
BIOINSPIRED OPTIMIZATION METHODS
AND THEIR APPLICATIONS

BIOINSPIRED OPTIMIZATION METHODS
AND THEIR APPLICATIONS

Proceedings of the Seventh
International Conference on
Bioinspired Optimization Methods
and their Applications, BIOMA 2016

18–20 May 2016, Bled, Slovenia

Edited by

GREGOR PAPA
Jožef Stefan Institute, Ljubljana

MARJAN MERNIK
University of Maribor

Jožef Stefan Institute
Ljubljana, Slovenia

Editors: Gregor Papa, Marjan Mernik

Cover design by Studio Design Demšar, Škofja Loka
Logo design by Gregor Papa
Printed by Tiskarna Artelj, Ljubljana
Published by Jožef Stefan Institute, Ljubljana, Slovenia

Typesetting by Jurij Šilc in kapproc-based LATEX style with kind
permission from Kluwer Academic Publishers

CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

004.02(082)
005.519.1(082)
510.5(082)

INTERNATIONAL Conference on Bioinspired Optimization Methods
and their Applications (7 ; 2016 ; Bled)

Bioinspired optimization methods and their applications :
proceedings of the Seventh International Conference on Bioinspired
Optimization Methods and their Applications - BIOMA 2016, 18-20
May 2016, Bled, Slovenia / edited by Gregor Papa,
Marjan Mernik. - Ljubljana : Jožef Stefan Institute, 2016

ISBN 978-961-264-093-4
1. Gl. stv. nasl. 2. Papa, Gregor

284600576

Contents

Preface vii

Contributing Authors xi

Part I Invited Contributions

A Survey of Model-Based Methods for Global Optimization 3

T. Bartz-Beielstein

Parallel Multi-Objective Evolutionary Algorithms 21

E.-G. Talbi

Part II Theory and Algorithms

Artificial Bee Colony Optimization Approach to Develop Strategies

for the Iterated Prisoner’s Dilemma 51

M. Rigakis, D. Trachanatzi, M. Marinaki, Y. Marinakis

Sensitivity Analysis of the Bee Colony Optimization Algorithm 65

T. Jakšić Krüger, T. Davidović

A Parameter Control Scheme for DE Inspired by ACO 79

D. Bajer, G. Martinović

Experimental Algorithmics Applied to On-Line Machine Learning 93

T. Bartz-Beielstein

v

vi BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Disadvantages of Statistical Comparison of Stochastic Optimization

Algorithms 105

T. Eftimov, P. Korošec, B. Koroušić Seljak

The Impact of Quality Indicators on the Rating of Multi-Objective

Evolutionary Algorithms 119

M. Ravber, M. Mernik, M. Črepinšek

Building Ensembles of Surrogates by Optimal Convex Combination 131

M. Friese, T. Bartz-Beielstein, M. Emmerich

The Exponential Crossover in L-SHADE Algorithm 145

R. Poláková

Enhanced SHADE and Real-World Optimization Problems 159

P. Bujok, J. Tvrd́ık

Worst Case Optimization Using Chebyshev Inequality 173

K. Tagawa

A Heuristic for the Job Shop Scheduling Problem 187

H. Zupan, N. Herakovič, J. Žerovnik

Part III Applications

On the Application of Complex Network Analysis for Metaheuristics 201

R. Šenkeř́ık, M. Pluháček, A. Viktorin, J. Janošt́ık

A Particle Swarm Optimization Hyper-Heuristic for the Dynamic

Vehicle Routing Problem 215

M. Okulewicz, J. Mańdziuk

Extremal Optimization and Network Community Structure 229

N. Gaskó, R. I. Lung, M. A. Suciu

The Pitfalls of Overfitting in Optimization of a Manufacturing Quality

Control Procedure 241

T. Tušar, K. Gantar, B. Filipič

Robust Multi-Objective Optimization of Water Distribution Networks 255

T. Ohno, H. Aguirre, K. Tanaka

Modeling and Optimization of a Robust Gas Sensor 267

M. A. Rebolledo C., S. Krey, T. Bartz-Beielstein, O. Flasch,

A. Fischbach, J. Stork

Preface

Bioinspired optimization methods is an umbrella term for stochastic
optimization methods that are based on principles or models of biological
systems. This class of methods, such as evolutionary algorithms and
swarm intelligence algorithms, are nowadays indispensable for solving
complex optimization problems in science, engineering and business.

This volume contains recent theoretical and practical contributions to
the field of bioinspired optimization presented at the Seventh Interna-
tional Conference on Bioinspired Optimization Methods and their Ap-
plications (BIOMA 2016), held in Bled, 18–20 May 2016. The purpose
of biennial BIOMA conferences is to provide a forum for presentation
and discussion of the latest theoretical and applied results in bioinspired
optimization methods and their applications. It is organized since 2004
by Jožef Stefan Institute. During these years BIOMA became a respect-
ful conference with well known lively discussion among researchers and
practitioners working in the field of bioinspired computation.

This year we received 25 papers and each paper received three re-
views. The reviews were performed by 30 members of the international
program committee. In the reviewing procedure, 17 papers were selected
for presentation at the conference, which is 68% of the submissions. To-
gether with two invited contributions the conference proceedings contain
19 papers by 45 (co)authors from 11 countries.

The first BIOMA 2016 keynote talk, “A Survey of Model-Based Meth-
ods for Global Optimization” given by prof. dr. Thomas Bartz-Beielstein
from TH Köln – Technology, Arts, Sciences, Germany, focuses on fun-
damental aspects of surrogate-model based optimization and recent ad-
vances in this field. The second keynote talk, “Parallel Multi-Objective
Evolutionary Algorithms” given by prof. dr. El-Ghazali Talbi from
University Lille 1, France, provides a unified taxonomy of parallel multi-
objective evolutionary algorithms.

Theoretical contributions presented at the conference include sensitiv-
ity analysis, parameter control, statistical comparison analysis, impact
of quality indicators of multi-objective evolutionary algorithms, ensem-

vii

viii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

bles of surrogates, adaptive approaches, worst case estimation based
on prediction intervals, and other algorithms’ improvements. Reports
on applications come from domains such as network community struc-
ture detection, dynamic vehicle routing, optimization of a manufacturing
quality-control procedure, optimization of water distribution networks,
and optimization of a robust gas sensor.

The BIOMA 2016 conference is supported by the Slovenian Research
Agency and its research programs. Technical sponsors of the conference
are the World Federation of Soft Computing, the Slovenian Artificial
Intelligence Society, and the Jožef Stefan Institute. This conference is
part of a project that has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agreement
No 692286.

In conclusion, we hope that all the aforementioned papers will provide
readers with some glimpse of research presented at BIOMA 2016. We
are grateful to the conference sponsors, members of the program and or-
ganizing committees, the keynote speakers, paper presenters and other
participants for contributing their parts to the conference. We wish you
an inspiring meeting and a pleasant stay in Bled.

Ljubljana, 5 May 2016

GREGOR PAPA AND MARJAN MERNIK

Program Committee

Gregor Papa, Chair, Jožef Stefan Institute, Ljubljana, Slovenia
Marjan Mernik, Chair, University of Maribor, Slovenia

Thomas Bartz-Beielstein, TH Köln – Technology, Arts, Sciences,
Germany

Christian Blum, University of the Basque Country, San Sebastian,
Spain

Janez Brest, University of Maribor, Slovenia
Dirk Büche, MAN Diesel & Turbo Schweiz AG, Zürich, Switzerland
Carlos A. Coello Coello, CINVESTAV-IPN, Mexico
Carlos Cotta, Universidad de Malaga, Spain
Rolf Drechsler, University of Bremen/DFKI, Germany
Bogdan Filipič, Jožef Stefan Institute, Ljubljana, Slovenia
Peter Korošec, Jožef Stefan Institute, Ljubljana, Slovenia
Barbara Koroušić Seljak, Jožef Stefan Institute, Ljubljana,

Slovenia
Shih-Hsi “Alex” Liu, California State University, Fresno, USA
Goran Martinović, Josip Juraj Strossmayer University of Osijek,

Croatia
JJ Merelo, University of Granada, Spain
Edmondo Minisci, University of Strathclyde, Glasgow, UK
Nalini N, Nitte Meenakshi Institute of Technology, Bangalore, India
Nadia Nedjah, State university of Rio de Janeiro, Brasil
Frank Neumann, The University of Adelaide, Australia
Borut Robič, University of Ljubljana, Slovenia
Franciszek Seredynski, Cardinal Stefana Wyszynski University,

Warsaw, Poland
Jurij Šilc, Jožef Stefan Institute, Ljubljana, Slovenia
El-Ghazali Talbi, University Lille 1, France
Jim Tørresen, University of Oslo, Norway
Tea Tušar, Jožef Stefan Institute, Ljubljana, Slovenia

ix

x BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Rasmus K. Ursem, Grundfos A/S, Bjerringbro, Danmark
Massimiliano Vasile, University of Strathclyde, Glasgow, UK
Vida Vukašinović, Jožef Stefan Institute, Ljubljana, Slovenia
Xin-She Yang, Middlesex University London, UK
Aleš Zamuda, University of Maribor, Slovenia

Organizing Committee

Jurij Šilc, Chair, Jožef Stefan Institute, Ljubljana, Slovenia

Bogdan Filipič, Jožef Stefan Institute, Ljubljana, Slovenia
Vesna Koricki Špetič, Jožef Stefan Institute, Ljubljana, Slovenia
Peter Korošec, Jožef Stefan Institute, Ljubljana, Slovenia
Vida Vukašinović, Jožef Stefan Institute, Ljubljana, Slovenia

Contributing Authors

Hernán Aguirre received his Ph.D. degree in Systems Development
Engineering from Shinshu University, Japan, in 2003. He is currently an
associate professor at Shinshu University, Faculty of Engineering. His
research interests include computational intelligence, multi- and many-
objective evolutionary optimization, design innovation, and sustainabil-
ity. He is a member of IEEE, IEICE, and IPSJ.

Dražen Bajer received his M.Sc. degree in Computer Engineering from
the Faculty of Electrical Engineering, Josip Juraj Strossmayer Univer-
sity of Osijek, Croatia, in 2010. He is currently a teaching and research
assistant at the Faculty of Electrical Engineering, Josip Juraj Stross-
mayer University of Osijek, where he is also pursuing the Ph.D. degree.
His research interests are computational intelligence methods and their
applications, and unsupervised classification. He is an IEEE graduate
student member.

Thomas Bartz-Beielstein received his Ph.D. degree in Computer Sci-
ence from the Technical University of Dortmund, Germany, in 2005. He
is currently a professor at the Technische Hochschule Köln, Faculty of
Computer Science and Engineering Science. His research interests in-
clude simulation, optimization, and statistical analysis of complex real-
world problems. He is a member of several associations in the field
of evolutionary computing, e.g., ACM SIG “Genetic and Evolutionary
Computation”, VDI/VDE-Gesellschaft für Mess- und Automatisierung-
stechnik (Fachausschuss Computational Intelligence), EU/ME working
group on Metaheuristics, and the International Society on Multiple Cri-
teria Decision Making.

Petr Bujok received his Ph.D. degree in Parallel Evolutionary Algo-
rithms from the University of Ostrava, Czech Republic, in 2013. He is

xi

xii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

currently an assistant professor at the University of Ostrava, Faculty
of Science. His research interests include evolutionary algorithms, dif-
ferential evolution, parallel models, global optimization problems and
computational statistics. He is a member of Czech Statistical Society.

Matej Črepinšek received his Ph.D. degree in Computer Science from
the University of Maribor, Slovenia, in 2005. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering
and Computer Science. His research interests include grammar-based
systems, grammatical inference, programming languages, compilers and
evolutionary computations.

Tatjana Davidović received her Ph.D. from the Mathematical Depart-
ment at the University of Belgrade, Serbia, in 2006. She is a research as-
sociate professor at the Mathematical Institute of the Serbian Academy
of Sciences and Arts. She is also an associate professor for the doctoral
courses on Parallel Programming, Meta-heuristics, and Optimization at
the Faculty of Technical Sciences, University of Novi Sad, Serbia. Her
main research interests include parallel computing, scheduling, combi-
natorial optimization, mathematical programming, meta-heuristics. She
is a member of the Editorial Board for International Journal for Traffic
and Transport Engineering (IJTTE) and the reviewer for several inter-
national journals.

Tome Eftimov received his B.Sc.Eng. and M.Sc.Eng. degree in Electri-
cal Engineering and Computer Science from the University of Ss. Cyril
and Methodius, Skopje, Macedonia, in 2011 and 2013, respectively. He
is currently working toward the Ph.D. degree at the Computer Systems
Department, Jožef Stefan Institute, Ljubljana, Slovenia. His research
interests include machine learning, data mining, text mining, sematic
web, statistics, and knowledge extraction.

