makes
them more efficient than general-purpose CPUs for a range of complex
algorithms [2]. The main companies producing GPUs are AMD and
NVIDIA. The use of GPUs for an efficient implementation of MOEAs is
a challenging issue [12, 13].

3.3 Parallel Programming Environments and
Middlewares

The architecture of the target parallel machine strongly influences the
choice of the parallel programming model to use. There are two main
parallel programming paradigms: shared memory and message passing.

Two main alternatives exist to program shared memory architectures:
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m Multi-threading: a thread may be viewed as a lightweight pro-
cess. Different threads of the same process share some resources
and the same address space. The main advantages of multi-threa-
ding are the fast context switch, the low resource usage, and the
possible recovery between communication and computation. Each
thread can be executed on a different processor or core. Multi-
threaded programming may be used within libraries such as the
standard Pthreads library [3] or programming languages such as
Java threads [10].

» Compiler directives: one of the standard shared memory para-
digms is OpenMP (Open Multi-Processing, www.openmp.org) and
CUDA. It represents a set of compiler directives interfaced with
the languages Fortran, C and C++ [4]. Those directives are inte-
grated in a program to specify which sections of the program to
be parallelized by the compiler.

Distributed memory parallel programming environments are based
mainly on the three following paradigms:

m Message passing: message passing is probably the most widely
used paradigm to program parallel architectures. Processes of a
given parallel program communicate by exchanging messages in
a synchronous or asynchronous way. The well known program-
ming environments based on message passing are sockets and MPI
(Message Passing Interface).

» Remote Procedure Call: Remote procedure call (RPC) repre-
sents a traditional way of programming parallel and distributed
architectures. It allows a program to cause a procedure to execute
on another processor.

= Object oriented models: as in sequential programming, parallel
object oriented programming is a natural evolution of RPC. A
classical example of such a model is Java RMI (Remote Method
Invocation).

In the last decade, great work has been carried out on the development
of grid middlewares. The Globus toolkit (www.globus.org) represents
the de facto standard grid middleware. It supports the development of
distributed service-oriented computing applications [20].

It is not easy to propose a guideline on which environment to use in
programming a parallel MOEA. It will depend on the target architecture,
the parallel model of MOEAs, and the user preferences. Some languages
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are more system oriented such as C and C++. More portability is ob-
tained with Java but the price is less efficiency. This tradeoff represents
the classical efficiency/portability compromise. A Fortran programmer
will be more comfortable with OpenMP. RPC models are more adapted
to implement services. Condor represents an efficient and easy way to
implement parallel programs on shared and volatile distributed architec-
tures such as large networks of heterogeneous workstations and desktop
grids, where fault tolerance is ensured by a checkpoint/recovery mech-
anism. The use of MPI within Globus is more or less adapted to high
performance computing (HPC) grids. However, the user has to deal
with complex mechanisms such as dynamic load balancing and fault-
tolerance. Table 3 presents a guideline depending on the target parallel
architecture.

Table 3: Parallel programming environments for different parallel architectures.

Architecture Examples of suitable programming environment
SMP Multi-threading library within an operating system (e.g., Pthreads)
Multi-core Multi-threading within languages: Java

OpenMP interfaced with C, C++ or Fortran

COW Message passing library: MPI interfaced with C, C++4-, Fortran

Hybrid ccNUMA MPI or Hybrid models: MPI/OpenMP, MPI/Multi-threading

NOW Message passing library: MPI interfaced with C, C++4-, Fortran
Condor or object models (JavaRMI)

HPC Grid MPICH-G (Globus) or GridRPC models (Netsolve, Diet)

Desktop Grid Condor-G or object models (Proactive)

3.4 Performance Evaluation

For sequential algorithms, the main performance measure is the exe-
cution time as a function of the input size. In parallel algorithms, this
measure depends also on the number of processors and the characteristics
of the parallel architecture. Hence, some classical performance indica-
tors such as speedup and efficiency have been introduced to evaluate
the scalability of parallel algorithms [11]. The scalability of a parallel
algorithm measures its ability to achieve performance proportional to
the number of processors.

The speed-up Sy is defined as the time T3 it takes to complete a
program with one processor divided by the time T it takes to complete
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the same program with N processors
Ty
=T
One can use wall-clock time instead of CPU time. The CPU time is
the time a processor spends in the execution of the program, and the
wall-clock time is the time of the whole program including the input
and output. Conceptually the speed-up is defined as the gain achieved
by parallelizing a program. If Sy > N (resp. Sy = N), a super-linear
(resp. linear) speedup is obtained [25]. Mostly, a sub-linear speedup
Sy < N is obtained. This is due to the overhead of communication and
synchronization costs. The case Sy < 1 means that the sequential time
is smaller than the parallel time which is the worst case. This will be
possible if the communication cost is much higher than the execution
cost.
The efficiency En using N processors is defined as the speed-up Sy
divided by the number of processors N.
SN
Ey = N
Conceptually the efficiency can be defined as how well N processors are
used when the program is computed in parallel. An efficiency of 100%
means that all of the processors are fully used all the time. For some
large real-life applications, it is impossible to have the sequential time as
the sequential execution of the algorithm cannot be performed. Then,
the incremental efficiency Enps may be used to evaluate the efficiency
extending the number of processors from N to M processors.

_NXEN
- M x Ey’

Different definitions of speedup may be used depending on the defini-
tion of the sequential time reference T7. Asking what is the best measure
is useless; there is no global dominance between the different measures.
The choice of a given definition depends on the objective of the perfor-
mance evaluation analysis. Then, it is important to specify clearly the
choice and the objective of the analysis.

The absolute speedup is used when the sequential time T} corresponds
to the best known sequential time to solve the problem. Unlike other
scientific domains such as numerical algebra where for some operations
the best sequential algorithm is known, in MOEA search, it is difficult
to identify the best sequential algorithm. So, the absolute speedup is
rarely used. The relative speedup is used when the sequential time T}
corresponds to the parallel program executed on a single processor.

SN

Enm
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Moreover, different stopping conditions may be used:

= Fixed number of iterations: this condition is the most used to
evaluate the efficiency of a parallel MOEA. Using this definition,
a superlinear speedup is possible Sy > N [7]. This is due to
the characteristics of the parallel architecture where there is more
resources (e.g., size of main memory and cache) than in a single
processor. For instance, the search memory of an MOEA executed
on a single processor may be larger than the main memory of
a single processor and then some swapping will be carried out,
which represents an overhead in the sequential time. When using
a parallel architecture, the whole memory of the MOEA may fit in
the main memory of its processors, and then the memory swapping
overhead will not occur.

= Convergence to a set of solutions with a given quality:
this measure is interesting to evaluate the effectiveness of a par-
allel MOEA. Tt is only valid for parallel models of MOEAs based
on the algorithmic-level, which alter the behavior of the sequen-
tial MOEA. A super-linear speedup is possible and is due to the
characteristics of the parallel search. Indeed, the order of search-
ing different regions of the search space may be different from se-
quential search. The sequences of visited solutions in parallel and
sequential search are different. This is similar to the super-linear
speedups obtained in exact search algorithms such as branch and
bound [24].

Most of evolutionary algorithms are stochastic algorithms. When the
stopping condition is based on the quality of the solution, one cannot
use the speedup metric as defined previously. The original definition
may be extended to the average speedup:

E(Ty)

SN = BTy’

The same seed for the generation of random numbers must be used for
a more fair experimental performance evaluation. The speedup metrics
have to be reformulated for heterogeneous architectures. The efficiency
metric may be used for this class of architectures. Moreover, it can be
used for shared parallel machines with multiple users.

3.5 Main Properties of Parallel MOEAs

The performance of a parallel MOEA on a given parallel architecture
depends mainly on its granularity. The granularity of a parallel program
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is the amount of computation performed between two communications.
It computes the ratio between the computation time and the commu-
nication time. The three parallel models (algorithmic-level, iteration-
level, solution-level) have a decreasing granularity from coarse-grained
to fine-grained. The granularity indicator has an important impact on
the speedup. The larger is the granularity the better is the obtained
speedup.

The degree of concurrency of a parallel MOEA is represented by the
maximum number of parallel processes at any time. This measure is in-
dependent from the target parallel architecture. It is an indication of the
number of processors that can employed usefully by the parallel MOEA.
Asynchronous communications and the recovery between computation
and communication is also an important issue for a parallel efficient im-
plementation. Indeed, most of the actual processors integrate different
parallel elements such as ALU, FPU, GPU, DMA, etc. Most of the com-
puting part takes part in cache. Hence, the RAM bus is often free and
can be used by other elements such as the DMA. Hence, input/output
operations can be recovered by computation tasks.

Scheduling the different tasks composing a parallel MOEA is another
classical issue to deal with for their efficient implementation. Different
scheduling strategies may be used depending on whether the number
and the location of works (tasks, data) depend or not on the load state
of the target machine:

= Static scheduling: this class represents parallel MOEAs in which
both the number of tasks of the application and the location of
work (tasks, data) are generated at compile time. Static schedul-
ing is useful for homogeneous, and non shared and non volatile
heterogeneous parallel architectures. Indeed, when there are no-
ticeable load or power differences between processors, the search
time of an iteration is derived by the maximum execution time
over all processors, presumably on the most highly loaded proces-
sor or the least powerful processor. A significant number of tasks
are often idle waiting for other tasks to complete their work.

» Dynamic scheduling: this class represents parallel MOEAs for
which the number of tasks is fixed at compile time, but the lo-
cation of work is determined and/or changed at run-time. The
tasks are dynamically scheduled on the different processors of the
parallel architecture. Dynamic load balancing is important for
shared (multi-user) architectures, where the load of a given pro-
cessor cannot be determined at compile time. Dynamic scheduling
is also important for irregular parallel MOEAs in which the exe-
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cution time cannot be predicted at compile time and varies during
the search. For instance, this happens when the evaluation cost of
the objective functions depends on the solution.

m Adaptive scheduling: parallel adaptive algorithms are parallel
computations with a dynamically changing set of tasks. Tasks may
be created or killed as a function of the load state of the parallel
machine. A task is created automatically when a node becomes
idle. When a node becomes busy, the task is killed. Adaptive load
balancing is important for volatile architectures such as desktop
grids.

For some parallel and distributed architectures such as shared net-
works of workstations and grids, fault tolerance is an important issue.
Indeed, in volatile shared architectures and large-scale parallel architec-
tures, the fault probability is relatively important. Checkpointing and
recovery techniques constitute one answer to this problem. Application-
level checkpointing is much more efficient than system-level checkpoint-
ing. Indeed, in system-level checkpointing, a checkpoint of the global
state of a distributed application composed of a set of processes is car-
ried out. In application-level checkpointing, only minimal information
will be checkpointed (e.g., population of individuals, generation num-
ber). Compared to system-level checkpointing, a reduced cost is then
obtained in terms of memory and time. Finally, security issues may
be important for large-scale distributed architectures such as grids and
Clouds (multi-domain administration, firewall, etc) and some specific
applications such as medical and bioinformatics research applications of
industrial concern [30].

3.6 Algorithmic-Level Parallel Model

Granularity: the algorithmic-level parallel model has the largest
granularity. Indeed, the time for exchanging the information is in gen-
eral much less than the computation time of a MOEA. There are rel-
atively low communication requirements for this model. The more im-
portant is the frequency of exchange and the size of exchanged infor-
mation, the smaller is the granularity. This parallel model is the most
suited to large-scale distributed architectures over internet such as grids.
Moreover, the trivial model with independent algorithms is convenient
for low-speed networks of workstations over intranet. As there is no
essential dependency and communication between the algorithms, the
speedup is generally linear for this parallel model. The size of the data
exchanged (for instance the number of Pareto solutions) will influence
the granularity of the model. If the number of Pareto solutions is high
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the communication cost will be exorbitant particularly on a large-scale
parallel architectures such as grids.

For an efficient implementation, the frequency of exchange (resp. the
size of the exchanged data) must be correlated to the latency (resp.
bandwidth) of the communication network of the parallel architecture.
To optimize the communication between processors, the exchange topol-
ogy can be specified according to the interconnection network of the
parallel architecture. The specification of the different parameters asso-
ciated with the blind or intelligent migration decision criterion (migra-
tion frequency/probability and improvement threshold) is particularly
crucial on a computational grid. Indeed, due to the heterogeneous na-
ture of computational grids these parameters must be specified for each
MOEA in accordance with the machine it is hosted on.

Scalability: the degree of concurrency of the algorithmic-level par-
allel model is limited by the number of MOEAs involved in solving the
problem. In theory, there is no limit. However, in practice, it is limited
by the owned resources of the target parallel architectures, and also by
the effectiveness aspect of using a large number of MOEAs.

Synchronous versus asynchronous communications: the im-
plementation of the algorithmic-level model is either asynchronous or
synchronous. The asynchronous mode associates with each MOEA an
exchange decision criterion, which is evaluated at each iteration of the
MOEA from the state of its memory. If the criterion is satisfied, the
MOEA communicates with its neighbours. The exchange requests are
managed by the destination MOEAs within an undetermined delay. The
reception and integration of the received information is thus performed
during the next iterations. However, in a computational grid context,
due to the material and/or software heterogeneity issue, the MOEAs
could be at different evolution stages leading to the non-effect and/or
super-solution problem. For instance, the arrival of poor solutions at a
very advanced stage will not bring any contribution as these solutions
will likely not be integrated. In the opposite situation, the cooperation
will lead to premature convergence.

From another point of view, as it is non-blocking, the model is more
efficient and fault tolerant to such a degree a threshold of wasted ex-
changes is not exceeded. In the synchronous mode, the MOEAs perform
a synchronization operation at a predefined iteration by exchanging some
data. Such operation guarantees that the MOEAs are at the same evo-
lution stage, and so prevents the non-effect and super-solution problem
quoted before. However, in heterogeneous parallel architectures, the syn-
chronous mode is less efficient in term of consumed CPU time. Indeed,
the evolution process is often hanging on powerful machines waiting
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the less powerful ones to complete their computation. The synchronous
model is also not fault tolerant as a fault of a single MOEA implies
the blocking of the whole model in a volatile environment. Then, the
synchronous mode is globally less efficient on a computational grid.

Asynchronous communication is more efficient than synchronous com-
munication for shared architectures such as NOWs and desktop grids
(e.g., multiple users, multiple applications). Indeed, as the load of net-
works and processors is not homogeneous, the use of synchronous com-
munication will degrade the performances of the whole system. The
least powerful machine will determine the performance.

On a volatile computational grid, it is difficult to efficiently maintain
topologies such as rings and torus. Indeed, the disappearance of a given
node (i.e., MOEA) requires a dynamic reconfiguration of the topology.
Such reconfiguration is costly and makes the migration process ineffi-
cient. Designing a cooperation between a set of MOEAs without any
topology may be considered. For instance, a communication scheme in
which the target MOEA is selected randomly is more efficient for volatile
architecture such as desktop grids. Many experimental results show that
such topology allows a significant improvement of the robustness and
quality of solutions. The random topology is therefore thinkable and
even commendable in a computational grid context.

Scheduling: concerning the scheduling aspect, in the algorithmic-
level parallel model the tasks correspond to MOEAs. Hence, the different
scheduling strategies will differ as follows:

m  Static scheduling: the number of MOEAs is constant and corre-
lated to the number of processors of the parallel machine. A static
mapping between the MOEAs and the processors is realized. The
localization of MOEAs will not change during the search.

» Dynamic scheduling: MOEAs are dynamically scheduled on the
different processors of the parallel architecture. Hence, the migra-
tion of MOEAs during the search between different machines may
happen.

m  Adaptive scheduling: the number of MOEAs involved into the
search will vary dynamically. For example, when a machine be-
comes idle, a new MOEA is launched to perform a new search.
When a machine becomes busy or faulty, the associated MOEA is
stopped.

Fault-tolerance: the memory state of the algorithmic-level paral-
lel model required for the checkpointing mechanism is composed of the
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memory of each MOEA and the information being migrated (i.e., pop-
ulation, archive, generation number).

3.7 Tteration-Level Parallel Model

Granularity: a medium granularity is associated to the iteration-
level parallel model. The ratio between the evaluation of a partition
and the communication cost of a partition determines the granularity.
This parallel model is then efficient if the evaluation of a solution is
time-consuming and/or there are a large number of candidate solutions
to evaluate. The granularity will depend on the number of solutions in
each sub-population.

Scalability: the degree of concurrency of this model is limited by
the size of the population. The use of large populations will increase the
scalability of this parallel model.

Synchronous versus asynchronous communications: introduc-
ing asynchronism in the iteration-level parallel model will increase the
efficiency of parallel MOEAs. In the iteration-level parallel model, asyn-
chronous communications are related to the asynchronous evaluation of
partitions and construction of solutions. Unfortunately, this model is
more or less synchronous. Asynchronous evaluation is more efficient
for heterogeneous or shared or volatile parallel architectures. Moreover,
asynchronism is necessary for optimization problems where the compu-
tation cost of the objective function (and constraints) depends on the
solution and different solutions may have different evaluation cost.

Asynchronism may be introduced by relaxing the synchronization con-
straints. For instance, steady-state algorithms may be used in the re-
production phase [6].

The two main advantages of the asynchronous model over the syn-
chronous model are fault tolerance and robustness if the fitness compu-
tation takes very different computations time. Whereas some time-out
detection can be used to address the former issue, the latter one can be
partially overcome if the grain is set to very small values, as individuals
will be sent out for evaluations upon request of the workers. There-
fore, the model is blocking and, thus, less efficient on a heterogeneous
computational grid. Moreover, as the model is not fault tolerant, the
disappearance of an evaluating agent requires the redistribution of its
individuals to other agents. As a consequence, it is essential to store all
the solutions not yet evaluated. The scalability of the model is limited
to the size of the population.
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Scheduling: in the iteration-level parallel model, tasks correspond
to the construction/evaluation of a set of solutions. Hence, the different
scheduling strategies will differ as follows:

= Static scheduling: here, a static partitioning of the population is
applied. For instance, the population is decomposed into equal
size partitions depending on the number of processors of the par-
allel homogeneous non-shared machine. A static mapping between
the partitions and the processors is realized. For a heterogeneous
non-shared machine, the size of each partition must be initialized
according to the performance of the processors. The static schedul-
ing strategy is not efficient for variable computational costs of equal
partitions. This happens for optimization problems where different
costs are associated to the evaluation of solutions. For instance, in
genetic programming individuals may widely vary in size and com-
plexity. This makes a static scheduling of the parallel evaluation
of the individuals not efficient.

= Dynamic scheduling: a static partitioning is applied but a dynamic
migration of tasks can be carried out depending on the varying load
of processors. The number of tasks generated may be equal to the
size of the population. Many tasks may be mapped on the same
processor. Hence, more flexibility is obtained for the scheduling
algorithm. For instance, the approach based on the master-workers
cycle stealing may be applied. To each worker is first allocated a
small number of solutions. Once it has performed its iterations
the worker requests from the master additional solutions. All the
workers are stopped once the final result is returned. Faster and
less loaded processors handle more solutions than the others. This
approach allows to reduce the execution time compared to the
static one.

m  Adaptive scheduling: the objective in this model is to adapt the
number of partitions generated to the load of the target architec-
ture. More efficient scheduling strategies are obtained for shared,
volatile and heterogeneous parallel architectures such as desktop
grids.

Fault-tolerance: the memory of the iteration-level parallel model
required for the checkpointing mechanism is composed of different par-
titions. The partitions are composed of a set of (partial) solutions and
their associated objective values.
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3.8 Solution-Level Parallel Model

Granularity: this parallel model has a fine granularity. There is a
relatively high communication requirements for this model. In the func-
tional decomposition parallel model, the granularity will depend on the
ratio between the evaluation cost of the sub-functions and the commu-
nication cost of a solution. In the data decomposition parallel model, it
depends on the ratio between the evaluation of a data partition and its
communication cost.

The fine granularity of this model makes it less suitable for large-
scale distributed architectures where the communication cost (in terms
of latency and/or bandwidth) is relatively important, such as in grid
computing systems. Indeed, its implementation is often restricted to
clusters or network of workstations or shared memory machines.

Scalability: the degree of concurrency of this parallel model is lim-
ited by the number of sub-functions or data partitions. Although its
scalability is limited, the use of the solution-level parallel model in con-
junction with the two other parallel models enables to extend the scal-
ability of a parallel MOEA.

Synchronous versus asynchronous communications: the im-
plementation of the solution-level parallel model is always synchronous
following a master-workers paradigm. Indeed, the master must wait for
all partial results to compute the global value of the objective functions.
The execution time T will be bounded by the maximum time 7T; of the
different tasks. An exception occurs for hard-constrained optimization
problems, where feasibility of the solution is first tested. The master
terminates the computations as soon as a given task detects that the
solution does not satisfy a given hard constraint. Due to its heavy syn-
chronization steps, this parallel model is worth applying to problems in
which the calculations required at each iteration are time consuming.
The relative speedup may be approximated as follows:

T

Sy =
" a+T/n’

where « is the communication cost.

Scheduling: in the solution-level parallel model, tasks correspond to
sub-functions in the functional decomposition and to data partitions in
the data decomposition model. Hence, the different scheduling strategies
will differ as follows:

s Static scheduling: usually, the sub-functions or data are decom-
posed into equal size partitions depending on the number of pro-
cessors of the parallel machine. A static mapping between the
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sub-functions (or data partitions) and the processors is applied.
As for the other parallel models, this static scheme is efficient for
parallel homogeneous non-shared machines. For a heterogeneous
non-shared machine, the size of each partition in terms of sub-
functions or data must be initialized according to the performance
of the processors.

= Dynamic scheduling: dynamic load balancing will be necessary for
shared parallel architectures or variable costs for the associated
sub-functions or data partitions. Dynamic load balancing may be
easily achieved by evenly distributing at run-time the sub-functions
or the data among the processors. In optimization problems, where
the computing cost of the sub-functions is unpredictable, dynamic
load balancing is necessary. Indeed, a static scheduling cannot
be efficient because there is no appropriate estimation of the task
costs (i.e., unpredictable cost).

m  Adaptive scheduling: in adaptive scheduling, the number of sub-
functions or data partitions generated is adapted to the load of
the target architecture. More efficient scheduling strategies are
obtained for shared, volatile and heterogeneous parallel architec-
tures such as desktop grids.