Michael T. M. Emmerich received his Doctorate degree in the Nat-
ural Sciences from the University of Dortmund, Germany, in 2005. He
is currently associate professor at Leiden University, Faculty of Science,
The Netherlands. He is also an associated professor at the University of
Ijui, Brazil. His research interests include multicriteria decision analy-
sis, multi-objective optimization, Gaussian processes, sustainable design,
and computational drug discovery. He is a member of the International
Society on Multicriteria Decision Making.

Contributing Authors xiii

Oliver Flasch received his Ph.D. degree in Computer Science at the
TU Dortmund University, Germany, in 2015. He is currently a postdoc
at Cologne university of Applied Sciences. His research interests include
scalable methods for the automatic discovery of mathematical models
from data (symbolic regression via genetic programming). He is the
CEO of the young startup sourcewerk.

Bogdan Filipič received his Ph.D. degree in Computer Science from the
University of Ljubljana, Slovenia, in 1993. He is now a senior researcher
and head of Computational Intelligence Group at the Department of
Intelligent Systems of the Jožef Stefan Institute, Ljubljana, and an asso-
ciate professor of Computer and Information Science at the University of
Ljubljana. His research interests include stochastic optimization, evolu-
tionary computation and intelligent data analysis. He published over 40
papers in international scientific journals and was a principle investiga-
tor in national and international projects dealing with production pro-
cesses optimization, energy efficiency, and cultural heritage preservation.
He serves as a member of editorial boards of several scientific journals
and a programme committee member for the Genetic and Evolution-
ary Computation Conference (GECCO) and Congress on Evolutionary
Computation (CEC). He was the general chair of the 13th International
Conference on Parallel Problem Solving from Nature (PPSN 2014) and
tutorial speaker at CEC 2014 and 2015.

Andreas Fischbach received his Diploma degree in Computer Science
at the TU Dortmund University, Germany, in 2009. He is currently
a Ph.D. student at the Cologne University of Applied Sciences. His
research interest include design of experiments and modern optimization
techniques such as sequential parameter optimization

Martina Friese received her Diploma degree in Computer Science from
the University of Dortmund, Germany, in 2009. She is currently a doc-
torate student at the University of Leiden, Faculty of Science. She is
also research assistant at the Cologne University of Applied Sciences.
Her research interests include Global Optimization, Surrogate Models
and Ensemble Methods.

Klemen Gantar received his B.Sc. degree in Computer and Informa-
tion Science from the University of Ljubljana, Slovenia, in 2015. He is

xiv BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

now a masters student at the same University. His research interests are
in evolutionary computation, data mining, and computer vision.

Noémi Gaskó received her Ph.D. degree in Computer Science from the
Babeş-Bolyai University of Cluj Napoca, Romania, in 2011. She is cur-
rently a lecturer at the Babeş-Bolyai University, Faculty of Mathemat-
ics and Computer Science. Her research interests include computational
game theory and evolutionary algorithms.

Niko Herakovič received his Ph.D. degree in at the RWTH Aachen,
Germany, in 1995. He is currently a professor and a head of Chair
of Manufacturing Technologies and Systems as well as a Head of the
Laboratory for Handling, Assembly and Pneumatics at the Faculty of
Mechanical Engineering, University of Ljubljana. In recent years he
has been working on several basic and applied research and industrial
projects related to production systems, computer vision, fluid power and
mechatronics. His research interests include optimization of production
system with the emphasis on handling and assembly systems as well as
logistics, high dynamic and low energy consumption fluid power piezo
valves, digital hydraulics, simulation, robot vision, robot applications
etc. More than 8 years he has spent in industry and has headed or
participated in over 50 R&D national and international projects in ba-
sic, applied/development and especially industrial research in Slovenia,
Austria and Germany. He has over 260 scientific, professional and other
publications, over 70 of them with a review.

Jakub Janošt́ık received his M.Sc. degree in Informatics from the
Tomas Bata University in Zlin, Czech Republic, in 2014. He is currently
a Ph.D. student at the Tomas Bata University in Zlin, Faculty of Ap-
plied Informatics. His research interests include evolutionary algorithms,
data-mining, complex networks, big data.

Tatjana Jakšić Krüger is a research assistant at the Mathematical In-
stitute of the Serbian Academy of Sciences and Arts and a Ph.D. student
at the Faculty of Technical Sciences, University of Novi Sad, Serbia. Her
research topics include the development, analysis, and parallelization of
nature inspired meta-heuristics.

Peter Korošec received his Ph.D. degree from the Jožef Stefan Inter-
national Postgraduate School, Ljubljana, Slovenia, in 2006. Since 2002

Contributing Authors xv

he has been a researcher at the Jožef Stefan Institute, Ljubljana. He
is presently a researcher at the Computer Systems Department and an
associate professor at the University of Primorska, Faculty of Mathemat-
ics, Natural Sciences and Informational Technologies, Koper. His cur-
rent areas of research include combinatorial and numerical metaheuristic
optimization and parallel/distributed computing.

Barbara Koroušić Seljak received her Ph.D. degree in Computer Sci-
ence and Informatics from the University of Ljubljana, Slovenia, in 1997.
She works as a senior researcher at the Computer Systems Department,
Jožef Stefan Institute, and as an assistant professor at the Jožef Ste-
fan International Postgraduate School. Her research work is related to
real-time systems, heuristic optimization, and software modeling, in par-
ticular of e-health systems. Her work is published in international jour-
nals and conference proceedings. She has led and participated in several
national and European projects. She is a member of the EuroFIR non-
profit association and the Slovenian Society for Clinical Nutrition and
Metabolism.

Sebastian Krey received his Diploma degree in Statistics at the TU
Dortmund University, Germany, in 2008. He is currently a Ph.D. student
at the same university and a researcher at Cologne University of Applied
Sciences. His research interest include supervised and unsupervised ma-
chine learning, design of experiments and computational statistics.

Rodica Ioana Lung received her Ph.D. degree in Computer Science
from the Babeş-Bolyai University of Cluj Napoca, Romania, in 2006.
She is currently an associate professor at the Department of Statistics,
Forecasts, Mathematics in the same university. Her research interests
include evolutionary optimization, complex networks, and game theory.

Jacek Mańdziuk received his Ph.D. degree in Applied Mathematics
from the Warsaw University of Technology, Poland, in 1993 and D.Sc.
degree in Computer Science from the Polish Academy of Sciences in 2000
and the title of Professor Titular in 2011. He is currently a professor at
the Warsaw University of Technology, Faculty of Mathematics and In-
formation Science. He has also been a visiting professor at the Nanyang
Technological University, Singapore. His research interests include ap-
plication of CI and AI to games, dynamic optimization, human-machine
cooperation, financial modeling, and development of general-purpose

xvi BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

human-like learning and problem-solving methods. He is an Associate
Editor of the IEEE Transactions on Computational Intelligence and AI
in Games and an Editorial Board Member of the International Journal
on Advances in Intelligent Systems.

Magdalene Marinaki received a Diploma in Production Engineering
and Management from the Technical University of Crete, Greece and
a Ph.D. from the same University. Currently she serves as a labotary
educational staff in the Technical University of Crete, Chania, Greece.
Her research interests focus on computational methods in optimization
problems, on nature inspired methods, on supply chain management, on
metaheuristics algorithms on data mining and on optimal control. She
is the author of two books and more than forty articles in international
scientific journals and books. She has more than fifty presentations in
international and national scientific conferences. She has worked as a
researcher in more than 10 European projects.

Yannis Marinakis received a Diploma in Production Engineering and
Management from the Technical University of Crete, Greece, in 1999
and a Ph.D., from the same University, in 2005. He is currently an as-
sistant professor in the Technical University of Crete, Chania, Greece.
His research interests focus on computational methods in optimization
problems, on nature inspired methods, on supply chain management, on
operations research, on game theory and on metaheuristic algorithms.
He teaches the following courses: Combinatorial Optimization, Game
Theory, Design and Optimization in Supply Chain Management, Evo-
lutionary Algorithms and Large Scale Optimization (postgraduate). He
is the author of three books and more than one hundred papers in in-
ternational scientific journals and books (Computers and Operations
Research, European Journal of Operational Research, Journal of Global
Optimization, Computational Optimization and Applications, Journal
of Combinatorial Optimization, Expert Systems with Applications, An-
nals of Operations Research, Applied Soft Computing). He has more
than forty presentations in international and national scientific confer-
ences. He has participated in a number of research projects as principal
investigator and as a researcher. He has been the supervisor of one
Ph.D., 25 master theses and of 40 diploma theses.

Goran Martinović received his Ph.D. degree in Computer Science from
the Faculty of Electrical Engineering and Computing, University of Za-
greb, Croatia, in 2004. He is currently a professor at the Faculty of

Contributing Authors xvii

Electrical Engineering, Josip Juraj Strossmayer University of Osijek. His
research interests include distributed computer systems, fault tolerant
systems, real-time systems, artificial intelligence, and medical informat-
ics. He is a member of the IEEE, ACM, KOREMA, and IEEE SMC
Technical Committee on Distributed Intelligent Systems.

Marjan Mernik received his Ph.D. degree in Computer Science from
the University of Maribor, Slovenia, in 1998. He is currently a profes-
sor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of Al-
abama at Birmingham, USA. His research interests include evolutionary
computations, domain-specific languages, and grammar-based systems.
He is a member of ACM, IEEE, and EAPLS. He is the Editor-In-Chief of
Computer Languages, Systems and Structures and the Associate Editor
of Applied Soft Computing.

Taishi Ohno is a master student at Shinshu University, Japan. His
research interests include multi-objective evolutionary optimization and
design optimization. He is a member of IEICE.

Micha l Okulewicz received his M.Sc. degree in Computer Science
from Warsaw University of Technology, Poland, in 2011. He is currently
a research assistant at the Warsaw University of Technology, Faculty
of Mathematics and Information Science. His research interests include
applications of artificial intelligence, swarm optimization and machine
learning algorithms.

Michal Pluháček received his Ph.D. degree in Informatics from the
Tomas Bata University in Zlin, Czech Republic, in 2016. He is currently
a researcher at the Tomas Bata University in Zlin, Faculty of Applied
Informatics. His research interests include swarm algorithms and intel-
ligence, randomization in evolutionary computational techniques, intel-
ligent systems.

Radka Polakova received her Ph.D. degree in Adaptation in Differen-
tial Evolution Algorithm from the University of Ostrava, Czech Republic
in 2014. She is currently a junior researcher at the University of Ostrava,
Institute of Research and Applications of Fuzzy Modeling. Her research
interests include global optimization, evolutionary algorithms, differen-
tial evolution algorithm, and computational statistics.

xviii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Miha Ravber received his M.Sc. degree in Computer Science from
the University of Maribor, Slovenia, in 2015. He is currently a junior
researcher at the University of Maribor, Faculty of Electrical Engineer-
ing and Computer Science. His research interests include evolutionary
computation, multiobjective optimization, bio-inspired computing.

Margarita Alejandra Rebolledo Coy received her Master degree
in Automation and IT at the Cologne University of Applied Sciences,
Germany, in 2013. She is currently a Ph.D. student at the same univer-
sity. Her research interest include design of experiment, Bayesian data
modeling and data analysis and optimization.

Manousos Rigakis received a Bachelor in Applied Mathematics from
the University of Crete, Greece, in 2012. He is currently a M.Sc. can-
didate in the Technical University of Crete. His research interests focus
on game theory, on computational methods in optimization problems,
on nature inspired methods and on metaheuristic algorithms.

Jörg Stork received his Master degree in Automation and IT at the
Cologne University of Applied Sciences, Germany, in 2013. He is cur-
rently a Ph.D. student at the same university. His research interest
include surrogate modeling, metaheuristics and optimization.

Mihai Suciu received his Ph.D. degree in Computer Science from Babeş-
Bolyai University, Romania, in 2013. He is currently a teaching assis-
tant at Babeş-Bolyai University, Faculty of Mathematics and Computer
Science. His research interests include computational evolutionary algo-
rithms and game theory.

Roman Šenkeř́ık received his Ph.D. degree in Technical Cybernetics
from the Tomas Bata University in Zlin, Czech Republic, in 2008. He
is currently an associated professor at the Tomas Bata University in
Zlin, Faculty of Applied Informatics. His research interests include in-
terdisciplinary applications of evolutionary computation, modification
and development of evolutionary and swarm based algorithms, theory of
chaos, emergence and complexity.

Kiyoharu Tagawa received his Dr.Eng. degree from the Kobe Univer-
sity, Kobe, Japan, in 1993. He is currently a professor at the Kindai Uni-
versity, Higashi-Osaka, Japan, School of Science and Engineering. His

Contributing Authors xix

research interests include evolutionary algorithm, complex system op-
timization, multi-objective optimization, and their application for real-
world problems. He is a member of IEEE.