Fault-tolerance: the memory of the solution-level parallel model
required for the checkpointing mechanism is straightforward. It is com-
posed of the solution(s) and their partial objective value calculations.

Depending on the target parallel architecture, table 4 presents a gen-
eral guideline for the efficient implementation of the different parallel
models of MOEAs. For each parallel model (algorithmic-level, iteration-
level, solution-level), the table shows its characteristics according to the
outlined criteria (granularity, scalability, asynchronism, scheduling and
fault-tolerance).

4. Conclusions and Perspectives

Parallel and distributed computing can be used in the design and im-
plementation of MOEAs to speedup the search, to improve the quality
of the obtained solutions, to improve the robustness, and to solve large
scale problems. The clear separation between parallel design and paral-
lel implementation aspects of MOEAs is important to analyze parallel
MOEAs. The most important lessons of this paper can be summarized
as follows:

m In terms of parallel design, the different parallel models for MOEAs
have been unified. Three hierarchical parallel models have been
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Table 4: Efficient implementation of parallel MOEAs according to some performance
metrics and used strategies.

Property Algorithmic-level Iteration-level Solution-level
Granularity Coarse Medium Fine
(Frequency of exchange, (Nb. of solutions (Eval. sub-functions,
size of information) per partition) eval. data partitions)
Scalability Number Neighborhood size, Nb. of sub-functions,
of MOEAs populations size nb. data partitions
Asynchronism High Moderate Exceptional
(Information exchange)  (Eval. of solutions) (Feasibility test)
Scheduling and MOEA Solution(s) Partial
Fault-tolerance solution(s)

extracted: algorithmic-level, iteration-level and solution-level par-
allel models.

m In terms of parallel implementation, the question of an efficient
mapping of a parallel model of MOEAs on a given parallel ar-
chitecture and programming environment (i.e., language, library,
middleware) is handled. The focus was made on the key criteria
of parallel architectures that influence the efficiency of an imple-
mentation of parallel MOEAs.

One of the perspectives in the coming years is to achieve Exascale per-
formance. The emergence of heterogeneous platforms composed of multi-
core chips and many-core chips technologies will speedup the achieve-
ment of this goal. In terms of programming models, cloud computing
will become an important alternative to traditional high performance
computing for the development of large-scale MOEAs that harness mas-
sive computational resources. This is a great challenge as nowadays
cloud frameworks for parallel MOEAs are just emerging.

In the future design of high-performance computers, the ratio between
power and performance will be increasingly important. The power rep-
resents the electrical power consumption of the computer. An excess
in power consumption uses unnecessary energy, generates waste heat
and decreases reliability. Very few vendors of high-performance architec-
ture publicize the power consumption data compared to the performance
data.

In terms of target optimization problems, parallel MOEAs constitute
unavoidable approaches to solve large scale real-life challenging problems
(e.g., engineering design, data mining). They are also an important al-
ternative to solve dynamic and uncertain optimization MOPs, in which
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the complexities in terms of time and quality are more difficult to han-
dle by traditional sequential approaches. Moreover, parallel models for
MOPs with uncertainty have to be deeply investigated.
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Abstract  This study proposes a binary Artificial Bee Colony (ABC) approach
to develop game strategies for Iterated Prisoner’s Dilemma (IPD). To
determine the quality of the evolved strategies, a comparison is made
between this binary ABC approach, several known man-made strategies
and strategies developed by Particle Swarm Optimization (PSO) algo-
rithm. In this paper, we examine the suitability of the nature inspired
ABC algorithm to generate strategies for IPD which has not been inves-
tigated before. In general, the ABC algorithm provides better strategies
against PSO and benchmark strategies.

Keywords: Artificial bee colony, Iterated prisoner’s dilemma, Particle swarm opti-
mization.

1. Introduction

The Prisoner’s Dilemma (PD) is a well-known game of strategy in sev-
eral sciences such as economics [9], biology [6], game theory, computer
science and political science. Originally, it was proposed by Merril Flood
and Melvin Dresher in 1950 [7] as a non-cooperative pair game and later
Albert W. Tucker [15] characterized it as PD. In 1944 the theory of
the two player non-cooperative game was introduced by Von Neumann
and Morgenstern formalizing the mathematical base in the field of game
theory [12]. This game is useful to demonstrate the evolution of cooper-
ative behavior. The main method to study PD is proposed by Axelrod
in 1987 [2] using Genetic Algorithms (GAs). Darwen and Yao followed
Axelrod’s work to evolve strategies for the IPD using co-evolution [5].
They also extended their research in a variation of IPD where players

51
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have a range of intermediate choices [3, 4]. Since then, some work has
been done at the study of IPD using nature inspired algorithms. Tekol
and Acan in 2003 applied Ant Colony Optimization (ACO) to develop
robust game strategies [14] and in 2005 Franken and Engelbrecht used
Particle Swarm Optimization (PSO) to approach IPD [8].

In this paper, we examine the suitability of the nature inspired arti-
ficial bee colony algorithm [10] to evolve strategies for the iterated pris-
oner’s dilemma. Specifically, our IPD approach uses the binary ABC
algorithm to generate a bit string in order to produce a complete play-
ing strategy. Overall the strategy of the ABC approach plays against
man-made strategies and against PSO-players. This paper includes the
following sections. In Section 2 we give the necessary background about
the prisoner’s dilemma. Section 3 includes the description of our ap-
proach, the definition of the benchmark strategies used, the main steps
of our algorithm and a brief analysis of the PSO algorithm. Section 4
contains experimental results and in Section 5 conclusions and future
work are given.

2. Prisoner’s Dilemma

The prisoner’s dilemma. is referred to a non-zero-sum, a non-coopera-
tive game, named by Albert W. Tucker in 1950 and is one of the most
famous problems in game theory. It is applied to many cases of two
conflicted players. The non-zero-sum term implies that when one player
wins, the loss of the other is not a necessity. In addition, the non-
cooperative implies that players have no way to communicate with each
other prior to the game, they have no knowledge of the others’ decision
of historic behavior and they are not able of making any kind of agree-
ment with the other prisoner. A general description [15] is given in the
following. T'wo persons are jointly charged with a crime and held in sep-
arate cells. They have two possible choices: the prisoner can cooperate
(C) meaning that he/she will keep quite and keep to the pre-planned
story made with the other prisoner before they have both been arrested
or the prisoner can defect (D) meaning that she/he will reach an agree-
ment with the police and accuse the other prisoner. Thus, the prisoner
that defects is free to go if the other prisoner decides to cooperate and
the prisoner that cooperates will be jailed for m years. In case that both
of them decide to cooperate, then, they will both be jailed for n years
(where n < m). Finally, if both of them decide to defect, they will both
be jailed for r years (where n < r < m). In order to model the game in
a matrix form, the payoff matrix is used. The payoff that every player
gains according to his/her choice is given in Table 1 [2]. The first value
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Table 1: Payoff matrix for prisoner’s dilemma

Player 11
Cooperate Defect
Cooperate R,R S, T
Player I Defect T,S PP

mentioned inside the cells refers to the payoff of the player I and the
second to the player II. The payoffs [2] included in Table 1 have a code
letter according to the players’ action. The letter R denotes the payoff
if both players cooperate as a reward, S expresses the sucker’s payoff,
in case of cooperation against defection. T is the temptation payoff to
defect against a cooperating opponent and P denotes the punishment
payoff if both decide to defect. The prisoners dilemma is defined by the
following inequalities on the value of S, P, R, T.

T>R>P>S (1)
2QR>S+T (2)

This first constraint is a classification of the payoffs. The temptation
payoff is the highest and the suckers payoff is the lowest. It also ensures
that parallel cooperation is more profitable than parallel defection. The
second constraint ensures that mutual cooperation of the players is more
profitable than one player’s defection against cooperation of the other
and backwards. For this study, the numerical payoff of each decision is
given in Table 2 which is same to the payoff matrix used by Axelrod [2].
This general description is actually aligned with the one-shot prisoner’s

Table 2: Payoff matrix used for this paper

Player 11
Cooperate Defect
Cooperate 3,3 0,5
Player I Defect 5,0 1,1

dilemma, meaning that each prisoner has only one opportunity to de-
cide his action: cooperation or defection. In the way that the game is
constructed, the most profitable solution for a player is to defect, irrel-
evant to his opponent strategy. Two scenarios can emerge: to gain the
biggest payoff T' if the other player cooperates or to receive a smaller
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payoff P but equal to the payoff of the other player. This way the risk
of receiving the lowest payoff S, as a victim of his opponents confes-
sion, is avoided. This leaves behind the option of mutual cooperation
R, a strategy more profitable than mutual defection. In order to give
the player the chance of choosing this strategy, Axelrod proposed the
Iterated Prisoner’s Dilemma IPD [1]. The iterated prisoner’s dilemma is
actually a sequence of repeated prisoner’s dilemma games. The number
of iterations must be unknown to both players. This hypothesis ensures
that both players will not be trapped into a repeated mutual defection.
To understand this situation, we have to assume that a known number
of iterations transforms the game into a one-shot prisoner’s dilemma re-
peated for every iteration. Thus, if the player knows which is the last
iteration and reasonably defects on that iteration and the same logic is
followed by his opponent, then, the same phenomenon will be carried
out as we look back to the first iteration. Several versions of IPD exist,
depended by the different ways of studying them. Since 1980, when Ax-
elrod used Genetic Algorithms (GAs) to generate strategies for the IPD,
little work has been done in the implementation of evolution algorithms
to the problem [8].

3. Bees Play Prisoner’s Dilemma
3.1 The Proposed ABC Approach

Artificial bee colony algorithm is based on the intelligent behavior of
bee swarms and is mainly applied to continuous time optimization prob-
lems. ABC algorithm has been proposed by Karaboga and Basturk in
2008 [10] and simulates the waggle dance of the bees in their effort to
find food. In the ABC algorithm, the colony consists of three groups
of bees: the employed, the onlookers and the scout bees. Every food
source is referred to only one employed bee, thus, the fleet of the em-
ployed bees to be used is equal to the amount of the food sources. In
this study, we create a set of solutions as we generate a set of random
players equal to the employed bees. For the iterated prisoner’s dilemma
the value of the fitness function is actually the payoff of each player.
Our goal is to estimate the maximum payoff that a player achieves while
playing with all the other random players. Every player ¢, who is gener-
ated, has a decision vector z;; that contains binary values, z;; € [0, 1].
Every element of the decision vector describes the player’s strategy on
every game. The number of the played games j is the length of the
vector. When z;; = 1, player 7 cooperates and when z;; = 0 player
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1 defects. For example, a decision vector for j = 8 is given below.

Decision Vector 0 1 0 1 0 0 1 1

As we mentioned above, we have a definite number of N players and
N decision vectors. Without exception every player faces all others and
compares the values of the decision vectors. In this way the payoff matrix
is created containing all payoffs the players have achieved from all the
games. The payoff matrix is used to calculate the probability that the
onlooker bees visit the food sources by using roulette wheel selection
method. The necessary probability P(i) is calculated by the following
equation:

F(i) F(i)
FN) 3o F (k)

where F'(i) is the payoff of player i, and F(N) is the sum payoff of
all players N. We are able to conclude that more onlookers are placed
to players with high payoff in order to improve them. Considering that
ABC algorithm was developed for problems with continuous-valued vari-
ables y;; € R, the decision vector of each player (discrete values) must be
converted to a continuous-valued vector before proceed with the method.
The function used for this transformation is the following:

P, = (3)

1

1+ el'p(—fL‘ij) ’ (4)

sig(zij) =
After the transformation of the decision vectors we apply the equation
(5) of the ABC algorithm that produces new food sources. To be exact,
the equation differs the decision vectors of the players that have been
selected by onlooker bees in pursuance of creating competitive players.
The equation that gives a new food source given by Karaboga and Bas-
turk [10] is the following:

Yij (t+1) = yi; (1) + d(yiz (1) — yrs(1))- (5)

The y;; is the decision vector of player 7, ¢ is random number between
(0,1), yg; is the decision vector of a random player k such as k # i and
k € N and t is the current iteration. An essential point of the procedure
is the number of onlooker bees that are allocated to a single food source
to one player. In case of more than one bees, the new decision vectors
y;; are produced using equation (5) as many times as the number of bees
allocated to this food source using different ¢ and different k£ each time.
Thus, g new vectors are actually generated (¢ is equal to the number
of onlooker bees). If a player has not been visited by any onlooker bee,
then, his decision vector remains as previous. As we have to deal with a
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combinatorial optimization problem, it is necessary to convert the newly
created decision vectors y;;, to binary values according to the following
rule:

) _ [ L o <yy(t+1)
a;”(t+1)—{0, jfgbeij-(t—i—l) (6)

When the conversion has been completed, NV + ¢ decision vectors have
been created. Summarizing, N + g players are ready to compete with
each other at prisoner’s dilemma, as we described earlier. When all the
games are completed, the payoffs are calculated. For each individual
player the decision vector with maximum payoff is selected and saved
into the memory. Finally, only one of the NV players emerges. This player
has the best decision vector meaning that he has achieved the maximum
payoff against all the others.

We have presented a simulation study of artificial bee colony algo-
rithm for solving PD that is practically without memory. Summariz-
ing the context of the above paragraphs, the initial solution strategies
are randomly created in every simulation irrelevant to the benchmark
strategies (Section 3.2) and to the PSO evolved strategy (Section 3.3)
that our player has to face. In order to improve our player’s perfor-
mance, the algorithm is alternated in a way to memorize the decision
vector that maximizes the player’s payoff after competing with each one
of the strategies. Thus, as the iterations go on, the algorithm includes
our player’s best strategies of the previous iteration as a starting point
of the next iteration. That gives advantage to his generated strategies.
The pseudo-code used is given in Algorithm 1.

3.2 Benchmark Strategies

In order to picture our experimental work, some of the man-made
strategies that participated in Axelrod’s experiments, have been chosen.
Additionally a randomly chosen player has been used, as well as play-
ers who have been generated by a PSO algorithm in order to compare
those two algorithms. The man-made strategies [2] are: Random: This
player has a random binary decision vector and he is the most unpre-
dicted opponent. Always Cooperate (AC): This is the most innocent
strategy, because that player cooperates on every move. Pavlov: This
player repeats the previous played move if that move was beneficial or
plays the opposite if that move was unproductive. Tit-for-tat (TFT):
In this strategy proposed by Anatol Rapoport [13], the player begins
with cooperation but he continues by imitating the last move of his
opponent. Evil tit-for-tat (ETFT): In this strategy, the player be-
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Algorithm 1 Artificial Bee Colony Algorithm

Define number of employed bees (collection of players) (V)

Define number of onlooker bees (I") and number of scout bees (5)

Define number of executions (W), iterations (L) and games (M)

Initialization

Randomly create decision vectors ()

Pairing each player with one employed bee

Calculate the payoff for each player according Table 2 by playing all

against all

Main Phase

9: while the maximum number of iterations has not been reached do

10:.  Return employed bees to the hive

11:  Transform the decision vector to a continued-valued with eq. (4)

12:  Calculate P; and place the onlooker bees using eq. (3)

13:  Create new decision vectors using eq. (5)

14:  All players compete with each other

15:  Compare the payoffs and save the personal best decision vector

16: end while

17: Save the decision vector that gives maximum payoff of all the players

18: Best player plays M games against each of the 5 benchmark strate-
gies (section 3.2)

19: Return to step 4 until W executions have been completed

20: When all executions have been completed, W players have been

generated with ABC algorithm.

®

gins with defection but he continues by imitating the last move of his
opponent.

3.3 Particle Swarm Optimization Algorithm

In order to compare the quality of our solution through ABC algo-
rithm, we evolve strategies with PSO. Alike to ABC, PSO is an evolu-
tionary technique and it is inspired by the behavior of bird flocks and
swarming theory. Originally, it was introduced by Kennedy and Eber-
hart [11] for optimizing continuous nonlinear functions. The algorithm
simulates the movement of a swarm (population) consisting of particles
(number of players). The swarm moves through a solution space and
each particle represents a feasible solution to the optimization problem.
Each particle associates with a value of the objective function being opti-
mized (payoff). Furthermore, velocity is, also, assigned to each particle
in order to direct the movement towards better solutions (positions).
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In the PSO algorithm, each particle knows its previous best solution
and the best solution of the whole swarm [8]. Thus, particles modify
their positions towards their personal best positions and the global best
position of the whole swarm according to the following equations:

.Cl?z'j(t =+ 1) = xij(t) + Uij(t + 1), (7)

0 (t+1) = v (t) +c1 %P1 (pbesti; — xi; (1)) + ca x P2 (gbest; — x45(t)). (8)
The description of the equations (7), (8) is relevant to our approach.
Thus, the equation (7) represents the new decision vector of player i, t
is the current iteration, ¢; and cy are velocity variables (¢c; = ¢co = 2)
and ¢1, ¢2 are random numbers in the interval (0,1). Particle’s personal
best obtained value (payoff) is denoted by pbest and gbest denotes the
best obtained value from all the particles in the swarm (the best payoff
from all the players). PSO initially was proposed for continuous-valued
variables, thus, it is necessary to convert the binary-valued decision vec-
tors z;;(t) to continuous values and vice-versa. For this purpose, we use
equations (4) and (6) as they are used in the ABC approach (section
3.1).

4. Experimental Results

In this section, a brief analysis of our experiments is presented. The
figures below show the achieved payoffs (in the vertical axis) of ABC
versus benchmark strategies for 20 different executions (players). The
achieved payoff is the total payoff in en execution.
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Figure 1: ABC vs RANDOM (ABC: cross, RANDOM: circle)

Figure 1 shows that version 1 of our algorithm (ABC version 1 (with-
out memory)) against random strategies has unpredictable behavior de-
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spite that this version generates competitive players. The memory that
version 2 provides is meaningless cause of the irregularity of the oppo-
nent strategies.

250 1

200

total payoff

50

a
S

=)
3

ABC version 1 (without memory)

250

total payoff

=)
S

50

2 4 6 8 10 12 14
execution

16 18

200

@
S

ABC version 2 (with memory)

+ + + +
++ g

2 4 6 8 10 12 14 16 18 20
execution

Figure 2: ABC vs AC (ABC: cross, AC: circle)

It is obvious from Fig. 2 that the AC strategy is ineffective due to
the PD’s formulation as our player achieves higher or equivalent to his
AC-opponent’s payoff at every game. Thus, both our versions always
win the AC strategy.
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Figure 3: ABC vs PAVLOV (ABC: cross, PAVLOV: circle)

The generated strategies by version 1 of our algorithm are competi-
tive against Pavlov’s strategies. Version 2 of ABC performs better and
constantly generates strategies able to win Pavlov’s strategies as Fig. 3
shows.



60 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS
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Figure 5: ABC vs ETFT (ABC: cross, ETFT: circle)

Figure 4 shows that both versions of our ABC algorithm develop
strategies that help our player to gain higher payoff than a player who
follows the TF'T strategy.

The ETFT is the first strategy that our algorithm gives inferior results
at every execution (Fig. 6). A player that follows ETFT strategy has
the advantage to start with defection, thus, he gains payoff regardless
of our player’s move. If our player cooperates initially, he gains zero
payoff and the ETF'T opponent gains 5 points of payoff. In case that our
player chooses to defect too, they both gain 1 point of payoff according to
Table 2. Thus, we are reasonably able to assume that ETF'T player gains
more payoff than a player who follows any of the other above strategies.
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The memory that version 2 provides has no effect in the improvement
of our player’s payoff.

Table 3: Percentage differences of payoffs (%) between the two versions of ABC
algorithm and Benchmark strategies.

W=20, N=5, M=5, L=10 W=20, N=20, M=5, L=50
Strategies ABC(Version 1) ABC(Version 2) ABC(Version 1) ABC(Version 2)
AC 1.9863+ 0.18 2.5634+ 0.15 2.6674% 0.15 3.92224+ 0.17
Random 0.1756+ 0.17 -0.6832+ 0.23 0.3660+ 0.17 -0.6077+ 0.16
Pavlov 0.1310+ 0.17 2.21744+ 0.12 0.1683+ 0.17 2.8255+ 0.18
TFT 0.28184+ 0.11 0.3940+ 0.17 0.4293+ 0.16 0.4300+ 0.13
ETFT -0.1897+ 0.16 -0.2841+ 0,16 -0.1663+ 0.19 -0.2201+ 0.17
PSO 0.0620+ 0.19 0.3331+ 0.22 0.1443+ 0.13 0.4886+ 0.16

The PSO algorithm evolved strategies have been used against both of
the ABC’s versions in the same way that the benchmark strategies did.
W players generated by PSO played the PD versus W other generated
by ABC. The experiments show that PSO develops very competitive
strategies but version 1 and version 2 of ABC algorithm are often more
effective and the ABC’s players gain higher payoffs as Fig. 6 shows.
The most interesting observation is that as the number of iterations
increases the ABC’s players payoffs are increasing too. As it occurs
with most of the benchmark strategies, version 2 with memory performs
better. In Table 3 the percentage differences of payoffs between the
two versions of ABC algorithm and his opponent (benchmark strategies
and PSO) are calculated using the following equation: Percopponent =

(payof fapc — payof fopponent)/Payof fopponent- In Table 3 we observe
the stability of our algorithm.

5. Conclusion

In this paper, we present our algorithmic approach for solving the
iterated prisoner’s dilemma using a nature inspired method, the artifi-
cial bee colony algorithm. We have managed to evolve strategies for a
player who faces a PD game for unknown number of iterations and ex-
amine his behavior against benchmark strategies and against generated
strategies from the PSO algorithm. We have come to conclusion that
the ABC algorithm with memory evolves more efficient strategies pro-
viding to our player higher payoff compared to the original memory-less
ABC algorithms. Furthermore, there is room for future work. For in-
stance, the applicability of other nature inspired algorithms to develop
IPD strategies need to be tested and to be compared with our ABC
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approach. Also, an extension of our algorithm to N-person IPD [16, 17]
is interesting.

References

1]

2]

3]

[4]

[5]

[6]
[7]

8]

[9]

R. Axelrod. The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In
L. Davis (Ed.) Genetic Algorithms in Simulated Annealing, pages 32—41, Pitman,
London, 1987.

R. Axelrod and W. D. Hamilton. The evolution of Cooperation. Science,
211:1390-1396, 1981.

P. J. Darwen and X. Yao. Co-evolution in iterated prisoners dilemma with in-
termediate levels of cooperation: Application to missile defense.lnternational
Journal of Computational Intelligence and Applications, 2:83-107, 2002.

P. J. Darwen and X. Yao. Does extra genetic diversity maintain escalation in
a co-evolutionary arms race? International Journal of Knowledge-Based Intelli-
gent Engineering Systems, 4(3):191-200, 2000.

P. J. Darwen and X. Yao. On Evolving Robust Strategies for Iterated Prisoner’s
Dilemma. Proceedings of the AI Workshops on Evolutionary Computation, pages
276-292, 1995.

L. A. Dugatkin. Animal Cooperation Among Unrelated Individuals. Naturwis-
senschaften, 89:533-541, 2002.

M. M. Flood. On game-learning theory and some decision-making experiments.
Technical Report DTIC Document, 1952.

N. Franken and A. P. Engelbrecht. Particle swarm optimization approaches to
coevolve strategies for the iterated prisoner’s dilemma. IEEE Transactions on
Evolutionary Computation, 9(6):562-579, 2005.

S. P. H. Heap and Y. Varoufakis. Game Theory: A Critical Introduction. Rout-
ledge, New York, 1995.



ABC Optimization Approach to Develop Strategies for the IPD 63

(10]

(11]

[12]
[13]
[14]
[15]
[16]

(17]

D. Karaboga and B. Basturk. On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing, 8(1):687-697, 2008.

J. Kennedy and R. Eberhart. Particle Swarm Optimization. Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pages 1942-1948,
1995.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behav-
sor. Princeton University Press, 1944.

A. Rapoport and A. M. Chammah. Prisoner’s dilemma: A study in conflict and
cooperation. University of Michigan Press, 1965.

Y. Tekol and A. Acan. Ants can play prisoner’s dilemma. IEEE Congress on
Evolutionary Computation, 2:1348-1354, 2003.

A. W. Tucker. The mathematics of Tucker: A Sampler. The Two-Year College
Mathematics Journal, 14:228-232, 1983.

X. Yao and P. J. Darwen. An experimental study of n-person iterated prisoners
dilemma games. Informatica, 18(4):435-450, 1994.

X. Yao and P. J. Darwen. Genetic Algorithms and Evolutionary Games. Com-
merce, Complexity and Evolution, pages 313-333, Cambridge University Press,
2000.






SENSITIVITY ANALYSIS OF THE BEE
COLONY OPTIMIZATION ALGORITHM

Tatjana Jaksi¢ Kriiger
Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia

Faculty of Technical Sciences, Novi Sad, Serbia

tatjana@mi.sanu.ac.rs

Tatjana Davidovi¢
Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia

tanjad@mi.sanu.ac.rs

Abstract

Keywords:

Bee Colony Optimization (BCO) is a nature-inspired population-based
meta-heuristic method that belongs to the class of Swarm intelligence
algorithms. BCO was proposed by Luc¢i¢ and Teodorovié¢, who were
among the first to use the basic principles of collective bee intelligence
in dealing with optimization problems. Designing a BCO method in
principle includes choosing a procedure for constructive/improvement
moves, an evaluation function and setting BCO parameters to a suitable
values. Topic of this work is addressing the influence of right choice of
BCO underlying procedures, such as the choice of loyalty functions, and
influence of parameter variations on algorithm performance, by means
of visual inspection. Analyses were conducted for simple variant of
scheduling problem. Also, to achieve good alternatives for reported
solutions, new evaluation methods for scheduling problem are presented.

Empirical analysis, Meta-heuristics, Parameter tuning, Swarm intelli-
gence.

1. Introduction

Apart from the significant advances in computer technology and prog-
ress in disciplines relevant for solving optimization problems, practical
complex problems are still challenging in the sense that it is hard to solve
realistically large instances in reasonable computation times. On the top
of that issue, there is a question of configuring solver’s parameters. The

65
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performance of most meta-heuristic methods is tightly connected with
the right choice of their parameters, resulting with analyses that involve
yet another optimization problem. One possible approach for dealing
with such issues is empirical analysis, in most of the cases connected
with the concrete application and implementation.

Bee colony optimization is a population-based meta-heuristic method
that was first proposed by Luci¢ and Teodorovié in 2001 [13]. The in-
spiration for creating new multi-agent system, such as BCO, originates
from foraging behavior of the honey bees. This behavior is suitable for
modeling since the practice of collecting and processing nectar is highly
organized. The first version of the BCO algorithm was developed as a
constructive procedure, where each artificial bee is building a solution
from scratch. Later variant of BCO, known as improvement BCO, used
modification of complete solutions. To provide better understanding of
the BCO structure, the introduction into the behavior of the bees in
nature is being presented.

In nature, honey bees succeed to find nectar among limited resources
in quite efficient manner, without control of some central management
and within unpredictable and dynamic environment. The reason for
such a success is the capacity for communication using skills that most
resemble to symbolic language [10]. It was Karl von Frisch that in the
mid-1940s first recognized the waggle dance [18], for which he earned
Nobel Prize in 1973. The bees are using waggle dance to learn about
various properties of food source, such as the position defined by the
direction and the distance.

Basically, a mathematical model of the foraging behavior of honey
bees can be described as follows. Bees that are searching and collecting
the nectar are known as worker bees. They collect and accumulate food
for later use by other bees. The worker bees that are exploring the area,
typically in the neighborhood of their hive, are called scout bees. After
completing the exploration, scout bees return to the hive and inform
their hive-mates about the locations, quantity and quality of the avail-
able food sources in the areas they have examined. In the case they have
discovered nectar, scout bees dance in the so-called “dance floor area” of
the hive using a ritual called “waggle dance”, in an attempt to attract
the remaining members of the colony to follow their lead. If a bee decides
to leave the hive and collect the nectar, it will follow one of the dancing
scout bees to the previously discovered location. After returning to the
hive with a load of nectar, the foraging bee then decides for one of the
several scenarios: (1) it can try to recruit its hive-mates with the dance
ritual before returning to the food location; (2) it can continue with the
foraging behavior at the discovered nectar source, without recruiting the
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rest of the colony; (3) it can abandon the food source and return to its
role of an uncommitted follower [3, 4]. Although it is yet unknown how
an uncommitted bee decides among several recruiters, the fact is that
“the loyalty and recruitment among bees are always a function of the
quantity and quality of the food source” [8, 17].

2. The BCO Algorithm

The BCO method is based on engagement of a group of artificial bees
(B individuals) in search for the optimal solution [8]. The homogeneity
of artificial bees is being presumed, where each bee generates one solution
to the problem. The homogeneity implies that, unlike worker bees in
nature, all the artificial bees in BCO are involved in foraging process.
The search process of artificial bees is conducted through iterations,
during which bees also communicate in order to compare the quality
of obtained solutions, until some predefined stopping criteria is being
satisfied. In regard to this clear distribution of tasks for artificial bees,
each iteration of the BCO algorithm can be represented as a composition
of alternating phases (steps): forward pass and backward pass.

During the forward pass, all the artificial bees are performing the
exploration independent from each other, and therefore, no information
is being exchanged in this phase. The method of exploration depends on
the implementation of the corresponding BCO algorithm, that is, choice
of heuristic. The exploration is performed through certain (predefined)
number of moves to either construct the part of a solution [7] or modify
the existing complete solution [6]. The number of moves within one
forward pass can be represented as a function of the parameter NC'. The
parameter NC represents the second parameter of the BCO method and
its values are influencing the exploitation of the search. Typically, it is
used to determine the frequency of information exchange between bees,
that is, the number of forward/backward passes during one iteration.
At the end of the forward pass the new (partial or complete) solution is
generated for each bee [8].

During the backward pass of the BCO algorithm all the artificial bees
share the information about the discovered solutions. The information
being exchanged in the BCO algorithm contains the quality of each
(partial) solution, with respect to the best and the worst solution. Each
artificial bee decides, with a probability depending on the solution qual-
ity, whether it will stay loyal to its solution or not. The artificial bees
that stay loyal to their solutions are becoming recruiters. Artificial bees
that are not loyal to their current solutions, become uncommitted, and
have to select among the solutions advertised by the recruiters. The se-



68 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

lection process for one of the advertised solutions is stochastic, in such a
way that better solutions are given higher probabilities to be chosen for
further exploration. Consequently, within each backward pass all bees
are being divided into two groups: recruiters, and uncommitted bees.

Initialization: Read input data.
Do
(1) Assign a(n) (empty) solution to each bee.
(2) For (i=0;i < NC;i++)
// forward pass
(i) Perform move for each bee.
// backward pass
(ii) Evaluate the (partial/complete) solutions;
(iii) Loyalty decisions;
(iv) If (bee not loyal), choose a recruiter by roulette wheel.
(3) Evaluate all solutions. Update pest and f(Zpest)
While stopping criterion is not satisfied.

return (Tpest, f(Tpest))

Figure 1: Pseudo-code for BCO

The pseudocode of the BCO algorithm is given in Fig. 1. Steps (i) and
(7i) are problem dependent and should be resolved in each implementa-
tion of the BCO algorithm. On the contrary, other steps of the BCO are
problem independent. These steps specify loyalty decision (step (iii))
and recruiting process (step (iv)), and are therefore described in more
detail in the following text.

2.1 Loyalty Decision

In order for bees to share information about the quality of discovered
(partial) solutions, the BCO algorithm is running through three stages:
1. Evaluation; 2. Loyalty decision; and 3. Recruitment. If value Cj, (b =
1,2, ..., B) denotes the evaluation value of the b-th bee (partial) solution,
then it is being normalized to the [0, 1] interval in such a way that larger
normalized value Oy, corresponds to the better (partial) solution. Usually
the evaluation is implemented so that it corresponds to the formulation
of the objective function [15].

In the next stage of backward pass the loyalty functions allow, for bees
who start exploration from different points in the search space, to decide
whether to become uncommitted followers, or to continue exploring al-
ready known solutions. The probability that b-th bee (at the beginning
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of the new forward pass) is loyal to its previously generated (partial)
solution can be expressed as follows:

pp =", b=1,2,...,B, (1)

where parameter u corresponds to the forward pass counter. In this
form equation (1) assures that the bee b will stay loyal with a higher
probability to discovered (partial) solutions of a good quality (the ones
with higher Op value). Moreover, as the search process advances the
influence of the already discovered (partial) solution increases, i.e., the
probability that bee will keep and advertise its current solution has larger
value.

Until recently, loyalty function pg’uﬂ was most often used when deal-
ing with optimization problems. From an analytical perspective, it can
be reasoned that its utilization agrees well when the search process is
implemented so that often interruptions during backward pass should
be avoided. In other words, when it is obvious that the search path of
a bee will most probably lead to a good solutions, then increasing its
loyalty during one iteration assists well such endeavor. However, when
the emphasis should be on the exploration of the solution space, different
perspective into the measure of bees loyalty needs to be considered. In
recent work [16] it was reported that for some variants of BCO, better
performance could be achieved if the current forward pass index (u) was
omitted in the loyalty decision process. Some other probability func-
tions were examined in [14]. A new study was therefore conducted for
10 different loyalty functions:

1-0y
u

L) py =, (6) P+t = =100/ VT T,
(2) py = e‘Omax Oe, (7) pPUt! = e~ (1-04)/logu,

(3) py = Ob (8) pH! = e~ (1-0n)/ulog(u+1),

(4) pirit = e=(1=0n)/mir (9) pb = e2+(1-00),

(5) p Tt = e 0- OWW , (10) pPt?t = ¢=(1-0s)log (u+1)/ log (u+2),

Two classes of loyalty functions can be distinguished: Class I, as a func-

tion of parameter Oy (p, 228) “and Class II as a two variable function of

. 4
Oy and counter u or iteration counter n (pg 3,486, 79)

2.2 Recruiting Process

The probability that b’s (partial) solution would be chosen by any
uncommitted bee depends on the solution quality of a recruiter b and
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equals to:
Oyp

Py = b=1,2,...,R, (2)

= — ,
> O
k=1

where Oy, represents normalized value for the objective function of the

k-th advertised partial solution and R denotes the current number of
recruiters.

3. Sensitivity Analysis of BCO

Designing a BCO method in principle includes choosing a procedure
for constructive/improvement moves, an evaluation function and setting
BCO parameters to a certain values that are usually determined by some
set of pilot studies, some previously published work or even intuition.
However, the analysis of different settings for loyalty function is lacking
in current literature, even though it is a part of the generic section of
the BCO method and is not problem specific. One of our goals was to
address this issue.

Empirical analysis of the meta-heuristic method belongs to interdis-
ciplinary research and in many cases can require great effort due to the
stochastic nature of the method or, in some cases, tuning large number
of parameters whose interaction should be expected [11]. Unlike specific
orientated optimization algorithms, meta-heuristics methods are cate-
gorized by its parameters and/or different modules [2]. Such structure,
when implemented, can expose different behavior as parameter values
are changing. During the last decade, different tools for experimental
analysis were proposed and/or inspected, most of them based on model-
ing response values with linear or nonlinear models and /or implementing
three basic steps: screening, experimentation and exploitation [1, 9, 19].
The literature on this topic today is overwhelming, so the right choice
of the tunning method for BCO remains one of the future challenges.

The aim of this work is to provide first insights on behaviour of BCO
by following guidelines of many researches who were concerned with me-
thodical empirical analysis of heuristic and meta-heuristic methods. A
thorough scientific testing of BCO method can be computationally too
extensive, which is why first steps into empirical analysis of BCO is
addressing questions of sensitivity analysis. Sensitivity analysis corre-
sponds to analysis of variation of algorithm’s response values, such as
quality of solution (usefulness, utility) or time of execution, while chang-
ing its parameter configuration [12]. We examined here a constructive
variant of BCO algorithm and used a simple scheduling problem as an
example.
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Problem formulation. Let m be the total number of identical pro-
cessors engaged, and n number of non-preemptive independent tasks.
The considered scheduling problem consists of assigning tasks to pro-
cessors, and determining their starting times. Let T' = {1,2,...,n}
be a given set of independent tasks, where each tasks ¢ € T has to
be processed by exactly one among the identical processors from the
set P = {1,2,...,m}. Each processor can process only one tasks at
the time, and once the tasks has started it will continue to run on the
same processor until completion. Let [; be the processing time of task ¢
(i =1,2,...,n), which is known and fixed. The goal is to find a schedule
of tasks on processors such that the corresponding completion time of
all tasks is minimized. The mathematical programming formulation of
the problem can be found in [7], together with the implementation of
BCO algorithm that was used in this work. Problem here is referred to
as finding minimal makespan.

Problem instances. Instances used for testing BCO algorithm
represent randomly generated instances with known optimal solutions
[7]. They were introduced in [5] for Multiprocessor Scheduling Prob-
lems with Communications Delays. The test instances are named as
Togra< n >_< m >, where n designates number of tasks, and m denotes
number of processors (graph density was set to zero). Specifically, in the
work of Davidovié¢ et al [7] different problem-size instances were used,
ie., m = {2,4,6,8,9,10,12} and number of tasks ranging from 100 to
500. It was concluded that n does not influence the complexity of the
problem, as confirmed in new studies. Additionally, new results have
shown that the influence of the varying number of processors on the
complexity of the problem is not so straightforward. Structure of these
problem instances is introduced using box-plots and presented in Fig. 2.

4. Results

Evaluation function fb1 = Ymaz, iNtroduced in the paper of Davidovié
et al. [7] depends only on the value of the makespan (Ymaz ), and therefore
is more receptive due to its lower computational costs. Newly proposed
function fb2 = Ymaz/L' depends on two parameters, makespan and the
current sum of computational time of non-scheduled tasks L. With
introduction of evaluation function be better partial solution was asso-
ciated with larger values (maximality principle), which suggested new
course of how the problem can be solved while maintaining objective
of minimizing makespan. To best describe new approaches, a concept
of methods of evaluations was introduced in order to illustrate different
evaluation of partial solution in the backward pass of BCO. In case of f;
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Boxplot of tasks lengths for problem of scheduling Boxplot of tasks lengths for problem of scheduling
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Figure 2: Box-plot for m = 12,16 and 9 instances in relation to the n, where possible
outliers are marked with red crosses.

both maximization and minimization principles can be used, thus yield-
ing two different methods of evaluations. When partial solution with
biggest makespan is evaluated as the best, it’s normalized value is equal
to 1, while the solution with lowest makespan will be appointed with nor-
malized value 0. This method of evaluation is denoted here as maz, fbl.
In case of minimization, partial solution with lowest makespan is marked
as the best among the population of solutions, and its normalized value
corresponds to 1, while maximal makespan will be normalized to value
0. Such method of evaluation is denoted here as min, f). Justification
for incorporating these methods comes from initial set of studies when it
was recognized that the solution with smaller makespan doesn’t neces-
sarily lead to best result and that both minimal and maximal makespan
can be used to quantify good partial solution.

An experiment will be considered as a set of 100 independent runs
of the investigated algorithm. All experiments were conducted for pre-
defined values of parameters. In case of the test instances logral00_-12/16
the experiments were accomplished on complete parameter’s search space
(Fig. 3). However, for instances where n > 150 the experiments were
conducted on sub-regions of parameters search space. Such restriction
comes from limitations imposed on values of NC' as they are dependent
on number of constructive moves in BCO instance. For example, as
the number of tasks increases, maximal number of forward/backward
passes also increases which greatly expands the parameters search sub-
space S C B x NC. Since experimental analyses should be conducted
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for each pair (B, NC) it would be too time consuming to include values
for NC' > 100. The choice of values for maximal number of bees was
determined arbitrary. Domains of all BCO parameters are provided in
Table 1.

Table 1: Parameter space for experimental analysis of BCO.

Parameter Domain
method of evaluation min, fbl_; max, fbl; max, fb2
loyalty function P, 7 € [0,..,9]
B [1,20]
NC [1,100]

In each run of an experiment the solution quality was measured within
the stopping criteria defined as maximum number of iterations, while
maximal number of iterations was set to 100. The set of results used to
conduct sensitivity analysis of the BCO parameters is being presented
in Fig. 3.

Figure 3: The influence of parameter NC' on the averate solution quality in regard
to the method of evaluation and loyalty function.

Graphics in Fig. 3 illustrate influence of different BCO parameters
on reported average solutions quality, measured by percent error, for
two problem instances of different class and same number of tasks. The
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main goal of this presentation was to visually inspect improvements in
the solution quality when parameter NC changes its value in respect to
structural parameters of BCO. As three methods of evaluations were
used, graphics are arranged to distinguish their influence on each loy-
alty functions when NC' € [1,100]. Specifically, each color on a plot
corresponds to different loyalty function, whereas dashed black line sig-
nifies reference (start) case when NC = 1,B = 20. Reference case is
used to simulate the behaviour of an underlying heuristic. All values
on the graphics correspond to a number of bees that generated best re-
sults. It should be noted that parameter B can take different values
when reporting on the best value. For example, on problem instance
Togral00_12 and for method of evaluation min, fbl, presented profiles of
average results are mostly generated when B = 20. On the same in-
stance, the best average result in the case of configuration (maz, fb1 ,pg)
was achieved when B = 18. Actually the best solutions were generated
when large population of bees was utilized (B > 18).

There are few interesting observations drawn from Fig. 3. First, for
some cases of loyalty functions the influence of methods of evaluation
is not distinguishable, as it is the case for p2’3’7. The reason for such
behaviour comes from the fact that these three loyalty functions can
converge fast toward cases where the majority of the partial solutions
will be transfered to the next iteration. It is most likely that the search
is stranded in the local minimum. Therefore, it can be concluded that
loyalty functions p2’3’7 show robustness to changes of other qualitative
and quantitative BCO parameters, however, without significant improve-
ment in the solution quality when compared with reference case.

Unlike previous group of loyalty functions, some do not converge fast
(p2’5’6’9) or not converge at all (p;’2’8). Such a property can yield bigger
perturbations in the reported solution quality since the number of partial
solutions that will be used for exploitation, varies throughout an itera-
tion. This variation depends on the utilization of evaluation function (or
method of evaluation) and the structure of problem instance. Although
showing significant fluctuations, those loyalty functions are able to bring
improvements into the solution quality, at least for minimization of fbl.
Among them, loyalty functions pg and pg perform the best in respect to
the starting case NC = 1.

In addition, graphics also reveal that inside of these set of loyalty
functions certain groups exhibit similar behaviour. Such groups are:
p;’5’9, pi’s and p;)m. To distinguish the influence of loyalty functions
within a group, further analysis needs to be conducted on the properties
of recruitment process. However, this is beyond the scope of this paper.
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Since the results were sensitive to the choice of problem instance, it
was obvious that additional analysis on the whole considered set of prob-
lem instances should be undertaken. Such presentation was then used
to determine a robust set of parameters configurations that would gen-
erate the best results. For this reason a group of graphics presenting
the influence of BCO parameters on different problem instances is given
in Fig. 4. As before, the value for B varies in interval [18,20] when
generating good quality soutions, with one exception where B = 15 was
reported by function pg on problem instance Iogra400_12. The series of
graphics on Fig. 4 consists of Fig. 3 and eight more, in regard to the di-
mension of a problem instance. Once more it should be noted that NC
values do not cover complete parameter space for problems of dimension
n > 100 due to high computational cost. However, we can still notice
similarities between the graphics from different groups, and draw similar
conclusions as in case of n = 100. First paramount conclusion is related
to Class II type of loyalty functions, such as pf, k € {0,3,4,5,6,7,9}.
From this group, loyalty functions pg, pg’ and pZ are the most conservative
due to small changes in the reported average solutions over the complete
interval NC € [1,100], regardless of method of evaluation. Additionally,
they have generated practically insignificant improvements, and as such
do not represent good choice for the BCO method on considered set of
problem instances. Remaining Class II loyalty functions showed high
sensitivity to utilization of method of evaluation and problem instance.
No pattern was able to be identified in respect to NC' that would gen-
erate good solutions. Actually, only pg and pg succeeded to be better
then the starting NC' = 1 case but solely on instances Iogral00.12/16,
Togral50_16, Togra200.12, Togra250_16 and Iogra300.12/16. Also, these
two loyalty functions exhibit similar behavior throughout the search.
Loyalty functions of Class I, p;, pg,pg, showed very high sensitivity to
changes in quantitative values of B and NC' and choice of problem in-
stance. Between these three, the most unsuccessful was p; and generated
solutions that resemble those of pg’g. Loyalty functions pg and pg are the
only one that presented certain pattern for values of NC' which brings
improvements with respect to the starting case NC' = 1.
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5. Conclusion

We have tested the influence of different BCO method’s parameters on
the quality of solutions. In total four BCO parameters were analyzed: B,
NC, method of evaluation and loyalty function. Sensitivity analysis was
conducted by means of visual inspection of series of graphics categorized
by the type of problem instance. Furthermore, each graphic consists of
set of plots that reveal the influence of loyalty function with regard to
method of evaluation, for fixed values of bees and varying number of
parameter NC.