El-Ghazali Talbi received the Master and Ph.D. degrees in Computer
Science from the Institut National Polytechnique de Grenoble, France.
He is a full professor at the University of Lille and the head of DOLPHIN
research group from both the Lille’s Computer Science laboratory (LIFL,
Université Lille 1, CNRS) and INRIA Lille Nord Europe. His current
research interests are in the field of multi-objective optimization, paral-
lel algorithms, metaheuristics, combinatorial optimization, cluster and
cloud computing, hybrid and cooperative optimization, and applications
to logistics/transportation, bioinformatics and networks. He has to his
credit more than 150 international publications including journal papers,
book chapters and conferences proceedings.

Kiyoshi Tanaka received his Dr. Eng. degree from Keio University,
Japan, in 1992. He is currently a professor at Shinshu University, Faculty
of Engineering. His research interests include image and video process-
ing, information hiding, evolutionary computation, chaos & fractals, and
their applications. He is a member of IEEE, IEICE, IPSJ and IIEEJ.

Dimitra Trachanatzi received a Diploma in Production Engineering
and Management from the Technical University of Crete, Greece. She
is currently a M.Sc. candidate in the Technical University of Crete. Her
research interests focus on game theory, on computational methods in
optimization problems, supply chain management, on nature inspired
methods and on metaheuristic algorithms.

Tea Tušar is a postdoc in the DOLPHIN team at INRIA Lille - Nord
Europe, France. She received her Ph.D. degree in Information and Com-
munication Technologies from the Jožef Stefan International Postgradu-
ate School, Ljubljana, Slovenia, in 2014. Before joining INRIA in 2015,
she has worked at the Department of Intelligent Systems at the Jožef
Stefan Institute since 2004, first as a research assistant and later as
a postdoc. Her research interests include evolutionary algorithms for
single- and multi-objective optimization with emphasis on visualizing
and benchmarking their results and applying them to real-world prob-
lems. She served as a workshops co-chair at PPSN 2014 and co-organized
GECCOs Student Workshop in years 2013–2015.

xx BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Josef Tvrd́ık received his Ph.D. degree in Theory of Chemical En-
gineering from the Institute of Chemical Technology in Prague, Czech
Republic, in 1979. He is currently an associated professor at the Uni-
versity of Ostrava, Faculty of Science. His research interests include
stochastic algorithms for global optimization and their applications in
computational statistics, biomedical applications of statistics and statis-
tical software. He is a member of International Association for Statistical
Computing, Czech Mathematical Society and Czech Statistical Society.

Adam Viktorin received his M.Sc. degree in Informatics from the
Tomas Bata University in Zlin, Czech Republic, in 2015. He is currently
a Ph.D. student at the Tomas Bata University in Zlin, Faculty of Ap-
plied Informatics. His research interests include evolutionary algorithms,
data-mining, information retrieval.

Hugo Zupan obtained his M.Sc. in Mechanical Engineering from Uni-
versity of Ljubljana, Faculty of Mechanical Engineering, Slovenia in
2013. He is currently a researcher in Laboratory for Handling, Assem-
bly and Pneumatics at Faculty of Mechanical Engineering, University
of Ljubljana, Slovenia. He obtained his M.Sc. after the defense of his
diploma thesis he has been employed in Laboratory for Handling, Assem-
bly and Pneumatics. He has started his Ph.D. studies and is employed
as young researcher in the year 2013. His main research and exper-
tise field is logistic of resources in the production process, modeling and
simulation. He is responsible for implementation simulation models in
industrially based projects. The implemented simulation models solve
practical logistical problems of companies in the field of production and
assembly, including capacity of intermediate storages and flow of mate-
rial in storages.

Janez Žerovnik received his Ph.D. degree in Computer Science from
the University of Ljubljana, Slovenia, in 1992 and his Ph.D. degree in
Mathematics from the Technical University Graz, Austria, in 1994. He
is currently professor mathematics at University of Ljubljana and a part
time researcher at the Institute of mathematics, physics and mechan-
ics, Ljubljana, Slovenia. He was a research fellow at Montanuniversitaet
Leoben, École Normale Supérieure Lyon, France, and Royal Holloway,
University of London, U.K. He has published more than 100 papers in
refereed journals and more than 100 papers in proceedings of scientific
conferences. He is a member of editorial boards of Ars Mathematica
Contemporanea, ISRN Discrete Mathematics, and Central European

Contributing Authors xxi

Journal of Operations Research, and served as guest editor of special
issues of Central European Journal of Operations Research (twice), Dis-
cussiones Mathematicae. Graph Theory, Theoretical Computer Science,
and several conference proceedings including Structural information and
communication complexity: revised selected papers, (Lecture Notes in
Computer Science, vol. 5869). His main research interests are graph
theory and optimization, and more general discrete mathematics with
applications in theoretical computer science, chemical graph theory and
operational research.

I

INVITED CONTRIBUTIONS

A SURVEY OF MODEL-BASED METHODS
FOR GLOBAL OPTIMIZATION

Thomas Bartz-Beielstein
SPOTSeven Lab, TH Köln, Gummersbach, Germany.

spotseven.de
thomas.bartz-beielstein@th-koeln.de

Abstract This article describes model-based methods for global optimization. Af-
ter introducing the global optimization framework, modeling approaches
for stochastic algorithms are presented. We differentiate between mod-
els that use a distribution and models that use an explicit surrogate
model. Fundamental aspects of and recent advances in surrogate-model
based optimization are discussed. Strategies for selecting and evaluat-
ing surrogates are presented. The article concludes with a description of
key features of two state-of-the-art surrogate model based algorithms,
namely the evolvability learning of surrogates (EvoLS) algorithm and
the sequential parameter optimization (SPO).

Keywords: Global optimization, Surrogate model.

1. Introduction

Model-based optimization (MBO) plays a prominent role in todays
modeling, simulation, and optimization processes. It can be consid-
ered as the most efficient technique for expensive and time-demanding
real-world optimization problems. Especially in the engineering do-
main, MBO is an important practice. Recent advances in computer
science, statistics, and engineering in combination with progress in high-
performance computing provide tools for handling problems, which were
considered unsolvable only a few decades ago. This article presents a
survey of MBO for global optimization.

Global optimization (GO) can be categorized based on different cri-
teria. For example, the properties of problems to be solved (continuous
versus combinatorial, linear versus nonlinear, convex versus multimodal,
etc.) can be used. This article presents an algorithmic view on global
optimization, i.e., properties of algorithms that search for new solutions
are considered.

3

4 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The term GO will be used in this article for algorithms that are trying
to find and explore global optimal solutions with complex, multimodal
objective functions [50]. Global optimization problems are difficult to
solve, because nearly no structural information (e.g., number of local
extrema) is available. Global optimization problems belong to the class
of black-box functions, i.e., functions for which the analytic form is un-
known. Note, the class of black-box functions contains also functions
that are easy to solve, e.g., convex functions, which are not discussed in
the following. This article focuses on difficult black-box functions.

Consider the optimization problem given by

Minimize: f(x) subject to xl ≤ x ≤ xu,

where f : Rn → R is referred to as the objective function and xl and
xu denote the lower and upper bounds of the search space (region of
interest), respectively. This setting arises in many real-world systems
when the explicit form of the objective function f is not readily available,
e.g., if the user has no access to the source code of a simulator.

This survey covers stochastic (random) search algorithms, determin-
istic GO algorithms are not further discussed. Random and stochastic
search will be used synonymously in the remainder of this article.

An iterative search algorithm that uses a stochastic procedure to gen-
erate the next iterate is referred to as a stochastic search algorithm. The
next iterate can be a candidate solution to the GO or a probabilistic
model, where solutions can be drawn from. Stochastic search algorithms
are considered robust and easy to implement, because they do not de-
pend on any structural information of the objective function such as gra-
dient information or convexity. This feature is one of the main reasons
for the popularity of stochastic search in the domain of GO. Stochastic
search algorithms can further be categorized as instance-based or model-
based algorithms [71]. Furthermore, there are basically two model-based
approaches: (a) distribution-based models and (b) surrogate models. We
consider four important representatives of surrogate model based opti-
mization: (i) Multi-fidelity metamodeling uses several models of the same
real system and plays an important role in CFD/FEM based simulation
and optimization. (ii) Evolutionary surrogate based optimization ex-
tends the traditional EA framework, and (iii) Ensemble surrogate based
optimization combines two or more different surrogate models.

So far, we have obtained the GO categorization (or taxonomy) based
on algorithms as shown in Fig. 1.

The remainder of this article is structured as follows. After intro-
ducing instance-based stochastic search algorithms (category [2.1]), Sec-
tion 2 describes modeling approaches for stochastic algorithms, i.e., it

A Survey of Model-Based Methods for Global Optimization 5

Figure 1: Taxonomy of model-based approaches in GO

refers to category [2.2.]. This category will be referred to as model-based
optimization (MBO).

We differentiate between models, which use a distribution ([2.2.1])
and models that use an explicit surrogate model ([2.2.2]). Model-based
optimization is the first choice for many optimization problems in in-
dustry. Section 3 describes typical applications, illustrating the practi-
cal relevance of MBO. Fundamental aspects of and recent advances in
surrogate-model based optimization are discussed in Section 4. Strate-
gies for selecting and evaluating surrogates are presented in Section 5.
Two MBO algorithms, namely EvoLS and SPO, are presented in Sec-
tion 6. Finally, a summary and an outlook are given in Section 7.

2. Stochastic Search Algorithms

2.1 Instance-Based Algorithms

Instance-based algorithms ([2.1]) maintain a single solution, x, or pop-
ulation, P (t), of candidate solutions. The iteration or time step is de-
noted as t. The construction of new candidate solutions depends ex-
plicitly on the previously generated solutions. Simulated annealing [36],
evolutionary algorithms (EAs) [4], and tabu search [19] are prominent
representatives of this category. The key elements of instance-based al-
gorithms are shown in Algorithm 1.

2.2 MBO: Model-Based Algorithms

Model-based optimization algorithms ([2.2]) generate a population of
new candidate solutions P ′(t) by sampling from a model (or a distri-

6 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 Instance-based Algorithm

1: t = 0. SetInitialPopulation(P)
2: Evaluate(P).
3: while not TerminationCriterion() do
4: Generate a set of new candidate solutions P’(t) according to a

specified random mechanism.
5: Update the current population P(t+1) based on population P(t)

and candidate solutions in P’(t).
6: Evaluate(P (t+ 1)).
7: t = t+ 1.
8: end while

bution). The model (distribution) reflects structural properties of the
underlying true function f . They are based on the idea that by adapting
the model (or the distribution), the search is directed into regions with
improved solutions.

One of the key ideas in MBO is the replacement of expensive, high fi-
delity, fine grained function evaluations, f(x), with evaluations, f̂(x), of
an adequate cheap, low fidelity, coarse grained model, M . After present-
ing typical examples in Section 3, two different approaches for generating
cheap models will be presented in Section 4.

3. Applications of MBO

Simulation-based design of complex engineering problems, e.g., struc-
tural design of vehicles, use computational fluid dynamics (CFD) and
finite element modeling (FEM) methods. The solvers require a large
number of computer simulations to guarantee an exact solution. Hence,
this is one of the most popular and successful application areas for MBO.
There are two variants of MBO in this field of application: (i) meta-
model (category [2.2.2.1]) and (ii) multi-fidelity approximation (category
[2.2.2.2]) approaches. The former approach uses one or several differ-
ent metamodels, whereas the latter uses several instances with different
parameterizations of the same metamodel.

3.1 Metamodels

There are several publications that describe metamodeling approaches
in aerospace design. The development of effective numerical methods
for managing the use of approximation concepts in optimization for a
31-variable helicopter rotor design, which was part of a collaboration
between Boeing, IBM, and Rice University, is described by Booker et

A Survey of Model-Based Methods for Global Optimization 7

al. [7, 8]. Giannakoglou [18] discusses an aerodynamic shape design
problem. Queipo et al. [51] present a multi-objective optimal design of
a liquid rocket injector and discuss fundamental problems that arise in
MBO. A surrogate-assisted evolutionary optimization framework, which
is applied to an airfoil shape optimization problem using computational
fluid dynamic is presented in [70]. Forrester and Keane [17] describe
recent advances of MBO in aerospace design.

The design of ship propellers in the field of ship propulsion technol-
ogy is described by Emmerich and Hundemer [14]. The authors model
the features of a propeller design as a function of its resulting efficiency,
torque coefficients, thrust coefficients, and cavitation. An implementa-
tion of a first-order potential-based panel method is used to calculate
the hydrodynamic performance of a given propeller.

Li et al. [44] describe the optimization of feature detectors in ultra-
sound images. They present a study of radial basis function networks
(RBFN) for metamodeling in heterogeneous, i.e., mixed-integer, param-
eter spaces.

Although the application of metamodeling techniques has progressed
remarkably in the past last decades, the question remains “How far have
we really come?” This issue is addressed in [59].

3.2 Multi-Fidelity Approximation

In addition to metamodels, multi-fidelity metamodeling methods have
been developed. Multi-fidelity metamodeling uses several models of the
same real system, where each model has its own degree of detail repre-
senting the real process. A typical example is the use of several simula-
tion models with different grid sizes in FEM [26].