Conducted empirical analysis showed that on provided set of problem
instances in 50% of cases best results were obtained for minimization
of f}. Furthermore, good quality was obtained for larger population of
bees, that is B € [18,20], and when NC' > 90. The most successful
loyalty functions were those of Class I, pg and pf in particular, which
were not (often) used previously in the literature. We can conclude
that on considered benchmark set of problem instances, configurations
{min, fbl,pg’g,B € [18,20], NC' > 90} were most successful, being the
only one to offer significant improvements in the solution quality in
comparison with reference case. Some additional tests indicate that
successful values of NC' can be restricted to [0.9n,n], which has yet to
be confirmed.

The possible directions for future work could be implementing some of
the tuning methods mentioned in [9], on constructive and improvement
versions of BCO.
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Abstract  Differential evolution requires a prior setting of its parameters. Appro-
priate values are not always easy to determine, even more since they
may change during the optimisation process. This is where parameter
control comes in. Accordingly, a scheme inspired by ant colony optimi-
sation for controlling the crossover-rate and mutation factor is proposed.
Conceptually, artificial ants guided by a pheromone model select param-
eter value pairs for each individual. The pheromone model is steadily
updated in order to reflect the current optimisation state. Promis-
ing results were achieved in the comprehensive experimental analysis.
Nonetheless, much room for potential improvements is available.

Keywords: Ant colony optimisation, Construction graph, Differential evolution, Pa-
rameter control, Pheromone model.

1. Introduction

Differential evolution (DE) [17, 19] is a simple and effective population-
based search and optimisation method. It has been successfully applied
to various global optimisation problems, although originally proposed
for numerical optimisation (see, e.g., [2, 6, 10, 12]). Like other evolu-
tionary algorithms (EAs), DE also requires the setting of its parameters
prior to running and its performance is largely dependent on those set-
tings. Another issue is the fact that different parameter settings may be
suitable for different problems [5, 22, 23]. Accordingly, although various
recommendations for setting the parameters exist (see, e.g., [17, 19]), the
search for adequate parameter values (parameter tuning) that will result
in satisfactory performance on a given problem requires a considerable
effort and usually boils down to a trial and error approach. Furthermore,
“optimal” values of the parameters may change during the optimisation
[8, 23]. This problem cannot be solved by just finding good parame-
ter values a priori, but requires a constant adjustment of those values

79
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(parameter control). The need for parameter control in EAs was re-
alised early [5]. Finally, well designed schemes can improve or enhance
performance in terms of robustness and convergence-rate [23].

This paper proposes a parameter control scheme for DE, inspired by
ant colony optimisation (ACO). More particularly, a scheme for control-
ling the parameters representing the crossover-rate and mutation factor.
Two sets of parameter values are provided, and for each individual a
value pair is selected. Conceptually, the selection is made by artificial
ants (each solution is assigned one), while their choices are influenced
by artificial pheromone.

The remainder of the paper is organised as follows. Section 2 briefly
describes DE and ACO, it also provides a short overview of parameter
control in DE. The proposed parameter control scheme is described in
Section 3. In Section 4 the obtained experimental results are reported
and discussed. Finally, the drawn conclusions are stated in Section 5.

2. Preliminaries
2.1 Differential Evolution

Differential evolution is an example of a fairly successful EA for nu-
merical optimisation. Besides that, it is conceptually simple which makes
it attractive to practitioners attempting to solve their problem or prob-
lems using a bio-inspired optimisation algorithm. A brief description of
the canonical or standard DE, as outlined in Algorithm 1, follows.

The population of DE is composed of NP individuals typically called
vectors v/ = (v],...,v)) € R% j =1,..., NP. In each generation/itera-
tion a new population is created by mutation and crossover of individ-
uals, i.e., vectors of the current population. Mutation and crossover
produce a trial vector (offspring)

VI F (v V),
if U;(0,1) <CRori=r;

Vi Y
79

otherwise

i=1,....,d, (1)

A%

where v, v"2 and v’ are randomly selected vectors from the current

population, and which are selected anew for each target vector v/, such
that j # rl # r2 # r3. The parameter F' € [0, 00) is the scale (mutation)
factor, while CR € 0, 1] is the crossover-rate, U;(0, 1) is a uniform deviate
in [0, 1], and r; is randomly chosen from the set {1,...,d}. After the new
trial vector population of size NP is created, a one-to-one selection takes
place. More specifically, a trial vector t/ passes into the next generation
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only if it is equal or better (in terms of the objective function f) than
the corresponding target vector v7.

The described algorithm represents the canonical DE, usually denoted
as DE/rand/1/bin [17, 19]. Many other variants that improve on the
canonical algorithm have been proposed in the literature. A comprehen-
sive review of DE variants can be found in, e.g., [14].

2.2 Parameter control in differential evolution

Essentially, the DE algorithm requires the setting of three parameters.
A multitude of different parameter control mechanisms or schemes for
DE can be found in the literature. Most of those schemes are designed
for controlling a subset of the parameters, most notably CR and F. For
example, a few simple deterministic mechanisms for varying the value
of parameter F' during the optimisation process can be found in [3, 9].
Those propose to randomly vary F' inside a preset interval, or to linearly
reduce it with the number of performed iterations. Tvrdik [21] proposed,
among other, a scheme where for each individual one value pair of F' and
CR, from nine available, is chosen probabilistically. The probabilities as-
sociated with the pairs are based on their success. The adaptive scheme
by Yu and Zhang [22] utilizes the quality of population individuals and
their distance from the best-so-far. Based on that data and defined rules
the values of F' and CR are appropriately adjusted. In the self-adaptive
scheme proposed by Brest et al. [1], each individual is assigned its own
value of F' and CR. The assigned values are regenerated randomly before
mutation and crossover take place with set probabilities. Noman et al.
[15] took a similar approach, where the parameter values assigned to a
individual are regenerated (randomly) only if its offspring is worse than
the current population average. Furthermore, Zhang and Sanderson [23]
proposed a scheme where the values of CR and F' assigned to each in-
dividual are generated by Gaussian and Cauchy deviates, respectively.

Algorithm 1 Canonical DE (DE/rand/1/bin)

1: Set NP, CR and F', and initialize population
2: while termination condition not met do
for j:=1— NP do

create trail vector tJ (Eq. (1))
end for
for j :=1— NP do

if f(t7) < f(v7) then

vl =t

end if
10: end for
11: end while

©
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In both cases the values are around the means of previously successful
parameter values taken from the whole population. New values are gen-
erated each time before mutation and crossover take place. This scheme
was adopted and refined in other studies, like the ones in [7, 20]. Also,
Zhao et al. [24] recently proposed a scheme that is somewhat similar
but differs in the calculation of the mean/location around which new
values of F' and CR are generated. Moreover, new values of CR and F'
are generated by, conversely to the approach taken in [23], by Cauchy
and Gaussian deviates, respectively.

2.3 Ant Colony Optimisation

Ant colony optimisation [4, 18] is a meta-heuristic in which a popu-
lation of artificial ants cooperates in the search for solutions to a given
opitmisation problem. The main inspiration comes from the indirect
communication among ants (stigmergy) via the pheromone trails laid
by them as they move. A number of ACO algorithms have been pro-
posed and successfully applied to various optimisation problems [13].

Prior to the application of ACO, the problem at hand must be trans-
formed into the problem of finding the best path on a weighted graph
(construction graph). Solutions are constructed incrementally by the
ants as they traverse the construction graph, whereby each node rep-
resents a solution component. The choices of paths to take are made
probabilistically, and are influenced by artificial pheromone trails and
eventually available heuristic information, which represent the phero-
mone model. The values associated with the pheromone model (graph
weights associated with the arcs or nodes) are dynamically modified.
This is achieved through pheromone deposition by selected ants, and a
preceding pheromone evaporation.

3. Proposed Parameter Control Scheme

Although all DE parameters are interdependent, most of the ap-
proaches from the literature seem to be limited to the control of param-
eters F' and CR. This may lead to the conclusion that a well designed
scheme can adjust those values in accordance with the set population size
NP. Hence, the proposed scheme is intended for controlling parameters
F and CR.

In the proposed scheme the sets Sp = {F; =0.1-i:i=1,...,p=10}
and Scp = {CR; = 0.1-(i—1):4 = 1,...,qg = 11} are given, repre-
senting available values of F' and CR, respectively. Good value pairs
(Fy,CR;) € Sp x Scg are selected for and assigned to each vector v’
separately. In order to facilitate the selection and to establish good val-
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ues, the problem is modeled as a complete bipartite graph, as illustrated
in Fig. 1. Conceptually, artificial ants assigned to each vector, traverse
the construction graph. Each node is associated with a value from the
set Sp, i.e., the set Scr. This way, parameters values are selected. The
selection is probabilistic (roulette wheel selection), and the probability
of selecting some value Fy € Sp or CR; € Scrg is

TFk TCR,I
PF,k: D apCR,l: q 7k:17"')p)l:17"')q) (2)
i=1TFy i=1TCR,i

where 7p ), and 7og are the artificial pheromone deposited on node (F, k)
and (CR,1), respectively. This represents the pheromone model.

The pheromone values are updated after selecting the new genera-
tion. First, evaporation takes place, followed by the deposition of new
pheromone, that is

Tk = (1=p)Trs + »_ Aty k=1,...,p,
JjET
i (3)
TCR’Z:(1_p)TCva+ZATCR,l7 l=1,...,q,
JjeTJ

where p € (0,1] is the evaporation-rate (=0.1), J is the set of indices of
trial vectors that made it into the new generation, A, and A7l , are

the pheromone to be deposited for vector v/ on node (F, k) and (CR, 1),
respectively. A value of 0.1 is deposited on nodes associated with the
parameter values selected for v/, whereas a value of 0 is deposited on
the remaining nodes. The pheromone values are bounded by 7, = 0.1
and Tae = 1.

4. Experimental Analysis

An experimental analysis was conducted in order to assess the ad-
vantages and shortcomings of the proposed parameter control scheme.
The analysis was conducted on the benchmark functions prepared for
the IEEE CEC2013 [11]. The test suite is composed of 28 functions.

The proposed scheme was incorporated into the canonical DE (de-
noted as DE(pgpg)) for the analysis. A comparison with the canon-
ical DE and the same algorithm incorporating the scheme utilised in
DERS9 [21] (denoted as DEpgrg)), the scheme utilised in aDE [15] (de-
noted as DE(,pg)), and the scheme utilised in SLADE [24] (denoted as
DE(spapg)) was performed. This way, only the impact of the parameter
control schemes was assessed and a fair comparison was enabled.
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Scr CRy|CRy| -+ |CR,

Sp F | Fy|- | E

Figure 1: Construction graph and associated parameter values.

4.1 Experiment Setup

For each used algorithm and problem instance, 51 independent algo-
rithm runs were performed. All algorithms were allowed a maximum of
10*-d function evaluations. Termination occurred as soon as the targeted
optimisation error Af < 1078 was reached or the maximum number of
function evaluations (NFE.x) was performed. Further on, the common
population size of NP = 100 (used in, e.g., [1, 7, 20]) was used in all
algorithms, while F' = 0.5 and CR = 0.9 (used in, e.g., [1, 15, 16, 22]
along with NP=100) were used in the canonical DE.

4.2 Results and Discussion

The results obtained on the test functions for d =10 and d =30 are
reported in Table 1 and 4, respectively. The tables show the mean and
standard deviation (std. dev.). The Wilcoxon signed rank test with a
confidence interval of 95% was performed in order to find if the differ-
ences (in means) are statistically significant. Accordingly, the symbol
(—) indicates a difference in favour of the DE incorporating the pro-
posed scheme (DE(pgpg)) compared to a given algorithm, the opposite
is indicated by the symbol (+), whereas the symbol (=) indicates an
absence of statistical significance. Furthermore, Tables 2 and 5 show
the success-rate in reaching the targeted optimisation error for the con-
sidered algorithms.
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According to the shown results, the DEpppg) algorithm performed in
summary better than the other algorithms used in the comparison. This
is also evident from Fig. 2. It may be noted that best results on uni-
modal functions (f1 ~ f5) for d=10 were achieved by DE and DE(,pg),
but this was not the case for d=30. Considering multimodal functions
(feo ~ f20), in most cases, the best results were achieved by DEpgpsg).
This is most prominent on problems for d = 10, and slightly less for
d=30. A similar observation can be made in the case of composition
functions (f21 ~ fog). Nonetheless, it must be noted that in just a few
cases, the differences in means are very small or virtually nonexistent,
but are statistically significant according to the performed test. Those
are certainly of no practical importance. Figures 3 and 4 show, for
several chosen functions, the average optimisation error Af in relation
with the number of performed function evaluations. The figures suggest
a convergence-rate of DEpppg) that is greater or close to the best com-
petitor. Interesting to note, on multimodal and composition functions
usually better performance was achieved with a DE algorithm incorpo-
rating one of the used parameter control schemes. There are several
cases in which the canonical DE got trapped early on in a local opti-
mum, unable to escape it. This hints at one of the benefits parameter
control seems to provide.

Another relevant matter are the time complexities of the considered
algorithms since the parameter control schemes introduce a certain com-
putational overhead. Tables 3 and 6 provide insight into how much this
affects the overall execution times and thus the complexity. The shown
data have been obtained according to [11], but on function 13 instead of
14 because most of the algorithms were able to reach the targeted opti-
misation error on 14 however non on function 13. It must be remarked
that the timings have been repeated 25 times in order to accommodate
variations in execution times and that the median values (as per C—
approximated complexity) are reported. As may be noted the largest
complexity is ascribed to DEpgrg) and DE@pppg). Nonetheless, those
are not substantially larger compared to the other used algorithms in-
corporating parameter control schemes.

Based on the obtained results, it is clear that parameter control can
provide an edge over static parameter settings. This seems to be espe-
cially the case on more complex problems (multimodal and composition
functions, and higher dimensions). In that regard, the algorithms incor-
porating parameter control schemes provided greater convergence-rates
and were principally less susceptible to being trapped in local optima.
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d=30

Figure 2: Number of functions on which DEpgps) achieved a lower or equal mean.

5. Conclusion

This paper proposed a scheme for controlling the crossover-rate and
scale factor of DE. From a conceptual viewpoint, artificial ants select
value pairs from the sets of available parameter values. Their choices
are influenced by a pheromone model which is steadily updated. The
proposed scheme was incorporated into the canonical DE, and the ob-
tained experimental results suggest good performance.

The main drawback of the proposed scheme is certainly the number of
its own parameters. However, they are fixed and need not be changed.
It is reasonable to assume that not all are equally important regrading
performance, and an analysis in that direction may prove fruitful.

Although promising results were achieved, room for potential im-
provements is available. Currently, the same amount of pheromone is
deposited for each successful parameter value pair, but adjusting that
amount according to the achieved improvement may be beneficial. Sim-
ilarly, the other parameters could be dynamically adjusted as in some
successful ACO algorithms. Another direction that should be followed,
is the selection of appropriate DE strategies, along with the parameters.
In that regard, two possibilities are open, the selection of the crossover
and mutation operator separately, or together as one strategy.
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Figure 3: Convergence behaviour on several chosen functions for d=10.

Table 3: Complexity in terms of execution times on function 13 for d=10.

Timing Ty Ty To C= (T2 —Ti)/To
DE 0.7086 s 0.5930s 0.0699 s 1.6526
DE(apE) 0.7198s 0.5914s 0.0699s 1.8381
DE (pER9) 0.7388s 0.5893 s 0.0698 s 2.1399
DE(sLADE) 0.7466 s 0.5974s 0.0701s 2.1296
DE (ppps) 0.7441s 0.5966 s 0.0694 s 2.1262
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Figure 4: Convergence behaviour on several chosen functions for d=30.

Table 6: Complexity in terms of execution times on function 13 for d=30.

Timing Tz T1 T() C = (Tz - Tl)/TO
DE 2.8882s 2.5804s 0.0700s 4.3995
DE(apm) 2.9027 s 2.5717s 0.0699 s 4.7350
DE (puro) 2.9882s 2.5931s 0.0715s 5.5254
DE(spapE) 2.9089s 2.5887s 0.0703 s 4.5523
DE(ppps) 2.9598 s 2.5876s 0.0705s 5.2804
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APPLIED TO ON-LINE MACHINE
LEARNING
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Abstract

Keywords:

The application of methods from experimental algorithmics to on-line or
streaming data is referred to as experimental algorithmics for streaming
data (EADS). This paper proposes an experimental methodology for
on-line machine learning algorithms, i.e., for algorithms that work on
data that are available in a sequential order. It is demonstrated how
established tools from experimental algorithmics can be applied in the
on-line or streaming data setting. The massive on-line analysis frame-
work is used to perform the experiments. Benefits of a well-defined
report structure are discussed.

Experimental algorithmics, Massive on-line analysis, On-line machine
learning, Streaming data.

1. Introduction: Experimental Algorithmics

This article is devoted to the question “Why is an experimental method-
ology necessary for the analysis of on-line algorithms?” We will mention
two reasons to motivate the approach presented in this paper. First,
without a sound methodology, there is the danger of generating arbi-
trary results, i.e., results that happened by chance; results that are not
reproducible; results that depend on the seed of a random number gen-
erator; results that are statistically questionable; results that are sta-
tistically significant, but scientifically meaningless; results that are not
generalizable; etc. Second, experiments are the cornerstone of the sci-
entific method. Even the discovery of scientific highly relevant results
is of no use, if they remain unpublished or if they are published in an
incomprehensible manner. Discussion is the key ingredient of modern

science.
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Ezperimental algorithmics (EA) uses empirical methods to analyze
and understand the behavior of algorithms. Experimental algorithmics
evolved over the last three decades and provides tools for sound experi-
mental analysis of algorithms. Main contributions, which influenced the
field of EA are McGeoch’s thesis “Experimental Analysis of Algorithms”
[19], the experimental evaluation of simulated annealing by Johnson et
al. [18], and the article about designing and reporting computational
experiments with heuristic methods from Barr et al. [1]. And, Hooker’s
papers with the striking titles “Needed: An empirical science of algo-
rithms” and “Testing Heuristics: We Have It All Wrong” [15, 16], which
really struck a nerve. Theoreticians recognized that their methods can
benefit from experimental analysis and the discipline of algorithm engi-
neering was established [8]. Parameter tuning methods gained more and
more attention in the machine learning (ML) and computational intelli-
gence (CI) communities. Eiben and Jelasity’s “Critical Note on Experi-
mental Research Methodology in EC” [11] enforced the discussion. This
increased awareness resulted in several tutorials, workshops, and special
sessions devoted to experimental research in evolutionary computation.
Results from these efforts are summarized in the collection “Experimen-
tal Methods for the Analysis of Optimization Algorithms” [2].

This overview is by far not complete, and several important publica-
tions are missing. However, it illustrates the development of an emerg-
ing field and its importance. The standard approach described so far
focuses on relatively small, static data sets that can be analyzed off-line.
We propose an extension of EA to the field of stream data, which will
be referred to as experimental algorithmics for streaming data (EASD).
This extension is motivated by the enormous growth of data in the last
decades. Machine learning, i.e., automatically extract information from
data, was considered the solution to the immense increase of data. The
field of data mining evolved to handle data that does not fit into working
memory: Data mining became popular, because it provides tools for very
large, but static data sets. Models cannot be updated when new data
arrives. Nowadays, data are collected in nearly every device—massive,
data streams are ubiquitous. Especially, industrial production processes
generate huge and dynamic data. This leads to the development of the
data stream paradigm. Bifet et al. [5] describe core assumptions of data
stream processing as follows:

(S-1) The training examples can be briefly inspected a single time only.
(S-2) The data arrive in a high speed stream.

(S-3) Because the memory is limited, data must be discarded to process
the next examples.
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(S-4) The order of data arrival is unknown.

(S-5) The model is updated incrementally, i.e., directly when a new
data arrives.

(S-6) Anytime property: The model can be applied at any point be-
tween training examples.

(S-7) Last but not least: theory is nice, but empirical evidence of algo-
rithm performance is necessary.

We will develop an experimental methodology for on-line machine
learning, i.e., for situations in which data becomes available in a sequen-
tial order. The data is used to update the predictor for future data at
each step. On-line learning differs from traditional batch learning tech-
niques, which generate the predictor by learning on the entire training
data set at once. The terms “on-line” and “data stream” will be used
synonymously in the following.

This paper is structured as follows. Section 2 compares the traditional
batch setting with the stream data setting. How to assess model perfor-
mance is described in Section 3. A simple experiment, which exemplifies
the EASD approach, is presented in Sec. 4. This article concludes with
a summary in Section 5.

2. Batch Versus Stream Classification

By comparing the traditional batch and the stream classification, the
following observations can be made: Both classification procedures par-
tition the data into test and training set. In contrast to batch classi-
fication, stream classification is a cyclic process, which uses nonperma-
nent data. The elementary steps used in both settings are illustrated
in Fig. 1. The figure is based on the data stream classification cycle in
Bifet et al. [6].

The batch classification cycle processes data as follows:

(CB-1) Input, i.e., the algorithm receives the data.

(CB-2) Learn, i.e., the algorithm processes the data and generates its
own data structures (builds a model).

(CB-3) Predict, i.e., the algorithm predicts the class of unseen data
using the test set.

Data availability differs in the stream classification cycle. Additional
restrictions have to be considered [6]. Freely adapted from Bifet et al. [6],
the data stream processing can be described as follows:
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Figure 1: Left: The batch classification cycle. Right: The stream classification cycle.
Dotted lines represent nonpermanent data. Both classification cycles partition the
data into test and training set. To keep the illustration simple, this split is not
shown.

(CS-1) Input, i.e., the algorithm receives the next data from the stream.
At his stage of the process, the process only once (R-1) requirement
has to be considered: Data stream data is accepted as they arrive.
After inspection, the data is not available any more. However, the
algorithm itself is allowed to set up an archive (memory).

(CS-2) Learn, i.e., the algorithm processes the data and updates its
own data structures (updates the model). The limited memory and
limited time requirements (R-2) and (R-3), respectively, have to
be considered. Data stream algorithms allow processing data that
are several times bigger than the working memory and real-time
processing requires that the algorithm process the data quickly (or
even faster) than they arrive.

(CS-3) Predict, i.e., the algorithm is able to receive the next data. It
is also able to predict the class of unseen data. The predict at any
point requirement has to be considered. The best model should be
generated as efficiently as possible.

3. Assessing Model Performance

Elementary performance criteria for data stream algorithms are based
on
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(P-1) Time (speed): We consider the amount of time needed (i) to
learn and (ii) to predict. If the time limit is reached, continuing the
data processing will take longer or results will loose precision. This
consequence is not so hard as the space limit, because overriding
the space limit will force the algorithm to stop.

(P-2) Space (memory): A simple strategy for the handling space budget
is to stop once the limit is reached. To continue processing if the
the space limit is reached is to force the algorithm to discard parts
of its data.

(P-3) Error rates (statistical measures): The prediction error is consid-
ered. Several error measures are available [17, 26].

A contingency table or confusion matriz is a standard methods to
summarize results. Based on the values from the confusion matrix, the
accuracy can be determined as the percentage of correct classifications,
i.e., it is defined as the sum of the number of true positives and the
number of true negatives divided by the total number of examples (total
population). Since accuracy can be misleading (consider the so-called
accuracy paradox), further measures are commonly used [27]: For ex-
ample, the precision is defined as the number of true positives divided
by the number of true positives and false positives. Precision is also
referred to as the positive predictive value (PPV). Or, the negative pre-
dictive value (NPV) is defined as the number of true negatives divided by
the number of true negatives and false negatives. The specifity (or true
negative rate, TNR) is defined as the number of true negatives divided
by the number of true negatives and false positives. And, the sensitivity
(or true positive rate (TPR) or recall) is defined as the number of true
positives divided by the number of true positives and the number of false
negatives. Using training data to measure these statistical measures can
lead to overfitting and result in poorly generalizable models. Therefore,
testing data, i.e., using unseen data, should be used [13].

Generating test data appears to be trivial at the first sight. However,
simply splitting the data into two sets might cause unwanted effects, e.g.,
introduce bias, or result in an inefficient usage of the available informa-
tion. The test data generation process needs careful considerations in
order to avoid these fallacies. In the dynamic data stream setting, plenty
of data is available. The simple holdout strategy can be used without
causing the problems mentioned in the batch setting. In contrast to the
batch settings, large data sets for exact accuracy estimations can be used
for testing without problems. The simplest approach is just holding out
one (large) single reference data set during the whole learning (training)
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phase. Using this holdout data set, the model can be evaluated period-
ically. A graphical plot (accuracy versus number of training samples)
is the most common way presenting results. Very often, the compari-
son of two algorithms is based on graphical comparisons by visualizing
trends (e.g., accuracy) over time [6]. To obtain reliable results, statistical
measures such as the standard error of results, are recommended. The
statistical analysis should be accompanied by a comprehensive reporting
scheme, which includes the relevant details for understanding and possi-
ble replication of the findings [23]. Only a few publications that perform
an extensive statistical analysis are available [10]. Fortunately, the open
source framework for data stream mining MOA is available and provides
tools for an extensive experimental analysis [14].

Simulators for Data Stream Analysis. Random data stream sim-
ulators are a valuable tool for the experimental analysis of data stream
algorithms. For our experiments in Section 4 a static data set, which
contained pre-assigned class labels, was used to simulate a real-world
data stream environment. The open source framework for data stream
mining MOA [14] is able to generate a few thousand examples up to sev-
eral hundred thousand examples per second. Additional noise can slow
down the speed, because it requires the generation of random numbers.

4. A Simple Experiment in the EASD
Framework

The Scientific Question. Before experimental runs are performed,
the scientific question, which motivates the experiments, should be clearly
stated. To exemplify the EASD approach, the following task is consid-
ered: Machine learning methods, which combine multiple models to im-
prove prediction accuracy, are called ensemble data mining algorithms.
Diversity of the different models is necessary to reach this performance
gain compared to individual models. Each individual ML algorithm re-
quires the specification of some parameters. Building ensembles requires
the specification of additional algorithm parameters, e.g., the number of
ensemble members. The scientific question can be formulated as follows:
“How does the number of models to boost affect the performance of on-
line learning algorithms?” To set up experiments, a specific algorithm
(or a set of algorithms) has to be selected. Oza et al. presented a simple
on-line bagging and boosting algorithm, OzaBoost [20]. The effect of the
number of models to boost on the algorithm performance is an important
research question, which will be analyzed in the following experiments.
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Therefore, the experimental setup as well as the implementation details
have to be specified further.

Implementation Details.  Our observations are based on the Mas-
sive On-line Analysis (MOA) framework for data stream mining. The
MOA framework provides programs for evaluation of ML algorithms
[14, 6]. We will consider a typical classification setting, which can trans-
ferred into a regression setting without any fundamental changes. The
model is trained on data with known classes. In the MOA classification
setting, the following assumptions are made by Bifet et al. [6]:

(i) Small and fixed number of variables,

(ii) large number of examples,

(iii) limited number of possible class labels, typically less than ten,
(iv) the size of the training data will not fit into working memory,
(v) the available time for training is restricted,

(vi) the available time for classification is restricted, and

(vii) drift can occur.

We used OzaBoost, the incremental on-line boosting of Oza and Rus-
sel [21], which was implemented in Version 12.03 of the MOA software
environment [14]. OzaBoost uses the following parameters: The clas-
sifier to train, [, the number of models to boost. s, and the option to
boost with weights only, p. Experiments were performed in the sta-
tistical programming environment R [24]. The sequential parameter
optimization toolbor (SPOT) was used for the experimental setup [3].
SPOT is implemented as an R package [4]. An additional R package,
RMOA, was written to make the classification algorithms of MOA eas-
ily available to R users. The RMOA package is available on github
(https://github.com/jwijffels/RMOA).

Empirical Analysis. The number of models to boost will be referred
to as s in the following. In addition to s, the classifier to train will be
modified as well. It will be referred to as [. Therefore, two algorithm
parameters will be analyzed. The accuracy was used as a performance
indicator. Using this setting, the scientific question can be concretized
as the following research question: “How does the number of models to
boost, s, affect the performance of the OzaBoost algorithm?”
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Optimization Problem.  After the algorithm was specified, a test
function, e.g., an optimization problem, or a classification task, has to
be defined. MOA provides tools to generate data streams. To keep the
setup simple, we used the iris data set [12], which is a available as an R
dataset [24].

Pre-experimental Planning. Before experimental runs are started,
it is important to calibrate the problem difficulty to avoid floor- and
ceiling effects. We will perform a comparison with a simple algorithm.
If the simple algorithm is able to find the optimal solution with a limited
computational budget, then the experimental setup is not adequate (too
easy). If the simple algorithm is not able to find any solution, this
may indicate that the problem is too hard. The naive Bayes classifier,
which was used as the simple algorithm, obtained an accuracy of 91
percent. Because no floor- or ceiling effects were observed, we continue
our experimentation with the OzaBoost algorithm.

Task and Experimental Setup. Two parameters of the OzaBoost
algorithm were analyzed:

(i) the base learner, [, and
(ii) the ensemble size, s.

Hoeffding trees were used as base learners in our experiments [22]. In
addition to the standard Hoeffding tree [10], a random Hoeffding tree
was used in out experiments as a base learner. To be more specific,
the categorical variable [ was selected from the set {HoeffdingTree,
RandomHoeffdingTree}, see Bifet et al. [7] for details. Values between
one and one hundred were used for the ensemble size s.

Results and Visualizations. A comparison of the mean values
from the two learners shows a significant difference: the first learner, i.e.,
RandomHoeffdingTree, obtained a mean accuracy of 0.66 (standard de-
viation (s.d.) = 0.06), whereas the mean accuracy of the second learner,
i.e., HoeffdingTree, is 0.81 (s.d. = 0.18). The distributions of the ac-
curacies are plotted in Fig. 2 and provide a detailed presentation of the
results. Although the mean values of the two learners are different, the
standard deviation of the HoeffdingTree learner approximately three
times higher than the standard deviation of the RandomHoeffdingTree.
This is reflected in the plots: the HoeffdingTree algorithm is not able
to find an acceptable classification in some experimental runs.
Therefore, an additional analysis of the relationship between ensemble
size and accuracy for the HoeffdingTree learner is of interest. We plot
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y learner

Figure 2: Comparison of the two learners. 0 = RandomHoeffdingTree, 1 =
HoeffdingTree. Left: Density plots (accuracy, y ). The dotted lines represent the
mean values of the corresponding learners. Right: Boxplots (accuracy). Same data
as in the panel on the left were used in the boxplots. The comparison of these two
plots nicely illustrates strength and weakness of the plotting methods.

the results from the HoeffdingTree learner and add a smooth curve
computed by loess (LOcal regrESSion) to a scatter plot [9]. loess
fitting is done locally, i.e., the fit at a point = is based on points from
a neighborhood of x, weighted by their distance from z. The result is
shown in Fig. 3. This plot indicates that outliers occur if the sample
size is small, i.e., s < 60.

Observations.  The results reveal that the HoeffdingTree learner
performs better (on average) than the RandomHoeffdingTree learner,
but appears to be more sensitive to the settings of the ensemble size.

Discussion. The selection of a suitable base learner is important.
Results indicate that too small ensemble sizes worsen the algorithm’s
performance. This statement has to be investigated further, e.g., by
finding improved parameter settings for the OzaBoost learner. The se-
quential parameter optimization framework can be used for tuning the
learner. A typical result from this tuning procedure is shown in the
right panel of Fig. 3. In this plot, the accuracy, which was obtained by
OzaBoost, is plotted against the number of iterations of the SPO tuner.
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Figure 3: Left: Results, i.e., accuracy (y), obtained with the HoeffdingTree learner
(I = 1) plotted against ensemble size (s). Right: A typical result from the parameter
tuning procedure. Accuracy (y) is plotted against the number of algorithm runs
(Index). The negative accuracy is shown, because the tuner requires minimization
problems.

5. Summary and Outlook

An experimental methodology for the analysis of on-line data was pre-
sented. Differences between the traditional batch setting and the on-line
setting were emphasized. Although useful, the actual practice of com-
paring run-time plots of on-line algorithms, e.g., accuracy versus time,
should be complemented by more advanced tools from exploratory data
analysis [25] and statistical tools, which were developed for the analysis
of traditional algorithms. It was demonstrated, that statistical methods
from experimental algorithmics can be successfully applied in the on-
line setting. A combination of MOA, RMOA and the SPO toolbox was
used to demonstrate the applicability and usefulness of standard tools
from experimental algorithmics. The design and analysis of the algo-
rithm were performed in the EASD framework. This report methodol-
ogy, which is also described and exemplified by Preuss [23], is an integral
part of the EASD framework.
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Abstract In this paper a short overview and a case study in a statistical compari-
son of stochastic optimization algorithms are presented. The algorithms
are part of the Black-Box Optimization Benchmarking 2015 competi-
tion that was held at the 5th GECCO Workshop for Real-Parameter
Optimization. The question about the difference between parametric
and non-parametric tests for single-problem analysis and for multiple-
problem analysis is addressed in this paper. The main contributions are
the disadvantages that can appear by using multiple-problem analysis,
in the case when the data of some algorithms includes outliers.

Keywords: Comparative study, Non-parametric tests, Parametric tests, Statistical

methods, Stochastic optimization algorithms.

1. Introduction

Over the last years, many machine learning and stochastic optimiza-
tion algorithms have been developed. For each new algorithm, according

105
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to its performance, we need to decide whether it is better than the com-
pared algorithms used on the same problem.

One of the most common ways to compare algorithms used on the
same problem is to use statistical tests as comparison techniques of their
performance [4, 5, 6, 9, 10]. The common thing of the comparative
studies, independently of the research area (machine learning, stochastic
optimization or some other research areas), is that they are based on the
idea of hypothesis testing [18].

The hypothesis testing, also called significance testing, is a method of
statistical inference that could be used for testing a hypothesis about pa-
rameter in a population, using data measured in a data sample, or about
the relationship between two or more populations, using data measured
in data samples. The method starts by defining two hypotheses, the null
hypothesis Hy and the alternative hypothesis Ha. The null hypothesis
is a statement that there is no difference or no effect and the alternative
hypothesis is a statement that directly contradicts the null hypothesis
by indicating the presence of a difference or an effect. This step in the
hypothesis testing is very important, because mis-stating the hypothe-
ses will disrupt the rest of the process. The second step is to select an
appropriate test statistic T, which is a mathematical formula that al-
lows researchers to determine the likelihood of obtaining the outcomes
if the null hypothesis is true. Then, the level of significance «, also
called significance level, which is the probability threshold below which
the null hypothesis will be rejected, needs to be selected. The last step
of the hypothesis testing is to make a decision either to reject the null
hypothesis in favor of the alternative or not to reject it. The last step
can be done with two different approaches. In the standard approach,
the possible values of the test statistic for which the null hypothesis is
rejected, also called the critical region, are calculated using the distribu-
tion of the test statistic and the probability of the critical region that is
the level of significance . Then the observed value of the test statistic
Tops is calculated according to the observations from the data sample. If
the observed value of the test statistic is in the critical region, the null
hypothesis is rejected, and if not, it fails to reject the null hypothesis.
In the alternative approach, instead of defining the critical region, a p-
value that is the probability of obtaining the sample outcome, given the
null hypothesis is true, is calculated. The null hypothesis is rejected, if
the p-value is less than the selected significance level (the most common
values for it are 0.05 and 0.01), and if not, it fails to reject the null
hypothesis.

In this paper we follow the recommendations given in some papers
[4, 5, 6, 9, 10] in order to perform correct statistical comparison of
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the behavior of some of the stochastic optimization algorithms over
optimization problems presented of the Black-Box Benchmarking 2015
(BBOB 2015) competition helded at the 5th GECCO Workshop on
Real-Parameter Optimization organized at the Genetic and Evolution-
ary Computation Conference (GECCO 2015) [1].

This paper can be seen as a tutorial and a case study on the use of
statistical tests for comparison of stochastic optimization algorithms. In
Section 2 we give a review and important comments with regard to the
standard statistical tests, the parametric tests, and the non-parametric
tests. Section 3 presents the empirical study carried out on the results
from the workshop in different scenarios, using pairwise comparison for
single-problem analysis, pairwise comparison for multiple-problem anal-
ysis, multiple comparisons for single-problem analysis, and multiple com-
parisons for multiple-problem analysis. In Section 4 we conclude the
paper by discussing the disadvantages of the standard statistical tests
that are used for statistical comparisons of the behavior of stochastic
optimization algorithms.

2. Parametric Versus Non-parametric Statistical
Tests

In order to distinguish what to use for your data, between the para-
metric and the non-parametric test, the first step is to check the assump-
tions of the parametric tests, also called required conditions for the safe
use of parametric tests. So the first step is to use the methods for check-
ing the validity of these required conditions. If the data does not satisfy
the required conditions for the safe use of parametric tests, then the tests
could lead to incorrect conclusions, and it is better to use the analogous
non-parametric test. In general, a non-parametric test is less restrictive
than a parametric one, but it is less powerful than a parametric one,
when the required conditions for the safe use of the parametric test are
true [10].

2.1 Required Conditions for the Safe Use of
Parametric Tests

The assumptions or the required conditions for the safe use of para-
metric tests are the independence, the normality, and the homoscedas-
ticity of the variances of the data.

Two events, A and B are independent, if the fact that A occurs does
not affect the probability of B occurring. When we compare the behavior
of the stochastic optimization algorithms, they are usually independent.
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The assumption of normality is just a hypothesis that a random vari-
able of interest, or in our case the data from the data sample, is dis-
tributed according to the normal or Gaussian distribution with mean p
and standard deviation o. In order to check the validity of this con-
dition, the recommended statistical tests are Kolmogorov-Smirnov [19],
Shapiro- Wilk [23], and D’Agostino-Pearson [3]. The validity of this con-
dition can be also checked by using graphical representation of the data
using histograms and qunatile-quantile plots (Q-Q plots) [7].

The homoscedasticity indicates the hypothesis of equality of variances,
and the Levene’s test is used to check the validity of this condition [13].
Using this test we can see whether or not a given number of samples
have equal variances or not.

2.2 An Overview of Some Standard Statistical Tests

In Table 1 we give an overview of the most commonly used statistical
tests that can be used for statistical comparison between two or multiple
algorithms. We do not go into details for each of them, because they
are standard statistical tests [18]. Which of them is chosen depends
on the type of analysis we want to perform, either single-problem or
multiple-problem analysis.

Table 1: An overview of parametric and non-parametric tests

Two Algorithms Multiple Algorithms
Parametric tests Paired T-Test Repeated-Measures ANOVA
N tric test Wilcoxon Signed-Rank Test, Friedman Test,
OT-paTAMEITIc 1ests The Sign Test Iman-Davenport Test

The single-problem analysis is the scenario when the data comes from
multiple runs of the stochastic optimization algorithms on one problem,
one function. This scenario is common in stochastic optimization al-
gorithms, since they are of stochastic nature, meaning we do not have
any guaranty that the result will be optimal for every run. Moreover,
typically even the path leading to the final solution is often different. So
to test the quality of the algorithm, it is not enough to performed just
one run, but many of them from which we can draw some conclusions.

The second scenario or the multiple-problem analysis is the scenario
when several stochastic optimization algorithms are compared on multi-
ple problems, multiple functions. In this case, in most papers the authors
use the averaged results for each function to compose a sample of results
for each algorithm.
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3. Case Study: Black-Box Optimization
Benchmarking 2015

In order to go through the recommendations of how to perform sta-
tistical comparisons of stochastic optimization algorithms and to see the
possible problems that appear, the results from the Black-Box Bench-
marking 2015 [1] are used. The Black-Box Benchmarking 2015 is a
competition that provides single-objective functions for benchmarking.
In addition, it enables analyses of the performance of the competing
algorithms, and makes it understandable what are the advantages and
disadvantages for each algorithm.

From the competition the algorithms BSif, BSifeg, BSrr, and Srr are
used for statistical comparisons. The capital letters, S or BS, denote
STEP or Brent-STEP method, respectively. The lowercase letters de-
note the dimension selection strategy: “rr” for round-robin, “if” for the
EWMA estimate of the improvement frequency, and “ifeg” for “if” com-
bined with e-greedy strategy [21]. For each of them the results for 24
different noiseless test functions in 5 dimensionality (2, 3, 5, 10, and
20) are selected. At the end, the statistical comparison is performed
by comparing the algorithms on 22 different noiseless functions because
some of them do not provide data for two functions of the benchmark
when the dimension is 20.

The test functions are from 5 groups: separable functions, functions
with low or moderate conditioning, function with hight conditioning and
unimodal, multi-modal functions with adequate global structure, and
multi-modal functions with week global structure. More details about
them can be found in [15].

We have done the statistical comparisons in “R programming lan-
guage”, by using the “lawstat” package [11] for the Levene’s Test, the
“stats” package [22] for the Kolmogorov-Smirnov Test, the Paired-T Test
[16], the Shapiro- Wilk Test, and the Wilcozon Signed-Rank Test [17], and
the “scmap” package [2] for the Iman-Davenport Test [6], the Friedman
Test [6], and the Friedman Algined-Rank Test [6)].

3.1 Pairwise and Multiple Comparisons for
Single-Problem Analysis

In this section pairwise comparison for single-problem analysis is pre-
sented together with comments for multiple comparisons for single-problem
analysis. The BSif and BSifeg algorithms are the two algorithms used
for pairwise comparison. The pairwise comparisons between these two
algorithms for single-problem analysis are performed on 22 benchmark
functions when the dimension is 10.
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At the beginning of each statistical comparison, the required condi-
tions for the safe use of the parametric tests are checked.

In case of the single-problem analysis the multiple runs of the algo-
rithm on the same function are independent.

To check for normality, the Shapiro- Wilk Test and graphical represen-
tations by representing the data using histograms and quantile-quantile
plots are used. The p-values from the Shapiro- Wilk Test are presented
in the Table 2, and when the p-value is smaller than the significance
level (we used 0.05), then the null hypothesis is rejected, and we assume
the data is not normally distributed.

Table 2: Test of normality using Shapiro- Wilk Test

fi fa f3 fa fs fe I fs

p-value Bsif - (.61) *(.00) (.70) *(.
p-value BSifeg - (

p-value BSif ( ( ( ( . . (
p-value sz *(.00)  *(.01)  (.28) *(.00) *(.00) *(.00) *(.02)  (.24)

p-value Bsis (- (- (.
p-value Bsiteg  (.24) (.13) (.07)

* indicates that the normality condition is not satisfied.

From the same table we can see that there are 6 cases in which the
data from both algorithms comes from normal distribution (f1, f4, fi1,
f16, fi7, f19), 6 cases in which the data only from one of the algorithms
comes from normal distribution (fa2, f7, fs, fi2, fis, f20), and 10 cases
in which the data from both algorithms is not normally distributed ( fs,
Is, fo, fo, f10, f13,f14, f15, fo1, fa2).