Sun et al. [60] describe a multi-fidelity optimization approach for sheet
metal forming process. Further examples of multi-fidelity metamod-
eling are presented in [63]. The authors analyze the performance of
Kriging [33] when multi-fidelity gradient data is introduced along with
multi-fidelity function data to approximate black-box simulations.

Koziel et al. [39] present a methodology for fast multi-objective an-
tenna optimization with co-Kriging. Co-Kriging is an extension of Krig-
ing, which uses the correlations between the models of various fidelities,
so that cheap- and expensive simulation data can be combined into one
metamodel [15, 35]. Co-Kriging-based sequential design strategies are
presented by Le Gratiet and Cannamela [43]. The authors simulate a
spherical tank under internal pressure. Further applications from the wa-
ter industry are published by Razavi et al [53]. Tuo et al. [62] proposed

8 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

a finite-element analysis with its mesh density as the tuning parameter.
A problem in casting simulation is used to illustrate this approach.

Kleijnen [37] presents an overview of the most recent approaches in
simulation practice. The book covers multi-fidelity metamodeling as
well.

4. Key Elements of MBO

This section describes two different MBO approaches: (i) distribution
based ([2.2.1]) and (ii) surrogate-model based optimization ([2.2.2.]).

4.1 Distribution-Based Approaches

If the metamodel is a distribution, the most basic form of an MBO
can be implemented as shown in Algorithm 2:

Algorithm 2 Distribution-based Algorithm

1: t = 0. Let p(t) be a probability distribution.
2: while not TerminationCriterion() do
3: Randomly generate a population of candidate solutions P (t) from

p(t).
4: Evaluate(P (t)).
5: Update the distribution using population (samples) P (t) to gen-

erate a new distribution p(t+ 1).
6: t = t+ 1.
7: end while

Distribution-based algorithms generate a sequence of iterates (proba-
bility distributions) {p(t)} with the hope that

p(t)→ p∗ as t→∞,

where p∗ is a limiting distribution, which assigns most of its probability
mass to the set of optimal solutions. So it is the probability distribution
(as opposed to candidate solutions as in instance-based algorithms) that
is propagated from one iteration to the next.

Estimation of distribution algorithms (EDA) are popular distribution-
based algorithms, which became popular in the field of evolutionary al-
gorithms [41]. Variation operators such as mutation and recombination,
which modify candidate solutions (so-called individuals in EA), were
replaced by a distribution based procedure: the new population of can-
didate solutions is generated according to the probability distribution
induced or estimated from the promising candidate solution from the

A Survey of Model-Based Methods for Global Optimization 9

current population. Larraaga and Lozano [41] review different ways of
using probabilistic models as EDA instantiations.

Although distribution-based approaches play an important role in
GO, they will not be discussed further in this article. The reader is
referred to [24]. The authors discuss advantages and outline many of
the different types of EDAs. In addition, Hu et al. [25] present recent
approaches and a unified view on distribution-based approaches. We
will concentrate on surrogate model-based approaches, which have their
origin in statistical design and analysis of experiments, especially in re-
sponse surface methodology.

4.2 Surrogate Model-Based Approaches

In general, surrogates are used, when the outcome of a process cannot
be directly measured. Surrogates imitate the behavior of the real model
as closely as possible, while being computationally cheaper to evaluate.
The surrogate model is also known as a response surface, metamodel,
approximation, coarse grained, or simply the cheap model. Simple sur-
rogate models are constructed using a data-driven approach. They can
be refined by integrating additional points or domain knowledge, e.g.,
constraints, into the surrogate.

A minimalistic surrogate model-based optimization (SBO) algorithm is
shown in Algorithm 3. A wide range of surrogates was applied in the last

Algorithm 3 Surrogate Model Based Optimization (SBO) Algorithm

1: t = 0. SetInitialPopulation(P (t))
2: Evaluate(P (t))
3: while not TerminationCriterion() do
4: Use P (t) to build a cheap model M(t)
5: P ′(t+ 1) = GlobalSearch(M(t))
6: Evaluate(P ′(t+ 1))
7: P (t+ 1) ⊆ P (t) + P ′(t+ 1)
8: t = t+ 1
9: end while

decades. Classical regression models such as polynomial regression or
response surface methodology [9], support vector machines (SVM) [65],
artificial neural networks [72], radial basis functions [49], or Gaussian
process (GP) models, which are sometimes referred to as design and
analysis of computer experiments or Kriging [2, 11, 38, 56, 57] are the
most prominent approaches. Forrester et al. [16] present a comprehen-
sive introduction to SBO with several examples. Table 1 in [66] lists

10 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

popular metamodeling techniques and the related components such as
experimental design, sampling methods, metamodels, and model fitting
techniques.

4.3 Surrogate-Assisted Evolutionary Algorithms

Surrogate-assisted evolutionary algorithms (category [2.2.2.3]) are evo-
lutionary algorithms that decouple the evolutionary search and the di-
rect evaluation of the objective function. A cheap surrogate model, M ,
replaces evaluations of an expensive objective function, f .

A combination of a genetic algorithm and neural networks for aero-
dynamic design optimization is suggested in [22]. Ratle [52] creates an
approximate model of the fitness landscape using Kriging interpolation
to accelerate the convergence of EAs. Jin and et al. [31] investigate
the convergence property of an evolution strategy (ES) with neural net-
work based fitness evaluations. Emmerich et al. [13] present several
MBO approaches for ES. Jin [30] presents a survey of surrogate-assisted
evolutionary algorithms approaches. Jin and Sendhoff [32] use cluster-
ing techniques and neural networks ensembles to reduce the number of
function evaluations. Branke and Schmidt [10] propose not evaluate ev-
ery candidate solution (individual), but to just estimate the objective
function value of some of the individuals. The reduction in the number
of function evaluations is obtained by estimating an individual’s func-
tion value on the basis of previously observed objective function values
of neighboring individuals. Zhou et al. [70] present a surrogate-assisted
EA framework, which uses computationally cheap hierarchical surrogate
models constructed through online learning to replace the exact compu-
tationally expensive objective functions during evolutionary search.

5. Quality Criteria: How to Select Surrogates

The model building and selection process is crucial for the effectivity
and efficiency of SBO. Fundamental for the improvement of a selected
surrogate model as well as for the selection of an alternative surrogate
model type is the evaluation of the expensive (true) objective function,
which requires the determination of sample points. In the selection of
adequate sample points, two conflicting goals have to be satisfied. The
sample points can be selected with respect to

exploration, i.e., improving the model quality (related to the model
M) or

exploitation, i.e., improving the optimization and determining the
optimum (related to the objective function f).

A Survey of Model-Based Methods for Global Optimization 11

Furthermore, regarding the model choice, the user can decide whether
to use a

single model, i.e., one unique global model is used during the op-
timization or

multiple models, i.e., an ensemble of different, possibly local, mod-
els.

The static SBO uses a single, global surrogate model, which is usually
refined by adaptive sampling. The same model type, e.g., Kriging inter-
polation, is used during the optimization. This is category [2.2.2.1] in
Fig. 1.

5.1 Model Refinement

Adaptive sampling, a well-known selection strategy, proceeds as fol-
lows: An initial model, which uses a limited amount of sample points
from the expensive objective function, is refined during the optimization.
Adaptive sampling identifies new points, so-called infill points. Adap-
tive sampling tries to find a balance between exploration, i.e., improving
the overall, global quality of the surrogate model, and exploitation, i.e.,
improving the local quality (in the region of the actual optimum), of
the surrogate model. A popular adaptive sampling method is expected
improvement (EI) [34, 45], which is discussed in [33]. The EI approach
handles the initialization and refinement of a surrogate model, but not
the selection of the model itself. The popular efficient global optimiza-
tion (EGO) algorithm uses a Kriging model, because Kriging inherently
determines the prediction variance, which is necessary for the EI crite-
rion.

But there is no proof that Kriging is the best choice. Alternative
surrogate models, e.g., regression trees, support vector machine, or lasso
and ridge regression may be better suited. An a priory selection of the
best suited surrogate model is conceptually impossible in the framework
treated in this article, because of the black-box setting described in
Section 1.

5.2 Multiple Models

Instead of using one surrogate model only, several models Mi, i =
1, 2, . . . , p, can be generated and evaluated in parallel. Each model uses
the same candidate solutions (from the population P) and results from
expensive function evaluations.

Multiple models can also be used to partition the search space. The
tree-based Gaussian process (TGP) approach uses regression trees to

12 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

partition the search space into separate regions and to fit local GP sur-
rogates in each region [21]. Nelson et al. [47] propose an algorithm,
that creates a tree-based partitioning of an aerodynamic design space
and employs independent Kriging surfaces in each partition. Couckuyt
et al. [12] propose to combine an evolutionary model selection (EMS)
algorithm with the EI criterion in order to dynamically select the best
performing surrogate model type at each iteration of the EI algorithm.
A new expensive sample point, x′, is chosen based on the EI criterion at
each iteration step t. The point x′ itself is based on the best surrogate
model found by the EMS algorithm.

In the last decade, ensembles of surrogate models gained popularity
(category [2.2.2.4]) in Fig. 1. Zerpa et al. [69] use multiple surrogate
models and build an adaptive weighted average model of the individual
surrogates. Goel at al. [20] explore the possibility of using the best
surrogate model or a weighted average surrogate model instead of one
single model. Model quality, i.e., the errors in surrogates, is used to
determine the weights assigned to each model. Sanchez et al. [55] present
a weighted-sum approach for the selection of model ensembles. The
models for the ensemble are chosen based on their performance and the
weights are adaptive and inversely proportional to the local modeling
errors.

Recent approaches such as the evolvability learning of surrogates ap-
proach implement local models for each offspring individually [42]. This
results in an adaptive semi-partition [40] of the search space.

5.3 Criteria for Selecting a Surrogate

Note, this paragraph does not consider the selection of a new sample
point as done in EI. Here, we consider criteria for the selection of one
(or several) surrogate models, e.g., Kriging models or SVMs [65].

Conventionally, surrogate models are assessed and chosen according
to their estimated true error [29, 58]. The mean absolute error (MAE)
and the root mean square error (RMSE) are commonly used as per-
formance metrics. Error measures are discussed in [28]. Willmott and
Matsuura [67] presents a comparison of MAE and RMSE. Generally,
attaining a surrogate model that has minimal error is the desired fea-
ture. Methods from statistics, statistical learning [23], and machine
learning [46], such as the simple holdout approach, cross-validation, and
the bootstrap are used to choose adequate surrogate models. Tenne and
Armfield [61] propose a surrogate-assisted memetic algorithm which gen-
erates accurate surrogate-models using multiple cross-validation tests.
However, the definition of the corresponding training sets (sampling)

A Survey of Model-Based Methods for Global Optimization 13

represents a critical issue for the accuracy and efficiency of the meta-
models.

The model error is not the only criterion for selecting surrogate mod-
els. In contrast to the surrogate model selection approaches so far, the
evolvability learning of surrogates approach [42], which will be presented
in Section 6.1, uses fitness improvement for determining the quality of
surrogate models in enhancing search improvement.

6. Examples

6.1 Evolvability Learning of Surrogates

The evolvability learning of surrogates (EvoLS) algorithm, which is
introduced by Le et al. [42], belongs to the category of surrogate-assisted
evolutionary algorithms ([2.2.2.3]).

The authors of EvoLS recommend selecting surrogate models that
enhance search improvement in the context of optimization. EvoLS pro-
cesses information about the (i) different fitness landscapes, (ii) state
of the search, and (iii) characteristics of the search algorithm to sta-
tistically determine the so-called evolvability of each surrogate model.
The evolvability of a surrogate model estimates the expected improve-
ment of the objective function value that the new candidate solution has
gained after a local search has been performed on the related surrogate
model. Three basic steps are necessary for calculating the evolvability
(a detailed calculation is presented in [42]):

Variation. Let x denote the parent and y be the offspring gen-
erated from x by evolutionary variation operators, e.g., mutation
and/or recombination. Le at al. [42] make a simplified assumption
of uniformity in the offspring distribution. Let V (R) denote the
volume of an n-dimensional cuboid

R =

[
min
j=1..N

{x(i)
j }, max

j=1..N
{x(i)

j }
]
i=1,..,n

.

The density distribution is modeled as

P (y |P (t),x) = U(R) =

{
1/(R) if y ∈ R
0 otherwise.

The evolutionary variation operators recombination and uniform
mutation force the offspring to be located in the n-dimensional
region R. To determine the probability at time step t of moving
from parent x via stochastic variation, the followoing weights can

14 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

be used:

wi(x) =
P (yi |P (t),x)∑K
j=1 P (yj |P (t),x)

.

The weight measures the influence of the samples (yi, ϕM (yi)) on
the evolvability.

Local search. After recombination and mutation, a local search is
performed. It uses a local metamodel, M , for each offspring. The
local optimizer, ϕM , uses an offspring y as an input and returns y∗

as the refined offspring. The local optimizer on the surrogate model
guarantees (theoretically) convergence to the stationary point of
the exact objective function [1, 48].