In Fig. 1 and Fig. 2, the graphical representation of the data with
normal and non-normal distribution is presented, respectively. Using
the histograms, we can see if the distribution of the data is close to the
shape of the distribution we are interested. The red line corresponds
to the normal curve with the mean value and the standard deviation
obtained from the data. The Q-Q plot is a probability plot, which is a
graphical method for comparing two probability distributions by plotting
their quantiles against each other. In our case the distribution of the
data is compared with the normal distribution. If the data is normally
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of normal distribution for the BSifeg algorithm for fi; with di-
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Figure 2: Example of non-normal distribution for the BSifeg algorithm for f; with
dimension 10.
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distributed, the data points in the Q-Q normal plot can be approximated
with a straight diagonal line.

The next step of the analysis is to check the homoscedasticity. In
Table 3 the p-values from the Levene’s Test for checking homoscedastic-
ity, based on means, are presented. When the p-value obtained by this
test is smaller than the significance level (we used 0.05), then the null
hypothesis is rejected, and this indicates the existence of a violation of
the hypothesis of equality of variances.

Table 3: Test of homoscedasticity using the Levene’s Test

fi f2 I3 fa fs fe Ir fa fo
p-value - (.08)  (.98)  (.99) 1 (.05)  (.57) (.07) *(.01)

fl() fll f12 f13 f14 f15 f16 f17 f18
pvalue  (97)  (37)  *(.00) *(.00) *(.04) (26) (27) (.85)  (.29)

fio f20 fa1 fa2
p-value  (.77)  (.94)  (.41) (.66)

*

indicates that the homoscedasticity condition is not satisfied.

After checking the required conditions for the safe use of the para-
metric tests, the pairwise comparison of these two algorithms on each
function separately is performed using the Paired-T Test as parametric
test and the Wilcozon Signed-Rank Test as non-parametric test. The p-
values obtained by these two tests for the pairwise comparison of the two
algorithms are presented in Table 4, where the p-value smaller than the
significance level of 0.05, indicates that there is a significant statistical
difference between the performance of the two algorithms.

From the Table 4 we can see that for functions fg and fo9 we obtained
different results according to the Paired-T Test and the Wilcoxon Signed-
Rank Test. In order to select the true result, first we need to check the
results for the validity of the required conditions for the safe use of para-
metric tests. If we look at Table 2, we can see that for these two functions
the normality condition is not satisfied, so we can not use the parametric
tests because they could lead to incorrect conclusions, and we need to
consider the result obtained by the Wilcoxon Signed-Rank Test. Using
this test in the case of both functions the null hypothesis is rejected using
a significance level of 0.05, so there is a significant statistical difference
between the performance of the two algorithms, BSif and BSifeg, over
functions, fo and fo.
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Table 4: Statistical comparison of BSif and BSifeg algorithms using Paired-T Test
and Wilcozon Signed-Rank Test

N1 f2 I3 Ja fs fe fr fs
p-value paired—T - (.19)  (.32) (.76) - *(.02)
p'value ‘Wilcoxon - ( ( ( .

fo Jio 1 Ji2 f13 J1a Jis fie
p-value paired—T  (-08)  (.40)  (.18)
p-value wilcoxon ~ (.00)  (.17) (.

Jiz fis fo f20 fa Jo2

p-value paired—t  (-34)  (95) (. (.87)  (.14) (-
p-value Wilcoxon (.68)  (.71)  (.98)  (.93) (.14) *(.01)

* indicates that the null hypothesis is rejected, using a = 0.05.
p-value paired—T, and p-value wilcoxon indicate the p-values obtained by Paired-T Test and
Wilcozon Signed-Rank Test, respectively.

If we want to perform multiple comparisons for single-problem analy-
sis, we need to go through the same steps as in the pairwise comparison,
but we need to use the repeated-masures ANOVA as parametric test [12],
and the Friedman Test or Iman-Davenport Test as non-parametric tests.
If there is significance statistical difference between the algorithms we
can continue with some post-hoc procedures relevant to the test we used

[6].

3.2 Pairwise and Multiple Comparisons for
Multiple-Problem Analysis

In this section multiple comparisons for multiple-problem analysis are
presented togehter with comments for pairwise comparison. Following
the recommendations from some papers [6, 10] that addressed the same
topic, the averaged results for each function with dimension 10 are used
to compose a sample of results for each algorithm. The BSifeg, BSrr,
and Srr are the algorithms used for comparison over multiple functions.

First, the conditions for the safe use of the parametric test are checked.
The condition for independence is satisfied, as we explained above.

The p-values for normality condition obtained by using the Shapiro-
Wilk Test are presented in Table 5, from where we can see that neither
of the algorithms assumes that the data comes from normal distribution.
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Table 5: Test of normality using Shapiro- Wilk Test

BSifeg BSrr Srr
p-value *(.00) *(.00) *(.00)

* indicates that the normality condition is not satisfied.

The homoscedasticity is checked by applying the Levene’s Test. The
p-value obtained from the Levene’s Test is 0.63, from which it follows
that the homoscedasticity is satisfied.

Because the normality condition is not satisfied, we cannot use the
repeated-measures ANOVA as parametric test, and we can continue the
analysis by using the Friedman Test, the Iman-Davenport Test, and the
Friedman Aligned-Rank Test as non-parametric tests. The differences
between these three tests and the recommendations when to use them are
explained in [6], and the p-values we obtained are presented in Table 6.

Table 6: Multiple comparisons for multiple-problem analysis

Friedman Test Iman-Davenport Test Friedman Aligned-rank Test

p-value *(.03) *(.02) *(.04)

* indicates that the null hypothesis is rejected, using a = 0.5 .

Using the p-values reported in Table 6, according to the three tests
that are used, the null hypothesis is rejected, and there is a significant
statistical difference between these three algorithms.

In order to see the difference that appears between the performance
of the three algorithms, the distributions of the data for each algorithm
are presented in Fig. 3. In the figure we can see that there is no differ-
ence between the distributions of the data of the three algorithms that
are used in multiple-problem analysis. To confirm this, we introduced
the Kolmogorov-Smirnov Test to compare the distributions between the
pairs of algorithms, and the p-values are presented in Table 7, from
where we can see that the p-values obtained are greater than 0.05, so we
can not reject the null hypothesis, therefor the distributions of the data
between the pairs of the algorithms are the same.

The question that arises here is, if this difference between the algo-
rithms obtained by the use of the non-parametric tests is inforced by
averaging the results from multiple runs for each function to compose a
sample of results for each algorithm. Averages are known to be sensitive
to outliers. For example, in machine learning, different techniques that
can be used to remove outliers are presented [20, 14]. It happened for
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Figure 3: Probability distributions of the data of BSifeg, BSrr, and Srr used in
multiple-problem analysis.

Table 7: Two-sample Kolmogorov-Smirnov Test

(BSifeg, BSrr) (BSifeg,Srr) (BSrr,Srr)
p-value 1 (.86)

(.99)

example that in 15 runs the average result of one function for a given
algorithm was better than another algorithm, but in new 15 runs the
average result of the same function and the same algorithm could be
worse than the other algorithm, and this happened because in the new
15 runs we have some outliers, or some poor runs. One solution could be
to perform several multiple runs of an algorithm on the same problem,
and then to average the averages results obtained by the runs. But in
stochastic optimization we are not interested to have so many runs, be-
cause this is time-consuming. Another solution, also our further work,
is to try to find what we can use as a measure for comparison of stochas-
tic optimization algorithms that are robust on outliers, instead of using
averaging of the results.

The pairwise comparison for multiple-problem analysis could be done
using the same steps, but using the Paired-T Tets as parametric test,
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and the Wicozon Signed-Rank Test or the The Sign Test [8] as non-
parametric tests.

4. Conclusion

In this paper a tutorial and a case study of statistical comparison be-
tween the behaviour of stochastic optimization algorithms are presented.

The main conclusion of the paper are the disadvantages that can ap-
pear in the multiple-problem analysis following the recommendations of
other tutorials that address this topic. These disadvantages can happen
by averaging the results from multiple runs for each function to compose
a sample of results for each algorithm, in the case when the data includes
outliers. In general, the outliers can be skipped using some techniques,
but they need to be used with great care. But for multiple-problem
analysis skipping outliers is really a question because only the results
for certain problems would be changed and not for other problems. All
this leads to a need of some new measures that will be robust to outliers
and can be used to compose a sample for each algorithm over multiple
problems, and after that to continue the analysis by using some standard
statistical tests.
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Abstract  Comparing the results of single objective optimizers is an easy task in
comparison to multi-objective optimizers for which the result is usually
an approximation of the Pareto optimal front. These approximation
sets must first be evaluated. One of the most popular methods for
evaluation is the use of quality indicators, for which the result is a
real valued number that reflects a certain aspect of quality. Evaluating
and comparing multi-objective optimizers is an important issue. It has
been empirically proven that chess ranking can be successfully applied
to ranking and comparing single objective evolutionary algorithms. In
this paper, the method was adapted to multi-objective evolutionary
algorithms (MOEAs). The comparison of several different quality in-
dicators in the chess rating system was conducted in order to get a
better insight on their characteristics and how they affect the ranking
of MOEAs. Although it is expected that quality indicators with the
same optimization goals would yield a similar ranking of MOEAs, it
has been shown that results can be contradictory.

Keywords: Chess rating, Evolutionary algorithms, Multi-objective optimization,
Performance assessment, Quality indicator.

1. Introduction

The goal of multi-objective optimization (MOO) is to obtain the
Pareto optimal front that contains the best trade-off solutions. Since
many multi-objective optimization problems (MOP) are difficult to solve,
the outcome of the optimization is usually an approximation of the
Pareto front. In order to compare these approximations, they need to
be evaluated. Evaluating the quality of these approximations is itself
an MOP. Zitzler et al. [20] suggested three optimization goals that
need to be measured: the distance of the resulting nondominated set to

119
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the Pareto optimal front should be minimized; a good (in most cases
uniform) distribution of the solutions found is desirable; the extent of
the obtained nondominated front should be maximized. Comparing the
performance of MOEAs remains an open problem. The most popular
measures are quality indicators (QI); the term “performance metric” is
also used to quantify the differences between approximation sets.

Many different QIs for measuring the quality of approximation sets
have been proposed in the literature [1, 8, 9, 10, 12, 14, 15, 19, 20, 23, 24].
Each QI has been designed with a standpoint that takes one or more
previously mentioned optimization goals into consideration. This means
that no single indicator alone can reliably measure MOEA performance.
It should be noted that several surveys and experiments have been con-
ducted to analyze individual indicators [7, 8, 16, 24]. The results have
shown inconsistencies and contradictions in the assessment of various
approximation sets. It was argued in [7] and [16], that without estab-
lished comparison criteria, claims based on heuristically chosen QIs do
little to determine a given MOEAs actual efficiency and effectiveness. In
addition, the conclusions are useless for answering the question of which
algorithms are superior to others. Can it be argued that one algorithm
is better than another even though the outcome depends on the selected
QI?

The aim of this paper is to obtain better insight into the impact of the
selected QI for the comparison of MOEAs. The focus is on the analysis
of different QIs with the help of a chess rating system.

The remainder of the paper is organized as follows. In Section 2,
some basic concepts of quality indicators are introduced. The chess
rating system with Glicko-2 is presented in Section 3. In Section 4, the
execution of the experiment and results are presented. Finally, the paper
concludes in Section 5.

2. Quality Indicators

Approximation sets can be compared using dominance relations. How-
ever, there are numerous limitations to using this approach. For exam-
ple, the extent to which one algorithm is better than another cannot be
expressed nor can it be expressed in which aspects this is so. Further-
more, when using dominance relations, there are cases in which approx-
imation sets are incomparable. In order to overcome these limitations,
QIs have been designed. These indicators quantitatively measure ap-
proximations of Pareto optimal fronts. Therefore, QIs are in essence
functions that assign each approximation set a real number that re-
flects different aspects of quality or quality differences. Zitzler et al.



The Impact of Quality Indicators on the Rating of MOFEAs 121
[24] defined a quality indicator I as an m-ary function I : Q™ — R
that assigns each vector (Ap, As,...,A.) of m approximation sets a
real value I (Ai,...,Ay). Once the approximation sets are evaluated

by indicators, different conclusions can be drawn about their relations.
For different aspects of quality, different indicators need to be used.

A IKA) true
a) >'* E(I(A), I(B)) —C
B I(B) false
I(A, B) true
b) (A, B) }‘ E(I(A, B), I(B, A))
I(B, A) false

14
A —<: :>* IA)-
[Z(A) true
E(I(A), (B))
1,8 false
B I(B)
1,(B)

Figure 1: The concept of comparison methods adapted from [24].

)

Quality indicators have been categorized into different groups from
different points of view to better understand their nature [24, 7, 10].
They are mainly categorized by the aspects of quality that they as-
sess. These aspects include the closeness to the Pareto-optimal front,
the number of elements of the Pareto-optimal front found, and the max-
imum spread of solutions. Quality indicators are also classified based
on the number of approximation sets they take as an argument. Unary
indicators accept one approximation and binary accept two. However,
in principle indicators that accept an arbitrary number of arguments are
also possible. When evaluating with unary indicators the resulting real
values need to be compared in order to see which result set is better. Bi-
nary indicators, in contrast, compare two result sets to determine which
one is better. Therefore, when comparing ¢ sets using binary indicators
t(t1), comparisons need to be carried out to obtain the final ranking.
Some unary indicators require a reference set to perform the evaluation,
which must be taken into consideration since real-world problems have
unknown Pareto-optimal fronts. When the reference set is available, any
indicator can be converted from binary to unary. There are also other



122 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

categories that are not used as often, such as computational complex-
ity, the sensitivity to scaling, the number of objectives, etc. It is also
desirable that an indicator be compatible and complete with respect to
dominance relations.

Quality indicators need interpretation, and different comparison meth-
ods can be used. This is best illustrated by Zitzler (Fig. 1) [24] where
concepts of comparison methods using either only unary or only binary
indicators are presented. Case (a) uses a single unary QI, (b) a single
binary QI, and (c¢) a combination of two unary QIs. In cases (a) and (b),
the indicator I evaluates the approximation sets A and B. The result
is passed to the interpretation function E that decides the outcome. In
case (c), two indicators are applied to A and B then the resulting two
indicator values are combined in a vector, I(A) for A and vector I(B) for
B. The vectors are passed to the interpretation function F that decides
the outcome.

Table 1: Quality indicators and their properties.

Requires

Quality Indicator Convergence  Uniformity = Spread
reference set

CS [23]

Iey [24]

GD [15]

HV [23]

IGD [1], IGD+ [9]
MPFE [14]

MS [20]

R2 [8]

S [12] Vv
Generalized Spread A [19] V

D NG NG SN N
L
<
L L

In this paper, eleven QIs are used, based on prevalence and different
properties. Selected indicators are listed with their quality aspects in
Table 1. When comparing algorithms, usually a handful of QIs are se-
lected and then the experiment is performed and evaluated with selected
statistical methodologies. In our case, the Chess Rating System for Evo-
lutionary Algorithms (CRS4EAs) [13] is used. The outcome of the game
was determined by methods a and b (Fig. 1), depending whether the
indicator is unary or binary.
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3. Chess Rating System for Evolutionary
Algorithms (CRS4EAs)

In this paper, we use CRS4EAs based on the Glicko-2 system, in
which each player receives his rating R, rating deviation RD and rating
volatility o [6]. The volatility measure indicates the degree of expected
fluctuation in a players rating. When a player has an unpredictable per-
formance such as exceptionally strong results after a period of stability,
the volatility measure is high. If a player performs at a consistent level,
the volatility measure is low. The rating deviation indicates how reliable
a players rating is. A small rating deviation means a player plays often
and has a reliable rating. In contrast, if the rating deviation is high, his
rating is unreliable. A players strength can be summarized in the form
of a 95% confidence interval. It can be said that we are 95% confident
that the players rating R is within an interval [R — 2RD, R + 2RD]. To
apply a rating, multiple games between multiple players within a rat-
ing period (tournament) need to be performed. Before the tournament
starts the ratings, rating deviations and rating volatilities for all players
need to be set. If a player is new or not established, his performance
rating has to be defined first. The experiment was performed with the
Evolutionary Algorithm Rating System (EARS) [5] framework that sup-
ports CRS4EAs. The codes for the different algorithms, problems, and
calculation of quality indicators are available in the jMetal framework
[4] and MOEA framework [11]. Each MOEA represents a chess player
and searches for the best Pareto front approximation for a given prob-
lem represents a chess game. In a game, two MOEAs play against each
other where the outcome is decided when each approximation set is eval-
uated with the given QI. Each player plays multiple games against all
participants in the tournament.

4. Experiment

In this section, the experiment execution and results are presented.
Chess ranking leaderboards of five algorithms with eleven QlIs were com-
pared.

4.1 Experimental Settings

In the experiment, five MOEAs were chosen for the tournament:
IBEA [22], MOEA/D [17], NSGA-II [3], PESA-II [2] and SPEA2 [21].
The benchmark contains well-known unconstrained problems from the
CEC 2009 special session and competition on the performance assess-
ment of multi-objective optimization algorithms [18]. Population size
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for all five MOEAs was set to be 100 for all of the 2-objective prob-
lems and 300 for the 3-objective problems, according to [16]. The rest
of parameters setting of the algorithms are set according to the source
code of [4, 11]. The maximum number of evaluations for a problem was
set to 300,000. The number of independent runs of the tournament was
set to 30. For the chess rating, Glickman recommended setting rating
R to 1500, rating deviation RD to 350, and rating volatility o to 0.06
[6]. A tournament was conducted for each QI. It should be noted that
approximation sets were normalized prior to evaluation since different
objective functions can have a different magnitude.

4.2 Experimental Execution

Figure 2 displays the flowchart of a single execution of the experiment
in EARS. The experiment is conducted in the form of tournaments. Each
tournament consists of k = 5 algorithms {a1,as,...,a5}, N = 10 opti-
mization problems and is performed in n = 30 independent runs. Each
algorithm returns the best solution set for each optimization problem
over n independent runs (k* N *n results). These results are then eval-
uated with the QI that was given for the current tournament. After
evaluation, the resulting two real values are passed to the interpretation
function. The comparison methods use a single unary QI or a single
binary QI (Fig. 1 a and b). A set {ay, aj}l,m is a single comparison or
a single game between two algorithms a; and a; for the optimization
problem F; over run m where 4,5 € {1,...,k},i # j,l € {1,...,N}
and m € {1,...,n}. The solution sets y; and y; from algorithms a;
and a; for the problem Fj on run m are evaluated with the given qual-
ity indicator I and passed to the interpretation function F that defines
the outcome of the comparison. Therefore, one tournament consists of
(k*(k—1)/2)%Nx*n games. At the end of the tournament, the results
are gathered in the forms of wins, losses, and draws. Afterward, the
ratings, rating deviations, and rating volatilities are updated. All the
data is collected and presented on a leaderboard. The tournament was
repeated for each QI, resulting in eleven leaderboards.

4.3 Results and discussion

The results for all QIs are presented in Table 2. All algorithms have
played through the whole tournament for each indicator. For each indi-
cator, there are two rows. The first row contains the final rating and rank
for a given algorithm. The second row contains the 95% confidence in-
tervals. For all players in all tournaments, the rating deviations reached
their minimum value (50) [13]. The low value of RD was achieved with
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Figure 2: Flowchart of experiment execution in EARS [5].

an adequate number of tournaments, and it indicates that players com-
peted frequently and have a stable rating. As expected, indicators are
not unified in the ranking of algorithms, which is reflected in the devia-
tion from the average rank displayed in the last row. Regardless of the
incoherence in the ranking, some indicators assess the approximations

similarly.

Based on similarities in ranking, indicators can be divided

into three groups. The biggest group contains seven indicators: HV,
IGD, IGD+, I.y, R2, MS and A. The first three indicators have the



126 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 2: Leaderboards of five algorithms with eleven QIs on unconstrained CEC 2009
benchmark problems. For each indicator the rating intervals RI with 95% confidence
(RD £+ 2RD ) are presented.

IBEA MOEA/D  NSGA-II PESAII SPEA2
HV 1380 (5) 1649 (1) 1538 (2) 1461 (4) 1471 (3)
[1280,1480]  [1549,1749]  [1438,1638]  [1361,1561]  [1371,1571]
IGD 1228 (5) 1700 (1) 1581 (2) 1453 (4) 1538 (3)
[1128,1328]  [1600,1800]  [1481,1681]  [1353,1553]  [1438,1638]
IGD+ 141} (5) 1605 (1) 1566 (2) 1437 (4) 1478 (3)
[1314,1514]  [1505,1705]  [1466,1666]  [1337,1537]  [1378,1578)
It 1390 (5) 1599 (1) 1522 (3) 1440 (4) 1548 (2)
[1290,1490]  [1499,1699]  [1422,1622]  [1340,1540]  [1448,1648]
R2 1287 (5) 1598 (2) 1647 (1) 1400 (4) 1567 (3)
[1187,1387]  [1498,1698]  [1547,1747]  [1300,1500]  [1467,1667]
MS 1218 (5) 1624 (2) 1770 (1) 1339 (4) 1549 (3)
[1118,1318]  [1524,1724]  [1670,1870]  [1239,1439]  [1449,1649]
A 1266 (5) 1570 (3) 1628 (2) 1370 (4) 1667 (1)
[1166,1366]  [1470,1670]  [1528,1728]  [1270,1470]  [1567,1767
cs 1818 (1) 1399 (4) 1287 (5) 1525 (2) 1471 (3)
[1718,1918]  [1299,1499]  [1187,1387]  [1425,1625]  [1371,1571]
GD 1848 (1) 1292 (4) 1291 (5) 1622 (2) 1447 (3)
[1748,1948]  [1192,1392]  [1191,1391]  [1522,1722]  [1347,1547]
MPFE 1954 (1) 1170 (5) 1339 (4) 1644 (2) 1392 (3)
[1854,2054]  [1070,1270]  [1239,1439]  [1544,1744]  [1292,1492]
s 1831 (1) 1158 (5) 1421 (4) 1633 (2) 1457 (3)
[1731,1931]  [1058,1258]  [1321,1521]  [1533,1733]  [1357,1557]
z 3.9 2.9 3.1 3.6 3

same ranking. The remaining indicators (I, R2, MS and A) have
ranked differently, but there is no significant difference between the al-
gorithms that switched ranks. The other two groups ranked the MOEAs
very differently than the bigger group. If only the ranking is considered,
two pairs of indicators are obtained, which differ only in the rank of
MOFEA/D and NSGA — II. Since there is no significant difference be-
tween the fourth and fifth ranking algorithm with the M PF'E indicator,
we grouped it with C'S and GD. Although S achieved the same rank-
ing as MPFFE, it is in a separate group because there is a significant
difference between MOEA/D and NSGA — I1. The bigger group con-
tains all three compliant indicators: one strictly Pareto-compliant indi-
cator (HV') and two weakly Pareto-compliant indicators (/GD+ and the
unary Icy). Since compliant indicators are deemed to be more reliable,
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we conclude that the ranking of the bigger group is also more reliable. It
is also interesting to note that indicators within the same group do not
evaluate the same aspects of quality. This can be interpreted as indicat-
ing that the resulting approximation sets do not dominate only in one
optimization goal. In Table 2, the rating was used to show the absolute
power of the algorithm over other algorithms, however, the rating inter-
val should also be considered. If the confidence intervals do not overlap,
the algorithms have provided significantly different results, whereas the
converse is not necessarily true.

IGD MOEA/D
NSGA-II
SPEA2
PESA-II
IBEA

T T T T T T T T T 1
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Rating
GD IBEA
PESA-II
SPEA2
MOEA/D
NSGA-II

I T T T T T T T T 1
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Rating

Figure 3: 95% confidence intervals for IGD (top) and GD (bottom) QI in table 2.
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Due to space constraints we plotted the confidence intervals for IGD
and GD (e.g., Fig. 3), which are some of the more popular QIs in lit-
erature. The results can be interpreted by observing ratings and rating
interval. As we can see with the /GD indicator, MOFEA/D performed
the best, being significantly better than PESAII and IBEA. On the
last place is IBE A, which performed the worst, being significantly out-
performed by all other algorithms. In contrast, with GD IBFEA per-
formed the best by significantly outperforming MOEA/D, NSGAII,
SPEA2, and PESAII. On the second place is PESAII, outperform-
ing MOEA/D and NSGAII, which shares the last place with one point
of difference. It is important to observe that the selected QI ranked the
MOEAs almost in reverse order. This result can be explained by the
property of GD indicator that measures only the convergence of the ap-
proximation set regardless of its spread and uniformity. Furthermore,
the experiment was limited by selected set of problems, MOEAs, and

Qls.

5. Conclusion

In this paper, eleven QIs were compared with CRS4EAs on five dif-
ferent MOEASs, solving unconstrained MOP from the CEC 2009 bench-
mark. For the given experiment, it has been shown that individual Qls
differently rank algorithms even if they evaluate the same aspects of qual-
ity. Therefore, picking coherent indicators is very important. Selected
QIs were categorized into three groups that have insignificant differences
in MOEAs ranking. The biggest group with the state-of-the-art indica-
tor contains A, I, HV, IGD, IGD+, R2 and MS indicator. The
other two groups containing C'S, GD, M PFE and S indicator returned
very different ranking orders and are not recommended. Because of the
disparity in rankings between indicators, a desired ranking of algorithms
can be achieved with a carefully assembled set of indicators [16]. There-
fore, in order to claim that one algorithm is better, a balanced and fair
set of indicators is recommended. For future work, we would like to
integrate this approach into CRS4EAs and test it on additional diverse
problems for more detailed analysis of QIs.
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Abstract  When using machine learning techniques for learning a function approx-
imation from given data it can be difficult to select the right modelling
technique. Without preliminary knowledge about the function it might
be beneficial if the algorithm could learn all models by itself and select
the model that suits best to the problem, an approach known as auto-
mated model selection. We propose a generalization of this approach
that also allows to combine the predictions of several surrogate mod-
els into one more accurate ensemble surrogate model. This approach
is studied in a fundamental way, by first evaluating minimalistic en-
sembles of only two surrogate models in detail and then proceeding to
ensembles with more surrogate models. The results show to what ex-
tent combinations of models can perform better than single surrogate
models and provide insights into the scalability and robustness of the
approach. The focus is on multi-modal functions which are important
in surrogate-assisted global optimization.

Keywords: Ensemble Methods, Function Approximation, Global Optimization, Mo-
del Selection, Surrogate Models.

1. Introduction

Surrogate models are mathematical functions that, basing on a sample
of known objective function values, approximate the objective function,
while being cheaper in terms of evaluation. Such surrogate models can
then be used to partially replace expensive objective function evalua-
tions. Expert systems like SPOT [1] come with a large variety of models
that has to be chosen from when initiating an optimization process.

131
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The choice of the right model implies the quality of the the optimization
process.

Often expert knowledge is needed to decide which model to select
for a given problem. If there is no preliminary knowledge about the
objective function it might be beneficial if the algorithm could learn all
by itself which model suits best to the problem. This can be done by
evaluating different models on test data a priori and using a statistical
model selection approach to select the most promising model.

Some occurrences imply that there might also be a benefit in linearly
combining predictors from several models into a more accurate predic-
tor. In Fig. 1 such an occurrence is happening. Predictions with two
different (Kriging) models are shown and results obtained by a convex
combination of the predictors of these models. Different errors seem to
be compensated by the combined model’s predictions.

100 -

- . I 27
Y] - x o
T, .,
: o LR ’
H b L)
i Y 4
* h e +, . -
(s D .
; ; .
1 ,
% B |
8 S > 2B
. # 1y :
N LSy © WY
5 50 N o
: -
- [
I I
s
S
1 i
-5 [H
2 - Y
o ;
AV E
oY
st
1 ‘J'
-
0- .
.
.
0.0 25 5.0 7.5 10.0
X

Figure 1: The black line marks the actual objective function value. The dots show
the results obtained in a leave-one-out cross-validation. Blue and red dots mark the
predictions of single models. The green dots shows predictions obtained with an
optimal convex linear combination of the two predictors.
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Such occurrences show that a predictor based on a single modeling ap-
proach is not always the best choice. On the other hand, complicated ex-
pressions based on multiple predictors might not be a good choice, either,
due to overfitting and lack of transparency. Using convex combinations
of predictors from available models seems to be a ‘smart’ compromise.
Given s surrogate models ¢; : R - R,i =1,...,s and d the dimension
of the search space, by a convex combination of models we understand
a model given by Y7, a;g; with > a; = 1 and o; > 0,0 = 1,...,s.
Finding an optimal convex combination of models can be viewed as a
generalization of model selection, where selecting only one model is a
special case. Convex combinations of predictors have also the advantage
that they combine only predictions and can be used for heterogeneous
model ensembles. The main research questions are:

(Q-1) Can convex combinations of predictors improve as compared to
(single) model selection?

(Q-2) Given the answer is positive, what are explanations of the ob-
served behavior?

(Q-3) How can a system be build that finds the optimal convex combi-
nation of predictions on training data?

In order to answer these questions, detailed empirical studies are con-
ducted, starting from simple examples and advancing to more complex
ones. This paper follows a structure, where the discussion of experimen-
tal results follows directly the introduction of the modeling extensions.

2. General Approach and Related Work

To base a decision or build a prediction from multiple opinions is
common practice in our everyday live. It happens in a democratic gov-
ernment, or when in TV shows the audience is asked for help. One also
might use it when we try to build an opinion on a topic that is new to us.
Naturally, such tools already found their way into statistical prediction
and machine learning. In statistics and machine learning an ensemble
is a prediction model from several models, aiming for better accuracy.
A comprehensive introduction to ensemble-based approaches in decision
making is given in [5] and [9]. Generally, there are two groups of ensemble
approaches: the first group’s approaches, the so-called single-evaluation
approaches, only choose and build one single model, whereas the second
group’s approaches, the so-called multi-evaluation approaches, build all
models, and use the derived information to decide which output to use.
For each of these two approaches, several model selection strategies can
be implemented. Well-known strategies are:
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m  Round robin and randomized choosing are the most simplistic im-
plementations of ensemble-based strategies. In the former ap-
proach, the models are chosen in a circular order independent of
their previously achieved gain. In the latter approach, the model
to be used in each step is selected randomly from the list of avail-
able models. The previous success of the model is not a decision
factor.

= Greedy strategies choose the model that provided the best function
value so far, while the SoftMax strategy uses a probability vector,
where each element represents the probability for a correspond-
ing model to be chosen [13]. The probability vector is updated
depending on the reward received for the chosen models.

m  Ranking strategies try to combine the responses of all meta models
to one response, where all meta models contributed to, rather than
to choose one response.

= Bagging combines results from randomly generated training sets
and can also be used in function approximation, whereas

m  Boosting combines several weak learners to a strong one in a stochas-
tic setting.

m  Weighted averaging approaches do not choose a specific model’s
result but rather combine it by averaging. Since bad models should
not deteriorate the overall result, a weighting scheme is introduced.
Every model’s result for a single design point is weighted by its
overall error, the sum over all models yields the final value assigned
to the design point. A similar approach is stacking, where the
weights are chosen by an additional training step.

The convex model combinations in this paper can be viewed as an elegant
stacking approach and as such is similar to ’ensembles of surrogates’
[7], which however used a fixed rule for determining weights. In our
work weights are optimized globally and the approach is analysed in
a controlled and detailed way. Since most of the black-box real-world
problems considered to be difficult are multimodal, the focus for this
work also is on multimodal function approximation (cf. [8, 10, 12, 14]).

3. Preliminaries

By a surrogate model, we understand here a function ¢ : R* — R that
is an approximation to the objective function y : R — R, learned from
a finite set of evaluations of the objective function. Kriging surrogate
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models are used in our study. A set of three different kernels is used to
implement the ensemble strategies. Following the definitions from [11],
the correlation models can be described as follows. We consider station-
ary correlations of the form R(0,w,z) = [[;_, R(0;,w; — x;). The first
model uses the ezponential kernel R(0, w,z) = exp(—0;jw; — z;|) the
second model uses an Gaussian kernel R(0, w,z) = exp(—0;|w; — z;|?),
whereas the third model is based on the spline correlation function
RO, w,z) = ((0j|lw; — z;]) with

1.25(1 —¢;)%  for 02<e¢<1

1—15¢2 4+ 303 for 0<¢ <0.2
C(e) = {
0 for € > 1.

Here, € and 0 are hyperparameters estimated by likelihood maximization.

For generating test functions we use the Mazx-Set of Gaussian Land-
scape Generator (MSG). It computes the upper envelope of m weighted
Gaussian process realizations and can be used to generate continuous,
bound-constrained optimization problems [6].

G(z) = ie%@?ﬁm(wigi(x)),

where g : R" — R denotes an n-dimensional Gaussian function

exp (<@ -y @ —w?)\ "
g(z) = ( 2(%)”/2'2'1/2 ) ,

w is an n-dimensional vector of means, and X is an (n X n) covariance
matrix. Implementation details are presented in [2]. For the generation
of the objective function the spotGlgCreate method of the SPOT pack-
age has been used. The options used for our experiments are shown in
Table 1. With the parameter d the dimension of the objective function
is specified. The lower and upper bounds (I and u, respectively) specify
the region where the peaks are generated. The value max specifies the
function value of the global optimum, while the maximum function value
of all other peaks is limited by ¢, the ratio between the global and the
local optima.

4. Binary Ensembles

This Section analyses models which combine only two models. Convex
combinations of models will be referred to as ensemble models, while the
original models will be referred to as base models. We focus on positive
weights, since we do not want to select models that make predictions
which are anti-correlated with the results.
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Table 1: Gaussian landscape generator options

Parameter Description Value

d Dimension 2—10

m Number of peaks 10 — 40

l Lower bounds of the region, where peaks {01,...,04}
are generated

u Upper bounds of the region, where peaks {51,...,54}
are generated

max Max function value 100

t Ratio between global and local optima 0.8

A sample of points (design) is evaluated on the objective function
(MSG, for parameters see Table 1). For the sampling of the points a
latin hypercube design featuring 40 design points is generated. The two
base models are Kriging with exponential correlation function (referred
to as a) and Gaussian correlation function (referred to as b). Both base
models are fitted to the data and then asked to do a prediction on the
testdata. The predictions ¢ of the ensemble models are calculated as
convex combinations of the predictions of the base models.

Given a weight «;, where o; € {0.0,0.1,0.2,...,0.9,1.0}, the ensemble
models can be defined as the linear combinations of the models a and b
as follows:

gn:anxga"i_(l_an)xgb (1)

The models are evaluated by calculating the root mean squared error
(RMSE) of the predictions made during a leave-one-out cross-validation
on the 40 design points.

Since randomness has been induced into the experiment by using the
latin hypercube design, the evaluation process has been repeated 50
times. With each model returning one prediction for each design point
in every repetition this results in a total of 2000 prediction values (40
design points x 50 repetitions) for each model.

To get a first quick insight into the result data, for each repetition the
rankings of the RMSE’s have been calculated. The models with o = 0.6,
a = 0.8 and a = 0.9 dominate this comparison, each performing best 8
out of 50 times. The base models, a and b, performed best only in four
respectively two cases out of 50. Never an ensemble model with positive
weights was performing worst.

In order to achieve some comparability between the RMSE’s of dif-
ferent repetitions all RMSE’s have been repetition-wise scaled to values
between zero and one, so that the scaled RMSE of the best model in
one repetition is always zero and the scaled RMSE of the worst model
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for one repetition is always 1.0. Figure 2 shows the boxplot over these
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Figure 2: Boxplot over the scaled RMSE’s of all models. The models are defined by
an a-weighted linear combination of the two base models. The results of the base
models depicted on the outer rows and colored red (exponential kernel), respectively
blue (Gaussian kernel). The model combination chosen as best with a = 0.6 is colored
green. The mean value of each result bar is marked by a dot.

scaled RMSE’s. It can be seen that the model a (exponential) in most
of the cases performs worst since its median is 1.0 - only some outliers
come closer to zero.

Model b (Gaussian) shows a larger variation in its performance. It has
been the best- as well as the worst performing model each at least once.
Its median and mean performances are average in comparison with all
models evaluated. A parabolic tendency can be seen in the performance.

Due to the convex combination of the predictor, a prediction by the
ensemble model cannot be worse but it might be better than both base
models. An ensemble can only be better, if one model overestimates
and the other model underestimates the objective function value. In the
experiment this happens in 649 out of 2000 cases.

As a consistent method for evaluating the performance and automati-
cally choosing the best model the following approach is proposed: Model-
wise mean-, median- and 3rd quartile-values are calculated. The result-
ing values are ranked and the rankings summed up to one final ranking.
The model that achieved the lowest value is recommended as best choice.
In Fig. 2 the model recommended as best choice by this method is col-
ored green.

5. Detailed Analysis on Transparent Test Cases

It can clearly be stated that for this first experiment setup the com-
bination of two models is beneficial for the overall prediction. In this
section we're going to have a closer look at possible explanations for
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the successful result. Are there problem features that encourage using
ensembles and is this result generalizable.

We chose a 1D objective function to allow for a better understanding
of the underlying process. This is the only change in the experimental
setup. The Figs. 1 and 2 from Section 4 depict the main results of
this second experiment setup. Figure 2 shows the scaled RMSE’s for
all models. Applying the rule defined in Section 4 names the model
obtained by a linear combination with a = 0.7 as best choice.

Figure 1 shows only the performance of the best choice model and the
base models. Each dot marks a single prediction made during the leave-
one-out cross-validation. As can be seen in the plot, the predictions
of the model a (exponential), marked by red dots, seem to smooth the
objective function - straight segments are well met while curved segments
are smoothed out.

The predictions of the model b (Gaussian), marked by the blue dots
show signs of overfitting. Again straight segments are well met but
when approaching local extrema the predictions start to oscillate. So
the linear combination of both predictions averages positive as well as
negative outliers of base models. This seems to provide some benefit to
the overall experiment outcome.

Since the curves and corners in the objective function seem to make
the game here, two additional experiments are set up. For these exper-
iments two objective functions are specified featuring corners that are
not continuous differentiable. For one experiment a triangle objective
function is used while the other features a piecewise assembled objective
function. Figure 4a shows the results for the piecewise assembled objec-
tive function. Looking at these results, we again find a strong parabolic
tendency in the boxplot. Both base models have a rather large variance
in their performance. The ensemble model marked as best choice has a
smaller variance and performed better than the base models in nearly
all cases.

The results on the triangle objective function happened to show a clear
tendency towards base model b, which clearly outperformed basemodel
a and thus was chosen best.

6. Ternary Ensembles

Next, the experiments are extended to a larger scale: The dimension-
ality of the objective function is increased and three base models are
combined. As before Kriging models with different kernels are used, but
now a third model using the spline correlation function is added.

s By € {0.0,0.1,0.2,...,0.9,1.0}, om+Bn+vm=1  (2)
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Figure 3: Results on a piecewise assembled objective function. Left hand side plot
shows the scaled RMSE‘s. The a value defines the weight for the linear combination.
The ensemble obtained by a linear combination with o = 0.5, here colored green, is
suggested best for this experiment setup. On the right hand side all predictions done
during the leave-one-out cross validation for the base models and the best model are
plotted against the objective function.

For the linear combination of three base models three weights are needed,
that sum up to one as specified in (2). With a step size of 0.1 for the
linear combinations this results in 66 models.

Figure 4a shows the results of the first experiment using three base
models. The only change that has been made to the original experiment
setup, besides the number of base models, is the dimension d of the ob-
jective function and the number of peaks m generated in the Gaussian
landscape. As a first step towards objective functions of higher com-
plexity, the dimension of the objective function has been set to 4. But
this change alone is not sufficient to gain a larger complexity, since with-
out adjusting the number of Gaussian components used for generating
the objective function, it rather gets less complex. Thus the number of
Gaussians process trajectories is adjusted to ten times the dimension.

With the points getting smaller when approaching the center of the
triangle, it can be stated, that again it is beneficial to use a convex
combination of the base models.

7. Scaling-up to multiple models

By now, only experiments with up to three models are carried out,
but the underlying goal is to evolve a system that is able to handle
quite a large set of available base models. But at this point quickly
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another approach is needed, since the number of possible discretised
convex combinations between a higher number of base models grows
exponentially. A recursive formula is given below: There is only one
setting where the first model gets all the weight (first factor in sum).
In all other settings the remaining weight must be distributed on the
remaining models.

r—1
f(r,s)zl—i—Zf(r—r*,s—l), f(r,1)=1,f(1,s)=s (3)

r*=1

The relation between number of models, the step size for the discretised
convex combinations and the resulting number of linear combinations
can be expressed as function of r the reciprocal of the step size and s
the number of models as defined in (3). Using three base models and
a step size of 0.1 as defined in (2) this results in f(10,3) = 66 linear
combinations. Now thinking of combinations of 10 base models already
results in f(10,10) = 92378 linear combinations.

The complexity of the search space, when increasing the number of
models, quickly gets too large to do a complete evaluation of all possible
convex combinations with a fixed step size of 0.1. Looking at previous
results, the function that describes the performance of the models built
by convex combinations up to this point only showed unimodal char-
acteristics. This seems to be expectable due to the nature of convex
combinations. We expect the function to show this characteristic also
when combining larger number of models.

Thus, instead of a complete evaluation of all linear combinations, an
optimization step is implemented to find the best combination. The
allowed weights are restricted to a precision of two decimal places. Since
the area around the optimum tends to build a plateau. This reduces the
possible search space without loosing the possible best solution.

For the sake of comparability, the experiment setup here is exactly
the same as the one used in Section 6. Only the process itself changed.
Prior to this experiment, all convex combinations have been evaluated.
Now, only the base models are evaluated initially. Other models are only
evaluated during the optimization. We also stuck to the method used
by the (1+1)-ES of comparing the offspring only to the parent rather
than to the whole population as we did it before.

For the mutation of the weights vector v = (a, 3,7)? three random
samples of a normal distribution function with standard deviation of
0.16 have been drawn and added to the weight vector. Since this alone
does not meet the requirements needed for a valid weight vector, the
resulting vector has been adjusted in three steps:
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Figure 4: The plots show the results of the experiment set up with three base models.
Each circle depicts the performance results for one model. The three base models are
located on the corners of the triangle, models gained by linear combinations of only
two models are located on the outer border. Circles on the inner area of the area
show the results for models that were gained by linear combinations of all three base
models. The size of the circles denotes the mean RMSE value, the color the standard
deviation. The model proposed as best choice is marked by an additional white circle.

1 If min(e, 8,7) < 0 then v < v — (min(«, 8,7), . . . ,min(a,ﬁ,’y))T,
2 vev/(at+B+7),

3 Round the values «, 3,7 to two decimal places so, that a+5+~v =
1.

For this experiment we allowed a maximum of 100 individuals to be
evaluated. Within these bounds already the 35th evaluated individual
has been the best individual found in this run. Figure 4b depicts the
results of this optimization step. As before, the best individual is marked
by a white circle. However, since determination of optimal weights in the
linear model is a non-linear optimization problem, we cannot guarantee
the optimality of the proposed weights. So far, we have achieved similar
results in repeated runs and on different objective functions. Due to
space constraints, statistical validation is however left to future work.
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8. Discussion and Outlook

Reconsidering the research questions from Section 1, it was shown
that convex linear combinations of predictors can generate better re-
sults than model selection (Q-1). A system, which finds optimal linear
combinations, was presented in Section 4. As a possible explanation a
compensation of outliers was found, an effect that occured in particular
in non-smooth objective functions (Q-2). The corresponding experi-
ments were extended to a larger scale, in terms of dimensionality as well
as number of models, in Section 6 with results indicating that the meth-
ods are scalable (Q-3). Finally, in Section 7, we proposed a method to
include even more base models to the system, showing that evolutionary
optimization can be an effective tool for finding optimal convex combi-
nations. With this method the foundation has been created for a larger
system including all available models. Although research questions (Q-
2) and (Q-3) could be partially answered, larger studies are required to
statistically confirm scalability and find in depth explanations.