Evolvability. Finally, the evolvability measure can be estimated as
follows:

EvM (x) = f(x)−
K∑
i=1

f(y∗i)× wi(x).

6.2 Sequential Parameter Optimization

Early versions of the sequential parameter optimization (SPO) com-
bined methods from design of experiments (DOE), response surface meth-
odology (RSM), design and analysis of computer experiments (DACE),
and regression trees for the analysis of algorithms [3, 5, 6]. The SPO
was developed as a tool for the analysis and for an understanding of the
working principles of EAs. The SPO tools might as well be integrated
into the evolutionary loop and therefore improve performance of an EA.
This consideration lays the cornerstone for the development of the SPO
as an optimizer.

Subsequent versions of the SPO use a sequential, model based ap-
proach to optimization. Nowadays, the SPO is an established parameter
tuner and an optimization algorithm, which has been extended in several
ways. For example, Hutter et al. [27] benchmark an SPO derivative, the
so-called sequential model-based algorithm configuration (SMAC) proce-
dure, on the BBOB set of blackbox functions. They demonstrate that
with a small budget of 10 × d evaluations of d-dimensional functions,
SMAC in most cases outperforms the state-of-the-art blackbox optimizer
CMA-ES.

The most recent version, SPO2, is currently under development. It
will integrate state-of-the-art ensemble learners. The SPO2 ensemble
engine can be briefly outlined as follows: The portfolio of surrogate
models includes a pleiotropy of metamodels such as regression trees and
random forest, least angle regression (LARS), and Kriging. The SPO2

A Survey of Model-Based Methods for Global Optimization 15

ensemble engine uses cross validation to select an improved model from
the portfolio of candidate models [64]. It implements methods for cre-
ating a weighted combination of several surrogate models to build the
improved model and methods, which use stacked generalization to com-
bine several level-0 models of different types with one level-1 model into
an ensemble [68]. The level-1 training algorithm is typically a relatively
simple linear model.

Preliminary results indicate that the SPO2 ensemble engine can lead
to significant performance improvements of the SPO algorithms, which
is illustrated by the following example: Rebolledo et al. [54] present a
comparison of different data driven modeling methods. The first instance
of a data driven linear Bayesian model is compared with several linear
regression models, a Kriging model and a genetic programming model.
The models are built on industrial data for the development of a robust
gas sensor. The data contain limited amount of samples and a high
variance. The mean square error of the models implemented in a test
dataset is used as the comparison strategy. Two sensors were tested in
this comparison. The mean squared errors are as follows. Linear model
(0.76), OLS (0.79), lasso (0.56), Kriging (0.57), Bayes (0.79), and genetic
programming (0.58). SPO2 obtained an MSE of 0.38, which outperforms
the best model. Results from the second sensor read as follow: Linear
model (0.67), OLS (0.80), lasso (0.49), Kriging (0.49), Bayes (0.79), and
genetic programming (0.27). Here, SPO2 obtained an MSE of 0.29.

This first real-world application example demonstrates the potential
of SBO with ensembles (category [2.2.2.4]).

7. Summary

Especially in the engineering domain, model-based approaches are
probably the most efficient methods for expensive and time-demanding
real-world optimization problems. This article proposed a taxonomy of
model based algorithms for global optimization problems. The taxon-
omy was developed from an algorithm-centered perspective. The catego-
rization scheme, which started with a bird’s eye view on GO, was refined
as summarized in Fig. 1. Finally, working principles of two state-of-the-
art MBO algorithms were shown. EvoLS, which constructs a metamodel
for every new candidate solution, and SPO2, which uses an ensemble
engine to combine a broad variety of surrogate models. The survey
presented in the first sections of this article as well as the examples in
Section 6 emphasize the trend to ensemble based metamodels.

Acknowledgement: This work has been supported by the Bundesmin-
isteriums fur Wirtschaft und Energie under the grants KF3145101WM3

16 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

und KF3145103WM4. This work is part of a project that has received
funding from the European Unions Horizon 2020 research and innova-
tion program under grant agreement No 692286.

References

[1] N. M. Alexandrov, J. E. Dennis Jr, R. M. Lewis, and V. Torczon. A trust-
region framework for managing the use of approximation models in optimization.
Structural Optimization, 15(1):16–23, 1998.

[2] A. B. Antognini and M. Zagoraiou. Exact optimal designs for computer experi-
ments via Kriging metamodelling. Journal of Statistical Planning and Inference,
140(9):2607–2617, 2010.

[3] T. Bartz-Beielstein. Experimental Analysis of Evolution Strategies—Overview
and Comprehensive Introduction. Technical report, Nov. 2003.

[4] T. Bartz-Beielstein, J. Branke, J. Mehnen, and O. Mersmann. Evolutionary
Algorithms. WIREs Data Mining and Knowledge Discovery, 4:178–195, 2014.

[5] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential Parameter Op-
timization. Proceedings of the Congress on Evolutionary Computation (CEC),
pages 773–780, 2005.

[6] T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis. Design and analysis
of optimization algorithms using computational statistics. Applied Numerical
Analysis and Computational Mathematics, 1(2):413–433, 2004.

[7] A. J. Booker, J. E. Dennis Jr, P. D. Frank, D. B. Serafini, and V. Torczon. Op-
timization Using Surrogate Objectives on a Helicopter Test Example. In Com-
putational Methods for Optimal Design and Control, pages 49–58. Birkhäuser
Boston, Boston, MA, 1998.

[8] A. J. Booker, J. E. Dennis Jr, P. D. Frank, D. B. Serafini, V. Torczon, and
M. W. Trosset. A rigorous framework for optimization of expensive functions
by surrogates. Structural Optimization, 17(1):1–13, 1999.

[9] G. E. P. Box and K. B. Wilson. On the Experimental Attainment of Optimum
Conditions. Journal of the Royal Statistical Society. Series B (Methodological),
13(1):1–45, 1951.

[10] J. Branke and C. Schmidt. Faster convergence by means of fitness estimation.
Soft Computing, 9(1):13–20, 2005.

[11] D. Büche, N. N. Schraudolph, and P. Koumoutsakos. Accelerating Evolutionary
Algorithms With Gaussian Process Fitness Function Models. IEEE Transac-
tions on Systems, Man and Cybernetics, Part C (Applications and Reviews),
35(2):183–194, 2005.

[12] I. Couckuyt, F. De Turck, T. Dhaene, and D. Gorissen. Automatic surrogate
model type selection during the optimization of expensive black-box problems.
Proceedings of the Winter Simulation Conference (WSC), pages 4269–4279,
2011.

[13] M. Emmerich, A. Giotis, M. özdemir, T. Bäck, and K. Giannakoglou.
Metamodel-assisted evolution strategies. Lecture Notes in Computer Science,
2439:361–370, 2002.

A Survey of Model-Based Methods for Global Optimization 17

[14] M. Emmerich, J. Hundemer, M.-C. Varcol, B. Naujoks, and M. Abdel-Maksoud.
Design Optimization of Ship Propellers by Means of Advanced Metamodel-
Assisted Evolution Strategies. Proceedings of the International Conference on
Design Optimization (ERCOFTAC), 2006 .

[15] A. Forrester, A. Sóbester, and A. Keane. Multi-fidelity optimization via surro-
gate modelling. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Science, 463(2088):3251–3269, 2007.

[16] A. Forrester, A. Sóbester, and A. Keane. Engineering Design via Surrogate Mod-
elling. Wiley, 2008.

[17] A. I. J. Forrester and A. J. Keane. Recent advances in surrogate-based opti-
mization. Progress in Aerospace Sciences, 45(1-3):50–79, 2009.

[18] K. C. Giannakoglou. Design of optimal aerodynamic shapes using stochastic op-
timization methods and computational intelligence. Progress in Aerospace Sci-
ences, 38(1):43–76, 2002.

[19] F. Glover and M. Laguna. Tabu Search. In C. Reeves (Ed.) Modern Heuris-
tic Techniques for Combinatorial Problems, Oxford, U.K., Blackwell Scientific
Publishing, 1993.

[20] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo. Ensemble of surrogates.
Structural and Multidisciplinary Optimization, 33(3):199–216, 2006.

[21] R. B. Gramacy. tgp: An R Package for Bayesian Nonstationary, Semiparametric
Nonlinear Regression and Design by Treed Gaussian Process Models. Journal
of Statistical Software, 19(9):1–46, 2007.

[22] P. Hajela and E. Lee. Topological optimization of rotorcraft subfloor struc-
tures for crashworthiness considerations. Computers & Structures, 64(1-4):65–
76, 1997.

[23] T. Hastie. The elements of statistical learning : data mining, inference, and
prediction. Springer, New York, 2nd ed., 2009.

[24] M. Hauschild and M. Pelikan. An introduction and survey of estimation of
distribution algorithms. Swarm and Evolutionary Computation, 1(3):111–128,
2011.

[25] J. Hu, Y. Wang, E. Zhou, M. C. Fu, and S. I. Marcus. A Survey of Some Model-
Based Methods for Global Optimization. In D. Hernández-Hernández and J. A.
Minjárez-Sosa (Eds.) Optimization, Control, and Applications of Stochastic Sys-
tems, pages 157–179. Birkhäuser Boston, Boston, 2012.

[26] E. Huang, J. Xu, S. Zhang, and C. H. Chen. Multi-fidelity Model Integration
for Engineering Design. Procedia Computer Science, 44:336–344, 2015.

[27] F. Hutter, H. Hoos, and K. Leyton-Brown. An Evaluation of Sequential Model-
based Optimization for Expensive Blackbox Functions. Proceedings of the 15th
Annual Conference Companion on Genetic and Evolutionary Computation,
pages 1209–1216, 2013.

[28] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accu-
racy. International Journal of Forecasting, 22(4):679–688, 2006.

[29] R. Jin, W. Chen, and T. W. Simpson. Comparative studies of metamodelling
techniques under multiple modelling criteria. Structural and Multidisciplinary
Optimization, 23(1):1–13, 2001.

18 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[30] Y. Jin. A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing, 9(1):3–12, 2003.

[31] Y. Jin, M. Olhofer, and B. Sendhoff. On Evolutionary Optimization with Ap-
proximate Fitness Functions. Proceedings of the Annual Conference on Genetic
and Evolutionary Computation (GECCO), 2000.

[32] Y. Jin and B. Sendhoff. Reducing Fitness Evaluations Using Clustering Tech-
niques and Neural Network Ensembles. Lecture Notes in Computer Science,
3102:688–699, 2014.

[33] D. R. Jones. A Taxonomy of Global Optimization Methods Based on Response
Surfaces. Journal of Global Optimization, 21:345–383, 2001.

[34] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization, 13:455–492,
1998.

[35] M. Kennedy. Predicting the output from a complex computer code when fast
approximations are available. Biometrika, 87(1):1–13, 2000.

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[37] J. P. C. Kleijnen. Design and Analysis of Simulation Experiments. International
Series in Operations Research and Management Science. Springer International
Publishing, 2015.

[38] J. P. C. Kleijnen. Kriging metamodeling in simulation: A review. European Jour-
nal of Operational Research, 192(3):707–716, 2009.

[39] S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene. Efficient Multi-Objective
Simulation-Driven Antenna Design Using Co-Kriging. IEEE Transactions on
Antennas and Propagation, 62(11):5900–5905, 2014.

[40] M. Kryszkiewicz, J. F. Peters, H. Rybinski, and A. Skowron (Eds.) Rough Sets
and Intelligent Systems Paradigms, volume 4585 of Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 2007.

[41] P. Larraaga and J. A. Lozano. Estimation of Distribution Algorithms. A New
Tool for Evolutionary Computation. Kluwer, Boston MA, 2002.

[42] M. N. Le, M. N. Le, Y. S. Ong, Y. S. Ong, S. Menzel, S. Menzel, Y. Jin, Y. Jin,
B. Sendhoff, and B. Sendhoff. Evolution by adapting surrogates. Evolutionary
Computation, 21(2):313–340, 2013.

[43] L. Le Gratiet and C. Cannamela. Kriging-based sequential design strategies
using fast cross-validation techniques with extensions to multi-fidelity computer
codes. arXiv.org, Oct. 2012.

[44] R. Li, M. T. M. Emmerich, J. Eggermont, E. G. P. Bovenkamp, T. Bäck, J. Dijk-
stra, and J. H. C. Reiber. Metamodel-assisted mixed integer evolution strategies
and their application to intravascular ultrasound image analysis. Proceedings
of the IEEE Congress on Evolutionary Computation (CEC), pages 2764–2771,
2008.

[45] J. Mockus, V. Tiesis, and A. Zilinskas. Bayesian Methods for Seeking the Ex-
tremum. In L. C. W. Dixon and G. P. Szegö (Eds.) Towards Global Optimization,
pages 117–129. Amsterdam, 1978.

[46] K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press,
2012.