In summary, convex combination of models are a promising approach
in situtations where several types of models are available. if the user
does not know, which model to choose, a linear combination might be a
promising approach. An interesting aspect about convex combinations
is that they are easy to interpret and that weights in the linear model
can shed some light on the relevance of certain models and illustrate,
which model is active.

Ideas and questions that will be discussed in future work are:

= Experiments featuring more base models, also including other types
of models.

= Extensive analysis of the influence of objective function attributes
on the experiment outcome. The results of Section 5 suggest, that
particularly piecewise assembled objective functions might be of
special interest.

m  Studies also allowing other operations than simple convex com-
binations only: Does increasing the model complexity of model
combinations yield much better results?

»  Comparing to approaches that chose fixed weights [7].
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Abstract  Differential evolution is popular and efficient algorithm for global opti-
mization. L-SHADE algorithm is one of the most successful adaptive
versions of the algorithm. It uses only binomial crossover. We study
employing the exponential crossover in the algorithm. Our tests are
carried out on CEC2015 benchmark set for learning-based optimization
competition. According to our results, the employing of the exponen-
tial crossover together with binomial one into L-SHADE algorithm is
beneficial.

Keywords: Binomial crossover, Differential evolution, Evolutionary algorithm, Ex-
perimental comparison, Exponential crossover.

1. Introduction

Differential evolution (DE) is one of the most known and used stochas-
tic algorithms for solving of real-parameter optimization tasks. The
algorithm was proposed by Storn and Price in 1997 [10]. There are
many researchers who are interested in the algorithm, its behavior, and
improvement of its performance [3, 8]. Effectiveness of the algorithm
depends on values of its parameters and different values of control pa-
rameters are often more beneficial in different stage of search process.
These facts are the reasons why many adaptive versions of the algo-
rithm were proposed since differential evolution algorithm appeared,
e.g., [1, 2,7, 14, 18, 21]. The algorithm presented by Tanabe and Fuku-
naga in 2013 called Success-history based adaptive differential evolution
with linear reduction of population size algorithm (L-SHADE) [13] is
one of the most effective versions of DE up to these days. L-SHADE
employs the most common used type of crossover, binomial one. There
are some studies in which types of crossover used in DE are studied

145



146 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

and discussed, e.g., [15, 16, 17, 19]. Mentioned studies and the facts
claimed in the papers inspired us to study the impact of including the
exponential crossover into L-SHADE algorithm.

In the following two sections, the DE algorithm and L-SHADE al-
gorithm are described. In Section 4, two new versions of L-SHADE
algorithm are introduced. Carried out experiments are described and
results of them are specified and discussed in Section 5. Conclusions are
given in the last section.

2. Differential Evolution

Differential evolution algorithm [10] is one of the most known evolu-
tionary algorithms. DE solves global optimization tasks with continuous
search space. Let us have a real function f: S — R, S C R”, f is ob-
jective function and DE’s aim is to find global minimum point of f in
S, i.e. such point x* that f(x*) < f(x) holds for all x € S, S is search
space, D is problem dimension. DE works with population P of NP-
points from search space S. The points are chosen randomly from S
with uniform distribution at the beginning of the search process. NP is
the size of population P. Population P then evolves generation by gen-
eration. A new generation is created in the following way. A new point
y € S, so called trial point, is created for each member x; of population
P. If f(y) < f(x;) holds, y replaces x; in population P. Otherwise
x; stays to be a member of population P for next generation. A trial
point y is built up by evolutionary operators mutation and crossover
from some points of current generation of population P. A combination
of a mutation and a crossover is called DE-strategy. An abbreviation
DE/a/b/c is commonly used for a DE-strategy, a is mutation, b is the
number of difference vectors used in the mutation, and ¢ is employed
crossover. The search process is interrupted, when a stopping condition
holds, for example when maximal count of objective function evaluations
is reached.

A mutant u is created by operation mutation for a point x;. There
are many types of mutation used in DE. A mutation is abbreviated by
a/b, where a is type of mutation and b is a count of difference vectors
used in the mutation. The most common mutation is rand/1 (1). The
mutant u is developed from three random points x,1, X9, X,3 of current
generation of P (r; # ry # r3 # ). Scaling factor F' € (0,2] is input
parameter usually set as F' € (0, 1]. Current-to-pbest/1 mutation (2) was
proposed by Zhang and Sanderson [21]. The point Xpes: is randomly
chosen point from p x 100% best points of population P, p is input
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parameter, 0 < p < 1.

u=x,1 + F X (Xr2 _XT3)7 (1)

u=x;+Fx (Xpbest - Xi) + F X (Xrl - Xr2)- (2)

The trial point y is created from x; and mutant u by a crossover.
Binomial crossover combines coordinates of x; with coordinates of
mutant u into trial point y according to formula (3).

Y=\ ay if U;j>CR  and j#1,

where [ is a number randomly chosen from set {1,2,..., D}, Uy, Us,...,Up
are independent random variables uniformly distributed in [0, 1). Input
parameter CR € [0, 1] is crossover parameter.

In exponential crossover, L (1 < L < D) consecutive coordinates are
moved from mutant u into trial point y. A m is randomly chosen with
uniform distribution from set {1,2,..., D}. Probability of moving of k-
coordinate in sequence {uy4x}, 0 < k < (L — 1) into trial point is CR".
Coordinates, which are not copied into trial point y from u, are copied
from x;.

Binomial crossover is more often employed type of crossover than ex-
ponential one in adaptive versions of DE [1, 7,9, 12]. The CR parameter
influences the number of elements to be put into y from x; and from u
for both mentioned types of crossover. Let p,, is a mutation probability
for a coordinate of x; to be replaced by respective coordinate of mutant
u. Zaharie found [20] that the relation between probability p,, and CR
is linear for binomial crossover and strongly non-linear (described by
equality (4)) for exponential crossover.

CRP - D p,, CR+ D p, —1=0. (4)

Figure 1 illustrates the relations between CR and p,, for binomial and
exponential crossover and differences amongst them for dimension D =
30. The DE algorithm is described by pseudo-code in Algorithm 1.

3. L-SHADE Algorithm

The success-history based adaptive differential evolution algorithm
with linear reduction of population size (L-SHADE) proposed by Tanabe
and Fukunaga in 2014 [13] is based on SHADE algorithm [11, 12].

SHADE algorithm [11, 12] uses DE/current-to-pbest/1/bin DE-strategy,
archive A, and an adaptation of control parameters F' and CR. It is
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Figure 1: The dependence of CR on probability of mutation p,, for binomial and
exponential crossover, D = 30

Algorithm 1 Differential evolution algorithm

1: generate an initial population P = (x1,xX2,...,Xyp), distributed
uniformly in search space

2: evaluate f(x;),71=1,2,...,NP

3: while stopping condition not reached do

4: Q =10

5. fori¢=1to NP do

6: generate a mutant point u by mutation
7: create a trial point y from mutant u and x; by crossover
8: evaluate f(y)

9.  if f(y) < f(x;) then

10: insert y into new generation @)

11: else

12: insert x; into new generation Q)

13: end if
14:  end for
15 P:=Q

16: end while

based on JADE [21] algorithm. Archive A is initialized as empty set and
each point x;, which is replaced by its better trial point y, is included
into archive A during the search process. The archive A is adjusted
after each generation to have maximal size of NP, where members for
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removing from archive are chosen randomly. x,; is randomly selected
point from P and x,9 is randomly selected point from PU A for current-
to-pbest/1 mutation (2). The p for the mutation is chosen new for each
trial point randomly from interval p € (1/NP,0.2] in SHADE algorithm.
F and CR are generated before each new trial point is created from
Cauchy and normal distribution, respectively. So called historical circle
memories Mg and Mg are implemented for storing several values of the
first parameters of F' and CR distributions, respectively. Recommended
value of the memories’ size is H = NP for the SHADE algorithm. Each
member of these both memories is set to value 0.5 at the beginning of the
search process. The memories are updated in the way described below.
When F' and CR are needed for a point x; for creation of y, an uniform
random number 7 is chosen from the set {1,2,..., H} and F' is random
number with Cauchy distribution with parameters (Mp,,0.1) and CR is
random number from normal distribution N(Mcg,,0.1). If generated F
is higher than 1 then F is set to F' =1 and if F' < 0 then new value of
F is generated. Generated value of CR is trimmed into interval [0, 1],
ie. if CR > 1then CR =1 and if CR < 0 then CR = 0. If f(y) < f(x:)
holds for trial point y made by the pair of parameters (y is successful),
the F' and CR are stored into sets Sp and Scgr, respectively. The sets
Sr and Scg are set as empty sets at the beginning of a generation.
New values of Mp, and Mcg, (k is current position in Mp and Mcg)
are computed at the end of the generation from values stored in Spg
and Scg, respectively. They are created as weighted means and they
are weighted by differences between values of objective function. The
Mp, and Mcg, are computed only if there is at least one successful
trial point y in the generation. Then Sp = {Fi, Fy,..., F|g,|} and
Scr = {CR1,CR,,.. '7CR|SF\}a note that |Sp| = |Scgr| holds. The
computation of new values Mp, and Mcg, is done according to equalities
(5)-(7). meany, is weighted Lehmer mean and meany 4 is weighted
arithmetic mean (6). y,, in (7) is successful trial point generated by F,
and CR,, and x,, is point of population, which was replaced by trial

point y.,.

MFk = meanWL(SF), MCRk = meanWA(SCR), (5)
when Sg # 0,
|SF| 2 ISF|
m I,
meany ,(Sp) = Zw—w, meany A(Scr) = Z Wy CRy,, (6)
> neq Wn Fy
Afm

) Afm = |f(Xm) - f(Ym)’7 (7)

Wm =

Z|SF|
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At the beginning of the search process, parameter k is set to k = 1.
k is increased by 1 after each computation of Mg, and Mcg,. If K > H
for such increased k, k is set to k = 1.

L-SHADE algorithm [13] is very similar to SHADE algorithm. The
only differences are the use of linear reduction of the population size NP
and the different setting of some input parameters. The parameter p for
current-to-pbest/1 mutation is set on a constant value, p = 0.11. The
population size is linearly decreasing generation by generation with the
increasing number of the objective function evaluations (FES) during
the search process from NP at the beginning to NP™" at the end
of the search process, i.e. if allowed number of the function evaluations
(MazFES) is reached. Relatively big value of NP™ is very useful, in
order to ensure the most possible exploration of search space. On the
other hand, small value of NP™" is recommended in order to increase
the length of computation (count of created generations) as possible
and to let the algorithm to specify the solution as possible. The size of
population for generation G+1 is computed according to the formula:

FES
MaxFES

where FES is the current number of the objective function evaluations.
Whenever NPgy1 < NPg, the (NPg — NPg41) worst individuals are
deleted from the population.

Values of the size of archive A, NP NP™" and the size of histor-
ical circle memories H recommended by authors of [13] are 2.6 x NP,
NPt = 18 x D, NP™" = 4, and H = 6, respectively. L-SHADE
with mentioned parameter setting was the best DE-version in optimiza-
tion competition on CEC2014 [4, 5]. The L-SHADE algorithm proposed
in [13] is described by pseudo-code in Algorithm 2.

NPG+1 — round Npinit _ (NPZnZt _ NPmm) ’ (8)

4. Exponential Crossover in L-SHADE

In L-SHADE algorithm, each trial point is created from original point
xX; and mutant u by binomial crossover, the more often used type of
crossover in DE. There are studies which focus on the comparison of
using of binomial and exponential crossovers in DE in the literature.
The influence of employing the exponential crossover in competitive dif-
ferential evolution adaptive version of DE was studied in [15, 16]. The
author found that applying both types of crossover brings improvement
for standard functions in comparison with applying only the binomial
crossover. For composition functions, the improvement appeared only
for part of problems in the study. Tvrdik [17] claimed that the use
of both types of crossover together makes DE algorithm more robust.
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Algorithm 2 L-SHADE algorithm

1: initialization: NP NP™™" circle memories Mg and Mcg, archive

A=10

2. NP := NP™mit

3: generate an initial population P = (x1, X2, ...,XNp)
4: evaluate f(x;),i=1,2,..., NP

5. while stopping condition not reached do

6: set Sp and Scg empty; Q = ()

7. fori=1to NP do

8: generate ' and CR, use circle memories Mp and Mcgr
9: generate a trial vector y

10: evaluate f(y)

11: if f(y) < f(x;) then

12: save F' and CR into Sp and Scgr

13: insert x; into archive A

14: end if

15: if f(y) < f(x;) then

16: insert y into new generation @)

17: else

18: insert x; into new generation ()

19: end if

20: end for

2. P:=Q

22:  modify circle memories if needed, use Sr and Scr
23:  NP,4 := NP, recompute size of population NP, eq. (8)
24:  if NP < NP,4 then

25: remove superfluous points from population

26: end if
27: end while

Weber and Neri [19] designed a new type of crossover called contigu-
ous crossover. The crossover is similar to exponential crossover and it
was shown on a benchmark set that the DE algorithm with the con-
tiguous crossover is either of the same performance or of slightly better
performance than DE with binomial crossover in the paper. Based on
these works we decided to study a possibility to improve the efficiency
of L-SHADE algorithm by employing the other type of crossover, the
exponential one, in this paper.

The binomial crossover in L-SHADE can be replaced by exponential
crossover or both crossovers could be used together in the algorithm.
Proposed versions of L-SHADE algorithm follow:



152 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

m [-SHADEexp — the exponential crossover is employed instead of
the binomial one,

s [-SHADEcom — both types of crossover compete.

L-SHADEexp version of L-SHADE algorithm employs the exponential
crossover instead of the binomial one. In historical circle memories,
it stores first parameter of distribution of F' and not CR but p,,, the
probability which was discussed in Section 2. The memories are labeled
Mp and M), here. So, when a CR is needed in L-SHADEexp algorithm,
it generates p,, from normal distribution N (Mfm,O.l) and then CR is
computed from polynomial (4). Each value included in memory M,, = is
computed similarly as a value included into memory M¢g in L-SHADE,
based on successful values of p,,. The other features are the same as for
the original L-SHADE algorithm.

Binomial and exponential crossovers compete in L-SHADFEcom algo-
rithm. Four historical circle memories, Mp,, Mcr, MF,, and M, , and
four sets are used for storing the first parameters of distributions and for
storing successful values of F' and CR of binomial crossover and of F' and
Pm Of exponential crossover, respectively. The crossovers are employed
in dependence on probabilities p, and p. during the search process.

A crossover is chosen according to current values of probabilities py
and p. independently for each point x; before its trial point y is cre-
ated. Both crossovers have the same probability, p, = p. = 0.5, at the
beginning of the search process. Let s, and s, are counts of successful
trial points generated by DE/current-to-pbest/1/bin and DE/current-
to-pbest/1/exp DE-strategy during the generation G, respectively. They
are set to sy, = S¢, = 0 at the beginning of each generation. The first
change of the probabilities p, and p. in the search process and after
each resetting of probabilities occurs when a generation, in which the
first successful trial point was generated, ends. In such case, at least
one of sp,, Se. are not equal to zero and probabilities p, and p. can
be adopted according to (9), (10). The s, and s, in (9) and (10) are
cumulative counts of successful trial points since the beginning of the
search process or since the last reset of probabilities p, and p. gen-
erated by DE/current-to-pbest/1/exp and DE/current-to-pbest/1/bin
DE-strategy, respectively.

Sp = Sp + Sbas Se = Se T Seg> (9)
Sp

— , =1 —7. 10

Db 55+ 5e Pe Pb (10)

If py or pe is less then ¢ after such re-computation, probabilities p, and
pe are reset to p, = pe = 0.5 (J is input parameter) and also cumulative
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Table 1: Improvement and deterioration of L-SHADE algorithm by including expo-
nential crossover

dimension D=10 D=30 D=50 D=100 all

algorithm exXp com exp com exp com exXp com exp com
improvement 9 7 5 5 3 4 1 2 18 18
deterioration 2 1 4 1 5 2 11 4

counts are reset to s, = s, = 0. We use value of § = 0.1 in our experi-
ments. The approach of crossovers’ competition used in L-SHADEcom
is undertaken from competition of DE-strategies which was proposed for
competitive-adaptive version of DE [14].

5. Experiments and Results

Two proposed modifications L-SHADEexp and L-SHADEcom were
compared experimentally with L-SHADE algorithm on benchmark set
developed for learning-based real-parameter optimization competition
on CEC2015 according to conditions defined in [6]. This benchmark set
includes 15 different problems of different complexity. Tests were done
in dimensions D = 10, 30, 50, 100. 51 independent runs were curried out
for each function, each dimension, and for each of studied algorithms.
The algorithms were stopped according to conditions defined in [6] when
MazFES was reached, MaxFES = D x 10*. Tested algorithms were
implemented in Matlab 2010a and this environment was used for ex-
periments. All computations were carried out on a standard PC with
Windows 7, Intel(R) Core(TM)i7-4600U CPU, 2.10GHz, 2.70GHz, 8 GB
RAM.

The results of our experiments are summarized in Table 2 for D = 10
and D = 30 and Table 3 for D = 50 and D = 100. In these tables,
best and worst error value, median, mean, and standard deviation of
error value of 51 solutions are shown for each benchmark function. The
L-SHADE algorithm is referred as orig, L-SHADEexp as exp, and L-
SHADEcom as com in the tables. Some results are released from tables.
In each released case, the algorithm found the optimum in all runs.

After experiments, we compared statistically results of each of pro-
posed algorithms, L-SHADEexp and L-SHADEcom, with results of orig-
inal L-SHADE algorithm. Results were compared by Wilcoxon two-
sample test. We did the experiments in that way, because we want to
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Table 2: Results of L-SHADE versions, D=10 and D=30

D=10 D=30

f/Alg. Best Worst Median Mean Std W Best Worst Median Mean Std W
3/orig 1.2410 20.017  20.007 17.599 6.092 20.061  20.147  20.105 20.108 0.0207

exp [¢] 20.034  20.001 17.330 6.778 + 20 20.233  20.144  20.123 0.0682 —

com 0 20.020 20.003  16.901 7.275 = 20.002 20.209 20.102 20.107 0.0400 =
4/orig 1.9903 5.9714 3.9800 3.4941 1.002 17.050 31.191 25.097 24.945 3.203

exp 0.9950 4.9748 2.9849 3.1409 0.8982 + 18.930 33.997 25.880 25.840 3.216 =

com 0 4.9748 2.9849 2.8873 1.076 + 15.931 31.841 24.878 24.461 3.458 =
5/orig 3.7571 141.20 15.539 29.952 38.81 741.77 1720.1 1242.3 1291.4 224.0

exp 0.24982 229.91 21.825 44.752 54.35 = 1037.8 1899.8 1436.2 1437.0 224.4 —

com 0.18736 137.10 18.597 40.783 45.16 = 911.91 1764.5 1332.7 1345.9 195.6 =
6/orig  0.58746  9.2417  3.2384  3.5703 1.853 36.118 376.13 197.06  205.30 81.01

exp 0 3.1930  0.4163  0.7743 0.7122 + 32.137 504.58 181.66 194.85 94.57 =

com 0 11.381 1.2031 1.2895 1.680 + 40.539 522.78 188.30 195.37 109.3 =
7/orig 0.06386 0.48082 0.23807 0.24376 0.09122 5.7896 7.4667 6.8496 6.8049 0.3729

exp 0.02683 0.35244 0.09512 0.12774 0.08196 + 3.9795 7.0493 5.8237 5.7711 0.8452 +

com 0.03655 0.34547 0.12036 0.14226 0.07815 + 4.1992 7.5321 6.5885 6.4734 0.6624 +
8/orig 0.19264 2.9792 0.7688 0.9609 0.6209 15.473 270.83 52.018 55.845 38.11

exp 5.84E-04 0.8094 0.1052 0.2100 0.2217 + 8.9945 262.85 31.222 42.878 42.21 +

com 4.47E-05 0.6461 0.0348 0.1126 0.1586 + T.7778 100.43 33.710 38.370 18.72 +
9/orig 100 101.052 100 100.073 0.2523 105.911 108.333 107.076 107.100 0.5177

exp 100 100 100 100 1.05E-06 4 101.552 106.51 105.908 105.722 0.8040 +

com 100 100 100 100 5.27E-06 4 104.969 106.833 106.175 106.162 0.3326 +
10/orig 140.701 179.010 143.109 148.704 10.88 516.284 741.962 616.434 623.758 56.01

exp 140.701 152.292 140.708 141.895 2.364 + 533.549 681.669 612.689 604.962 42.55 =

com 140.701 152.292 140.708 142.302 3.429 + 516.315 761.666 614.993 619.535 53.46 =
11/orig 2.163 4.2013 3.0709 3.0603 0.4503 316.02 623.18 556.30 527.88 82.78

exp 1.899 300 2.7454 8.5156 41.63 + 300.39 586.63 418.90 415.99 70.62 +

com 1.5598 301.22 2.8664 8.7553 41.78 = 300.35 613.67 492.17 471.17 93.43 +
12/orig 110.918 112.724 112.166 112.106 0.3543 108.57 110.17 109.36 109.39 0.3637

exp 109.863 112.135 111.766 111.665 0.3870 + 107.55 109.95 108.95 108.94 0.4547 +

com 111.284 112.445 111.890 111.870 0.2944 + 108.40 110.02 109.17 109.21 0.3842 +
13/orig  0.0925 0.1072  0.0927  0.0940 0.0034 0.0104 0.0109 0.0107 0.0107 1.08E-04

exp 0.0927 0.1072  0.0927  0.0938 0.0032 = 0.0104 0.0115 0.0107 0.0107 1.99E-04 =

com 0.0925 0.1028 0.0927 0.0942 0.0033 = 0.0104 0.0115 0.0107 0.0107 1.59E-04 =
14/orig 6662.87 6677.01 6670.66 6667.95 4.606 33760 42628 42559 41524 2863

exp 6662.87 8706.43 6670.66 6