A Survey of Model-Based Methods for Global Optimization 19

[47] A. Nelson, J. Alonso, and T. Pulliam. Multi-Fidelity Aerodynamic Optimization
Using Treed Meta-Models. Proceedings of the Fluid Dynamics and Co-located
Conferences, 2007.

[48] Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary Optimization of Computa-
tionally Expensive Problems via Surrogate Modeling. AIAA Journal, 41(4):687–
696, 2003.

[49] M. Powell. Radial Basis Functions. Algorithms for Approximation, 1987.

[50] M. Preuss. Multimodal Optimization by Means of Evolutionary Algorithms. Nat-
ural Computing Series. Springer International Publishing, Cham, 2015.

[51] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. Kevin Tucker. Surrogate-based analysis and optimization. Progress in
Aerospace Sciences, 41(1):1–28, 2005.

[52] A. Ratle. Accelerating the Convergence of Evolutionary Algorithms by Fit-
ness Landscape Approximation. Lecture Notes in Computer Science, 1498:87–96,
1998.

[53] S. Razavi, B. A. Tolson, and D. H. Burn. Review of surrogate modeling in water
resources. Water Resources Research, 48(7):n/a–n/a, 2012.

[54] M. A. Rebolledo Coy, S. Krey, T. Bartz-Beielstein, O. Flasch, A. Fischbach, and
J. Stork. Modeling and Optimization of a Robust Gas Sensor. Technical Report
03/2016, Cologne Open Science, Cologne, 2016.

[55] E. Sanchez, S. Pintos, and N. V. Queipo. Toward an Optimal Ensemble of
Kernel-based Approximations with Engineering Applications. Proceedings of
the IEEE International Joint Conference on Neural Network Proceedings, pages
2152–2158, 2006.

[56] T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of
Computer Experiments. Springer, Berlin, Heidelberg, New York, 2003.

[57] M. Schonlau. Computer Experiments and Global Optimization. PhD thesis,
University of Waterloo, Ontario, Canada, 1997.

[58] L. Shi and K. Rasheed. A Survey of Fitness Approximation Methods Applied
in Evolutionary Algorithms. In Computational Intelligence in Expensive Opti-
mization Problems, pages 3–28. Springer, Berlin, Heidelberg, 2010.

[59] T. Simpson, V. Toropov, V. Balabanov, and F. Viana. Design and Analysis
of Computer Experiments in Multidisciplinary Design Optimization: A Review
of How Far We Have Come - Or Not. Proceedings of the 12th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, pages 1–22, 2012.

[60] G. Sun, G. Li, S. Zhou, W. Xu, X. Yang, and Q. Li. Multi-fidelity optimization
for sheet metal forming process. Structural and Multidisciplinary Optimization,
44(1):111–124, 2011.

[61] Y. Tenne and S. W. Armfield. A Versatile Surrogate-Assisted Memetic Algo-
rithm for Optimization of Computationally Expensive Functions and its En-
gineering Applications. In Success in Evolutionary Computation, pages 43–72.
Springer, Berlin, Heidelberg, 2008.

[62] R. Tuo, C. F. J. Wu, and D. Yu. Surrogate Modeling of Computer Experiments
With Different Mesh Densities. Technometrics, 56(3):372–380, 2014.

20 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[63] S. Ulaganathan, I. Couckuyt, F. Ferranti, E. Laermans, and T. Dhaene. Perfor-
mance study of multi-fidelity gradient enhanced kriging. Structural and Multi-
disciplinary Optimization, 51(5):1017–1033, 2014.

[64] M. J. van der Laan and S. Dudoit. Unified Cross-Validation Methodology For
Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-
Net Estimator: Finite Sample Oracle Inequalities and Examples. 2003.

[65] V. N. Vapnik. Statistical learning theory. Wiley, 1998.

[66] G. G. Wang and S. Shan. Review of Metamodeling Techniques in Support of
Engineering Design Optimization. Journal of Mechanical Design, 129(4):370–
380, 2007.

[67] C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model perfor-
mance. Climate Research, 30(7982):1–4, 2005.

[68] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

[69] L. E. Zerpa, N. V. Queipo, S. Pintos, and J.-L. Salager. An optimization method-
ology of alkaline–surfactant–polymer flooding processes using field scale numer-
ical simulation and multiple surrogates. Journal of Petroleum Science and En-
gineering, 47(3-4):197–208, 2005.

[70] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining Global
and Local Surrogate Models to Accelerate Evolutionary Optimization. IEEE
Transactions on Systems, Man and Cybernetics, Part C (Applications and Re-
views), 37(1):66–76, 2007.

[71] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-Based Search for
Combinatorial Optimization: A Critical Survey. Annals of Operations Research,
131(1-4):373–395, 2004.

[72] J. M. Zurada. Analog implementation of neural networks. IEEE Circuits and
Devices Magazine, 8(5):36–41, 1992.

PARALLEL MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMS

El-Ghazali Talbi
University of Lille 1, Villeneuve d’Ascq, France

el-ghazali.talbi@univ-lille1.fr

Abstract This paper describes a general overview of parallel multi-objective evo-
lutionary algorithms (MOEA) from the design and the implementation
point of views. A unified taxonomy using three hierarchical parallel
models is proposed. Different parallel architectures are considered. The
performance evaluation issue of parallel MOEA is also discussed.

Keywords: Multi-objective optimization, Parallel evolutionary algorithms.

1. Motivation

On one hand, multi-objective optimization problems (MOPs), such as
in engineering design and life science, are more and more complex and
their resource requirements to solve them are ever increasing. Real-life
MOPs are often NP-hard, and CPU time and/or memory consuming.
Although the use of multi-objective evolutionary algorithms (MOEAs)
allows to significantly reduce the computational complexity of the solv-
ing algorithms, the latter remains time-consuming for many MOPs in
diverse domains of application, where the objective function and the
constraints associated to the problem are resource (e.g., CPU, memory)
intensive and the size of the search space is huge. Moreover, more and
more complex and resource intensive MOEAs are developed to obtain a
good approximation of the Pareto front in a reasonable time.

On the other hand, the rapid development of technology in design-
ing processors (e.g., multi-core processors, dedicated architectures), net-
works (local networks (LAN) such as Myrinet and Infiniband or wide
area networks (WAN) such as optical networks), and data storage make
the use of parallel computing more and more popular. Such architectures
represent an effective opportunity for the design and implementation of
parallel multi-objective optimization algorithms. Indeed, sequential ar-
chitectures are reaching physical limitations (speed of light, thermody-

21

22 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

namics). Nowadays, even laptops and workstations are equipped with
multi-core processors, which represent one class of parallel architecture.
Moreover, the ratio cost/performance is constantly decreasing. The pro-
liferation of powerful processors and fast communication networks have
shown the emergence of dedicated architectures (e.g GPUs), clusters of
processors (COWs), networks of workstations (NOWs), large-scale net-
works of machines (Grids) and Clouds as platforms for high performance
computing.

Parallel computing can be used in the design and implementation of
MOEAs for the following reasons:

Speedup the search to approximate the Pareto front: The
goal here is to reduce the search time. This helps designing in-
teractive optimization methods which is an important issue for
multi-criteria decision making. This is a also an important aspect
for some class of problems where there are hard requirements on
search time such as in dynamic MOPs and time-critical operational
MOPs such as “real-time” planning and control.

Improve the quality of the obtained Pareto solutions: some
parallel models for MOEAs allow to improve the quality of Pareto
solutions. Indeed, exchanging information between algorithms will
alter their behavior in terms of searching in the landscape associ-
ated to the MOP. The main goal in a cooperation between algo-
rithms is to improve the quality of Pareto solutions. Both con-
vergence to better Pareto solutions and reduced search time may
happen. Let us notice that a parallel model for MOEAs may be
more effective than a sequential algorithm even on a single proces-
sor.

Improve the robustness: a parallel MOEA may be more robust
in terms of solving in an effective manner different MOPs and dif-
ferent instances of a given problem. Robustness may be measured
in terms of the sensitivity of the algorithm to its parameters and
the target MOPs.

Solve large scale MOPs: parallel MOEAs allow to solve large
scale instances of complex MOPs. A challenge here is to solve
very large instances that cannot be solved on a sequential machine.
Another similar challenge is to solve more accurate mathematical
models associated to different MOPs. Improving the accuracy of
mathematical models increases in general the size of the associ-
ated problems to be solved. Moreover, some optimization prob-

Parallel Multi-Objective Evolutionary Algorithms 23

lems need the manipulation of huge databases such as data mining
problems.

In this paper, a clear difference is made between the parallel design
aspect and the parallel implementation aspect of MOEAs. A unifying
view of parallel models for MOEAs is presented. The implementation
point of view deals with the efficiency of parallel MOEAs on a target
parallel architecture using a given parallel language, programming en-
vironment or middleware. Different architectural criteria, which affect
the efficiency of the implementation, will be considered: shared memory
versus distributed memory, homogeneous versus heterogeneous, shared
versus non shared by multiple users, local network versus large network.
Indeed, those criteria have a strong impact on the deployment tech-
nique employed such as load balancing and fault-tolerance. Depend-
ing on the type of parallel architecture used, different parallel and dis-
tributed languages, programming environments and middlewares may be
used such as message passing (e.g., MPI), shared memory (e.g., multi-
threading, OpenMP, CUDA), remote procedural call (e.g., Java RMI,
RPC), high-throughput computing (e.g., Condor), and grid computing
(e.g., Globus).

This paper is organized as follows. In Section 2, the main parallel
models for designing MOEAs are presented. Section 3 deals with the
implementation issues of parallel MOEAs. In this section, the main
concepts of parallel architectures and parallel programming paradigms,
which interfere with the design and implementation of parallel MOEAs
are outlined. The main performance indicators that can be used to eval-
uate a parallel multi-objective search algorithms in terms of efficiency
are detailed.

2. Parallel Design of Multi-Objective
Metaheuristics

In terms of designing parallel MOEAs, three major parallel models
are identified. They follow the three hierarchical levels (Table 1):

Algorithmic-level: in this model, independent or cooperating
self-contained MOEAs are used. It is a problem-independent inter-
algorithm parallelization. If the different MOEAs are independent,
the search will be equivalent to the sequential execution of the
algorithms in terms of the quality of Pareto solutions. However,
the cooperative model will alter the behavior of the MOEAs and
enable the improvement in terms of the quality of Pareto solutions.

24 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Iteration-level: in this model, each iteration of a MOEA is par-
allelized. It is a problem-independent intra-algorithm paralleliza-
tion. The behavior of the MOEA is not altered. The main ob-
jective is to speedup the algorithm by reducing the search time.
Indeed, the iteration cycle of MOEAs on large populations, espe-
cially for real-world MOPs, requires a large amount of computa-
tional resources.

Solution-level: in this model, the parallelization process handles
a single solution of the search space. It is a problem-dependent
intra-algorithm parallelization. In general, evaluating the objective
functions or constraints for a generated solution is frequently the
most costly operation in MOEAs. In this model, the behavior of
the search algorithm is not altered. The objective is mainly the
speedup of the search.

Table 1: Parallel models of MOEAs.

Parallel Problem Behavior Granularity Goal
model dependency

Algorithmic-level Independent Altered MOP algorithm Effectiveness
Iteration-level Independent Non altered Iteration Efficiency
Solution-level Dependent Non altered Solution Efficiency

2.1 Algorithmic-Level Parallel Model

In this model, many MOEAs are launched in parallel. They may
cooperate or not to solve the target MOPs.

2.1.1 Independent algorithmic-level parallel model. In
the independent-level parallel model, the different MOEAs are executed
without any cooperation. The different MOEAs may be initialized with
different populations. Different parameter settings may be used for the
MOEAs such as the mutation and crossover probabilities. Moreover,
each search component of an MOEA may be designed differently: encod-
ing, search operators (e.g., variation operators), objective functions, con-
straints, fitness assignment, diversity preserving, elitism. This parallel
model is straightforward to design and implement. The master/worker
paradigm is well suited to this model. A worker implements an MOEA.
The master defines the different parameters to use by the workers and
determines the best found Pareto solutions from those obtained by the

Parallel Multi-Objective Evolutionary Algorithms 25

different workers. In addition to speeding up the MOEA, this parallel
model enables to improve its robustness [29].

This model raises particularly the following question: is it equivalent
to execute k MOEAs during a time t and to execute a single MOEA
during k ∗ t? The answer depends on the landscape properties of the
problem (e.g., distribution of the Pareto local optima).

2.1.2 Cooperative algorithmic-level parallel model. In the
cooperative model for parallel MOEAs, the different MOEAs are ex-
changing information related to the search with the intent to compute
a better and more robust Pareto front [30]. In general, an archive is
maintained in parallel to the current population. This archive contains
all Pareto optimal solutions generated during the search.

In designing this parallel cooperative model for any MOEA, the same
design questions need to be answered:

The exchange decision criterion (When?): the exchange of
information between the MOEAs can be decided either in a blind
(periodic or probabilistic) way or according to an “intelligent”
adaptive criterion. Periodic exchange occurs in each algorithm
after a fixed number of iterations; this type of communication is
synchronous. Probabilistic exchange consists in performing a com-
munication operation after each iteration with a given probability.
Conversely, adaptive exchanges are guided by some characteristics
of the multi-objective search. For instance, it may depend on the
evolution of the quality of the Pareto front. A classical criterion is
related to the update of the archive, in which a new Pareto solution
is generated.

The exchange topology (Where?): the communication ex-
change topology indicates for each MOEA its neighbor(s) regard-
ing the exchange of information, i.e., the source/destination algo-
rithm(s) of the information. The ring, mesh and hypercube regular
topologies are the most popular ones.

The information exchanged (What?): this parameter spec-
ifies the information to be exchanged between the MOEAs. In
general, the information exchanged is composed of:

– Pareto solutions: this information deals with any selection
strategy of the generated Pareto solutions during the search.
In general, it contains solutions from the current population
and/or the archive. The number of selected Pareto optimal
solutions may be an absolute value or a percentage of the sets.

26 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

– Search memory: this information deals with a search memory
of a MOEA excluding the Pareto optimal solutions. This
information deals with any element of the search memory
that is associated to the involved MOEA.

The integration policy (How?): analogously to the informa-
tion exchange policy, the integration policy deals with the usage
of the received information. In general, there is a local copy of
the received information. The local copies of the information re-
ceived are generally updated using the received ones. The Pareto
solutions received will serve to update the local Pareto archive.
For the current population, any replacement strategy can be used
(e.g., random, elitist). For instance, the best Pareto set is simply
updated by the best between the local best Pareto set and the
neighboring best Pareto set. Any replacement strategy may be
applied on the local population by the set of received solutions.

Few of such parallel search models have been especially designed for
multi-objective optimization [29].

The other well known parallel model for MOEAs, the cellular model.
may be seen as a special case of the island model where an island is
composed of a single individual. Traditionally, an individual is assigned
to a cell of a grid. The selection occurs in the neighborhood of the indi-
vidual. Hence, the selection pressure is less important than in sequential
MOEAs. The overlapped small neighborhood in cellular MOEAs helps
exploring the search space because a slow diffusion of Pareto solutions
through the population provides a kind of exploration, while exploita-
tion takes place inside each neighborhood. Cellular models applied to
complex problems can have a higher convergence probability to better
solutions than panmictic MOEAs [17].

The different MOEAs involved in the cooperation may evaluate dif-
ferent subsets of objective functions (Fig. 1). For instance, each MOEA
may handle a single objective. Another approach consists in using a dif-
ferent aggregation weights in each MOEA, or different constraints [22].

Each MOEA may also represent a different partition of the decision
space or the objective space [15, 27]. By this way, each MOEA is destined
to find a particular portion of the Pareto-optimal front.

Another main issue in the development of parallel MOPs is how the
Pareto set is built during the optimization process. Two different ap-
proaches may be considered (Fig. 1):

Centralized Pareto Front : the front is a centralized data structure
of the algorithm that it is built by the MOEAs during the whole

Parallel Multi-Objective Evolutionary Algorithms 27

Figure 1: Classification of parallel MOEAs for multi-objective optimization.

computation. This way, the new non-dominated solutions in the
Pareto optimal set are global Pareto optima [1, 5, 28].

Distributed Pareto Front : the Pareto front is distributed among
the MOEAs so that the algorithm works with local non-dominated
solutions that must be somehow combined at the end of their work
[8, 18, 19]. No pure centralized approach has been found clearly
motivated by efficiency issues [16]. All the found centralized ap-
proaches are combined with distributed phases where local non-
dominated solutions are considered. After each distributed phase,
a single optimal Pareto front is built by using these local Pareto
optima. Then, the new Pareto front is again distributed for local
computation, and so on.

2.2 Iteration-Level Parallel Model

In this parallel model, a focus is made on the parallelization of each
iteration of MOEAs. The iteration-level parallel model is generally based
on the distribution of the handled solutions. Indeed, the most resource-
consuming part in an MOEA is the evaluation of the generated solutions.
Our concerns in this model are only search mechanisms that are problem-
independent operations such as the generation of successive populations.
Any search operator of an MOEA which is not specific to the tackled
optimization problem is involved in the iteration-level parallel model.

28 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

This model keeps the sequentiality of the original algorithm, and, hence,
the behavior of the MOEA is not altered.

It is the easiest and the most widely used parallel model in MOPs. In-
deed, many MOPs are complex in terms of the objective functions. For
instance, some engineering design applications integrate solvers dealing
with different surrogate models: computational fluid dynamics (CFD),
computational electromagnetics (CEM), or finite element methods (FEM).
Other real-life applications deals with complex simulators. A particu-
larly efficient execution is often obtained when the ratio between com-
munication and computation is high. Otherwise, most of the time can
be wasted in communications, leading to a poor parallel algorithm.

The population of individuals can be decomposed and handled in par-
allel. In master-worker a master performs the selection operations and
the replacement. The selection and replacement are generally sequen-
tial procedures, as they require a global management of the population.
The associated workers perform the recombination, mutation and the
evaluation of the objective function. The master sends the partitions
(subpopulations) to the workers. The workers return back newly evalu-
ated solutions to the master [19] (Fig. 2).

Figure 2: The iteration-level parallel model in parallel MOEAs.

According to the order in which the evaluation phase is performed
in comparison with the other parts of the MOEA, two modes can be
distinguished:

Parallel Multi-Objective Evolutionary Algorithms 29

Synchronous: in the synchronous mode, the worker manages
the evolution process and performs in a serial way the different
steps of selection and replacement. At each iteration, the master
distributes the set of new generated solutions among the workers
and waits for the results to be returned back. After the results
are collected, the evolution process is re-started. The model does
not change the behavior of the MOEA compared to a sequential
model.

Asynchronous: in the asynchronous mode, the worker does not
wait for the return of all evaluations to perform the selection, re-
production and replacement steps. The steady-state MOEA is a
good example illustrating the asynchronous model and its advan-
tages. In the asynchronous model applied to a steady-state MOEA,
the recombination and the evaluation steps may be done concur-
rently. The master manages the evolution engine and two queues
of individuals of a given fixed size: individuals to be evaluated,
and solutions being evaluated. The individuals of the first queue
wait for a free evaluating node. When the queue is full the process
blocks. The individuals of the second queue are assimilated into
the population as soon as possible. The reproduced individuals are
stored in a FIFO data structure, which represents the individuals
to be evaluated. The MOEA continues its execution in an asyn-
chronous manner, without waiting for the results of the evaluation
phase. The selection and reproduction phase are carried out un-
til the queue of non-evaluated individuals is full. Each evaluator
agent picks an individual from the data structure, evaluates it, and
stores the results into another data structure storing the evaluated
individuals. The order of evaluation defined by the selection phase
may not be the same as in the replacement phase. The replace-
ment phase consists in receiving, in a synchronous manner, the
results of the evaluated individuals, and applying a given replace-
ment strategy of the current population.

In some MOEAs (e.g., blackboard-based ones) some information must
be shared. For instance, in ant colony optimization (ACO), the phero-
mone matrix must be shared by all ants. The master has to broadcast
the pheromone trails to each worker. Each worker handles an ant pro-
cess. It receives the pheromone trails, constructs a complete solution,
and evaluates it. Finally, each worker sends back to the master the
constructed and evaluated solution. When the master receives all the
constructed solutions, it updates the pheromone trails [14].

30 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Ranking methods are used to assign a fitness to each solution of a
population. Those ranking methods are computation-intensive and may
be also parallelized. Updating the archives at each iteration is also a
time consuming task.

2.3 Solution-Level Parallel Model

The main objective of the solution-level parallel model for MOP is to
speedup the search by parallelizing the treatments dealing with single so-
lutions (e.g., objectives evaluation, constraint satisfaction). Indeed, the
evaluation of multiple objective functions in MOPs is the most time-
consuming part into a MOEA. Therefore, several algorithms try to re-
duce this time by means of parallelizing the calculation of the fitness
evaluation [21, 22, 23]. The classical approaches must be adapted to
multi-objective optimization (Fig. 1):

Functional decomposition: this approach consists in distribut-
ing the different objective functions among the workers, and each
of them computes the value of its assigned function on each solu-
tion. The master will then aggregate the partial results for all the
solutions. Such approach allows a degree of concurrency and the
scalability is limited to the number of objective functions, meaning
often 2 or 3. Moreover, each objective function may be decomposed
into several sub-functions. Then, the degree of concurrency will be
equal to the number of sub-functions.

Data decomposition: for each data partition of the problem
(database, geographical area, structure, . . .), all the objectives of
the problem are evaluated and returned to the master. The master
will aggregate the different results.

In the multi-objective context, the scalability of this model is limited
by the number of objectives and the number of sub-functions per objec-
tive. The scalability could be improved again if the different objective
functions are simultaneously parallelized.

2.4 Hierarchical Combination of the Parallel Models

The three presented models for parallel MOEAs may be used in con-
junction within a hierarchical structure [26]. The parallelism degree
associated with this hybrid model is very important. Indeed, this hy-
brid model is very scalable; the degree of concurrency is k ∗m∗n, where
k is the number of MOEAs used, m is the size of the population, and
n is the number of partitions or tasks associated to the evaluation of a
single solution.

Parallel Multi-Objective Evolutionary Algorithms 31

3. Parallel Implementation of MOEAs

Parallel implementation of MOEAs deals with the efficient mapping
of a parallel model of MOEAs on a given parallel architecture.

3.1 Parallel Architectures

Parallel architectures are evolving quickly. The main criteria of par-
allel architectures, which will have an impact on the implementation of
parallel MOEAs, are: memory sharing, homogeneity of resources, re-
source sharing by multiple users, scalability, and volatility. Those crite-
ria will be used to analyze the different parallel models and their efficient
implementation. A guideline is given for the efficient implementation of
each parallel model of MOEAs according to each class of parallel archi-
tectures.

Shared memory/Distributed memory architectures: in shared
memory parallel architectures, the processors are connected by a shared
memory. There are different interconnection schemes for the network
(e.g., bus, crossbar, multistage crossbar). This architecture is easy to
program. Conventional operating systems and programming paradigms
of sequential programming can be used. There is only one address space
for data exchange but the programmer must take care of synchronization
in memory access, such as the mutual exclusion in critical sections. This
type of architecture has a poor scalability (from 2 to 128 processors
in current technologies) and a higher cost. An example of such shared
memory architectures are SMPs (Symmetric Multiprocessors) machines
and multi-core processors.

In distributed memory architectures, each processor has its own mem-
ory. The processors are connected by a given interconnection network
using different topologies (e.g., hypercube, 2D or 3D torus, fat-tree, mul-
tistage crossbars). This architecture is harder to program; data and/or
tasks have to be explicitly distributed to processors. Exchanging infor-
mation is also explicitly handled using message passing between nodes
(synchronous or asynchronous communications). The cost of communi-
cation is not negligible and must be minimized to design an efficient par-
allel MOEA. However, this architecture has a good scalability in terms of
the number of processors. In recent years, clusters of processors (COWs)
became one of the most popular parallel distributed memory architec-
tures. A good ratio between cost and performance is obtained with this
class of architectures.

Homogeneous/Heterogenous parallel architectures: parallel
architectures may be characterized by the homogeneity of the used pro-
cessors, communication networks, operating systems, etc. For instance,

32 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

COWs are in general homogeneous parallel architectures. The prolifer-
ation of powerful workstations and fast communication networks have
shown the emergence of heterogeneous networks of workstations (NOWs)
as platforms for high performance computing. This type of architecture
is present in any laboratory, company, campus, institution, etc. These
parallel platforms are generally composed of an important number of
owned heterogeneous workstations shared by many users.

Shared/Non shared parallel architectures: most massively par-
allel machines (MPP) and clusters of workstations (COW) are generally
non shared by the applications. Indeed, at a given time, the proces-
sors composing those architectures are dedicated to the execution of a
single application. NOWs constitute a low-cost hardware alternative to
run parallel algorithms but are in general shared by multiple users and
applications.

Local network (LAN)/Wide-area network (WAN): massively
parallel machines, clusters and local networks of workstations may be
considered as tightly coupled architectures. Large networks of worksta-
tions and grid computing platforms are loosely coupled and are affected
by a higher cost of communication. During the last decade, grid com-
puting systems have been largely deployed to provide high performance
computing platforms. A computational grid is a scalable pool of hetero-
geneous and dynamic resources geographically distributed across mul-
tiple administrative domains and owned by different organizations [9].
Two types of Grids may be distinguished:

High-Performance Computing Grid (HPC Grid): this grid
interconnect supercomputers or clusters via a dedicated high-speed
network. In general, this type of grid is non-shared by multiple
users (at the level of processors).

Desktop Grid: this class of grids is composed of numerous owned
workstations connected via non dedicated network such as the in-
ternet. This grid is volatile and shared by multiple users and
applications.

Volatile/Non volatile parallel architectures: desktop grids con-
stitute an example of volatile parallel architectures. In a volatile parallel
architecture, there is a dynamic temporal and spatial availability of re-
sources. In a desktop grid or a large network of shared workstations,
volatility is not an exception but a rule. Due to the large scale nature of
the grid, the probability of resource failure is high. For instance, desktop
grids have a faulty nature (e.g., reboot, shutdown, failure).

The following table 2 recapitulates the characteristics of the main par-
allel architectures according to the presented criteria. Those criteria will

Parallel Multi-Objective Evolutionary Algorithms 33

be used to analyze the efficient implementation of the different parallel
models of MOEAs.

Table 2: Characteristics of the main parallel architectures.

Criteria Memory Homogeneity Sharing Network Volatility

SMP Multi-core Shared Hom Yes or No Local No
COW Distributed Hom or Het No Local No
NOW Distributed Het Yes Local Yes
HPC Grid Distributed Het No Large No
Desktop Grid Distributed Het Yes Large Yes

Hom: Homogeneous, Het: Heterogeneous.

3.2 Dedicated Architectures

Dedicated hardware represents programmable hardware or specific ar-
chitectures that can be designed or re-used to execute a parallel MOEA.
The best known dedicated hardware is represented by Field Programmable
Gate Arrays (FPGAs) and Graphical Processing Unit (GPU).

FPGAs are hardware devices that can be used to implement digital
circuits by means of a programming process [31]. The use of the Xilinx’s
FPGAs to implement different MOEAs is more and more popular. The
design and the prototyping of a FPGA-based hardware board to execute
parallel MOEAs may restrict the design of some search components.
However, for some specific challenging optimization problems with a
high use rate such as in bioinformatics, dedicated hardware may be a
good alternative.

GPU is a dedicated graphics rendering device for a workstation, per-
sonal computer, or game console. Recent GPUs are very efficient at ma-
nipulating computer graphics, and their parallel SIMD structure makes
them more efficient than general-purpose CPUs for a range of complex
algorithms [2]. The main companies producing GPUs are AMD and
NVIDIA. The use of GPUs for an efficient implementation of MOEAs is
a challenging issue [12, 13].

3.3 Parallel Programming Environments and
Middlewares

The architecture of the target parallel machine strongly influences the
choice of the parallel programming model to use. There are two main
parallel programming paradigms: shared memory and message passing.

Two main alternatives exist to program shared memory architectures:

34 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Multi-threading: a thread may be viewed as a lightweight pro-
cess. Different threads of the same process share some resources
and the same address space. The main advantages of multi-threa-
ding are the fast context switch, the low resource usage, and the
possible recovery between communication and computation. Each
thread can be executed on a different processor or core. Multi-
threaded programming may be used within libraries such as the
standard Pthreads library [3] or programming languages such as
Java threads [10].

Compiler directives: one of the standard shared memory para-
digms is OpenMP (Open Multi-Processing, www.openmp.org) and
CUDA. It represents a set of compiler directives interfaced with
the languages Fortran, C and C++ [4]. Those directives are inte-
grated in a program to specify which sections of the program to
be parallelized by the compiler.

Distributed memory parallel programming environments are based
mainly on the three following paradigms:

Message passing: message passing is probably the most widely
used paradigm to program parallel architectures. Processes of a
given parallel program communicate by exchanging messages in
a synchronous or asynchronous way. The well known program-
ming environments based on message passing are sockets and MPI
(Message Passing Interface).

Remote Procedure Call: Remote procedure call (RPC) repre-
sents a traditional way of programming parallel and distributed
architectures. It allows a program to cause a procedure to execute
on another processor.

Object oriented models: as in sequential programming, parallel
object oriented programming is a natural evolution of RPC. A
classical example of such a model is Java RMI (Remote Method
Invocation).

In the last decade, great work has been carried out on the development
of grid middlewares. The Globus toolkit (www.globus.org) represents
the de facto standard grid middleware. It supports the development of
distributed service-oriented computing applications [20].

It is not easy to propose a guideline on which environment to use in
programming a parallel MOEA. It will depend on the target architecture,
the parallel model of MOEAs, and the user preferences. Some languages

Parallel Multi-Objective Evolutionary Algorithms 35

are more system oriented such as C and C++. More portability is ob-
tained with Java but the price is less efficiency. This tradeoff represents
the classical efficiency/portability compromise. A Fortran programmer
will be more comfortable with OpenMP. RPC models are more adapted
to implement services. Condor represents an efficient and easy way to
implement parallel programs on shared and volatile distributed architec-
tures such as large networks of heterogeneous workstations and desktop
grids, where fault tolerance is ensured by a checkpoint/recovery mech-
anism. The use of MPI within Globus is more or less adapted to high
performance computing (HPC) grids. However, the user has to deal
with complex mechanisms such as dynamic load balancing and fault-
tolerance. Table 3 presents a guideline depending on the target parallel
architecture.

Table 3: Parallel programming environments for different parallel architectures.

Architecture Examples of suitable programming environment

SMP Multi-threading library within an operating system (e.g., Pthreads)
Multi-core Multi-threading within languages: Java

OpenMP interfaced with C, C++ or Fortran

COW Message passing library: MPI interfaced with C, C++, Fortran

Hybrid ccNUMA MPI or Hybrid models: MPI/OpenMP, MPI/Multi-threading

NOW Message passing library: MPI interfaced with C, C++, Fortran
Condor or object models (JavaRMI)

HPC Grid MPICH-G (Globus) or GridRPC models (Netsolve, Diet)

Desktop Grid Condor-G or object models (Proactive)

3.4 Performance Evaluation

For sequential algorithms, the main performance measure is the exe-
cution time as a function of the input size. In parallel algorithms, this
measure depends also on the number of processors and the characteristics
of the parallel architecture. Hence, some classical performance indica-
tors such as speedup and efficiency have been introduced to evaluate
the scalability of parallel algorithms [11]. The scalability of a parallel
algorithm measures its ability to achieve performance proportional to
the number of processors.

The speed-up SN is defined as the time T1 it takes to complete a
program with one processor divided by the time TN it takes to complete

36 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the same program with N processors

SN =
T1

TN
.

One can use wall-clock time instead of CPU time. The CPU time is
the time a processor spends in the execution of the program, and the
wall-clock time is the time of the whole program including the input
and output. Conceptually the speed-up is defined as the gain achieved
by parallelizing a program. If SN > N (resp. SN = N), a super-linear
(resp. linear) speedup is obtained [25]. Mostly, a sub-linear speedup
SN < N is obtained. This is due to the overhead of communication and
synchronization costs. The case SN < 1 means that the sequential time
is smaller than the parallel time which is the worst case. This will be
possible if the communication cost is much higher than the execution
cost.

The efficiency EN using N processors is defined as the speed-up SN
divided by the number of processors N .

EN =
SN
N
.

Conceptually the efficiency can be defined as how well N processors are
used when the program is computed in parallel. An efficiency of 100%
means that all of the processors are fully used all the time. For some
large real-life applications, it is impossible to have the sequential time as
the sequential execution of the algorithm cannot be performed. Then,
the incremental efficiency ENM may be used to evaluate the efficiency
extending the number of processors from N to M processors.

ENM =
N × EN
M × EM

.

Different definitions of speedup may be used depending on the defini-
tion of the sequential time reference T1. Asking what is the best measure
is useless; there is no global dominance between the different measures.
The choice of a given definition depends on the objective of the perfor-
mance evaluation analysis. Then, it is important to specify clearly the
choice and the objective of the analysis.

The absolute speedup is used when the sequential time T1 corresponds
to the best known sequential time to solve the problem. Unlike other
scientific domains such as numerical algebra where for some operations
the best sequential algorithm is known, in MOEA search, it is difficult
to identify the best sequential algorithm. So, the absolute speedup is
rarely used. The relative speedup is used when the sequential time T1

corresponds to the parallel program executed on a single processor.

Parallel Multi-Objective Evolutionary Algorithms 37

Moreover, different stopping conditions may be used:

Fixed number of iterations: this condition is the most used to
evaluate the efficiency of a parallel MOEA. Using this definition,
a superlinear speedup is possible SN > N [7]. This is due to
the characteristics of the parallel architecture where there is more
resources (e.g., size of main memory and cache) than in a single
processor. For instance, the search memory of an MOEA executed
on a single processor may be larger than the main memory of
a single processor and then some swapping will be carried out,
which represents an overhead in the sequential time. When using
a parallel architecture, the whole memory of the MOEA may fit in
the main memory of its processors, and then the memory swapping
overhead will not occur.

Convergence to a set of solutions with a given quality:
this measure is interesting to evaluate the effectiveness of a par-
allel MOEA. It is only valid for parallel models of MOEAs based
on the algorithmic-level, which alter the behavior of the sequen-
tial MOEA. A super-linear speedup is possible and is due to the
characteristics of the parallel search. Indeed, the order of search-
ing different regions of the search space may be different from se-
quential search. The sequences of visited solutions in parallel and
sequential search are different. This is similar to the super-linear
speedups obtained in exact search algorithms such as branch and
bound [24].

Most of evolutionary algorithms are stochastic algorithms. When the
stopping condition is based on the quality of the solution, one cannot
use the speedup metric as defined previously. The original definition
may be extended to the average speedup:

SN =
E(T1)

E(TN)
.

The same seed for the generation of random numbers must be used for
a more fair experimental performance evaluation. The speedup metrics
have to be reformulated for heterogeneous architectures. The efficiency
metric may be used for this class of architectures. Moreover, it can be
used for shared parallel machines with multiple users.

3.5 Main Properties of Parallel MOEAs

The performance of a parallel MOEA on a given parallel architecture
depends mainly on its granularity. The granularity of a parallel program

38 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

is the amount of computation performed between two communications.
It computes the ratio between the computation time and the commu-
nication time. The three parallel models (algorithmic-level, iteration-
level, solution-level) have a decreasing granularity from coarse-grained
to fine-grained. The granularity indicator has an important impact on
the speedup. The larger is the granularity the better is the obtained
speedup.

The degree of concurrency of a parallel MOEA is represented by the
maximum number of parallel processes at any time. This measure is in-
dependent from the target parallel architecture. It is an indication of the
number of processors that can employed usefully by the parallel MOEA.
Asynchronous communications and the recovery between computation
and communication is also an important issue for a parallel efficient im-
plementation. Indeed, most of the actual processors integrate different
parallel elements such as ALU, FPU, GPU, DMA, etc. Most of the com-
puting part takes part in cache. Hence, the RAM bus is often free and
can be used by other elements such as the DMA. Hence, input/output
operations can be recovered by computation tasks.

Scheduling the different tasks composing a parallel MOEA is another
classical issue to deal with for their efficient implementation. Different
scheduling strategies may be used depending on whether the number
and the location of works (tasks, data) depend or not on the load state
of the target machine:

Static scheduling: this class represents parallel MOEAs in which
both the number of tasks of the application and the location of
work (tasks, data) are generated at compile time. Static schedul-
ing is useful for homogeneous, and non shared and non volatile
heterogeneous parallel architectures. Indeed, when there are no-
ticeable load or power differences between processors, the search
time of an iteration is derived by the maximum execution time
over all processors, presumably on the most highly loaded proces-
sor or the least powerful processor. A significant number of tasks
are often idle waiting for other tasks to complete their work.

Dynamic scheduling: this class represents parallel MOEAs for
which the number of tasks is fixed at compile time, but the lo-
cation of work is determined and/or changed at run-time. The
tasks are dynamically scheduled on the different processors of the
parallel architecture. Dynamic load balancing is important for
shared (multi-user) architectures, where the load of a given pro-
cessor cannot be determined at compile time. Dynamic scheduling
is also important for irregular parallel MOEAs in which the exe-

Parallel Multi-Objective Evolutionary Algorithms 39

cution time cannot be predicted at compile time and varies during
the search. For instance, this happens when the evaluation cost of
the objective functions depends on the solution.

Adaptive scheduling: parallel adaptive algorithms are parallel
computations with a dynamically changing set of tasks. Tasks may
be created or killed as a function of the load state of the parallel
machine. A task is created automatically when a node becomes
idle. When a node becomes busy, the task is killed. Adaptive load
balancing is important for volatile architectures such as desktop
grids.

For some parallel and distributed architectures such as shared net-
works of workstations and grids, fault tolerance is an important issue.
Indeed, in volatile shared architectures and large-scale parallel architec-
tures, the fault probability is relatively important. Checkpointing and
recovery techniques constitute one answer to this problem. Application-
level checkpointing is much more efficient than system-level checkpoint-
ing. Indeed, in system-level checkpointing, a checkpoint of the global
state of a distributed application composed of a set of processes is car-
ried out. In application-level checkpointing, only minimal information
will be checkpointed (e.g., population of individuals, generation num-
ber). Compared to system-level checkpointing, a reduced cost is then
obtained in terms of memory and time. Finally, security issues may
be important for large-scale distributed architectures such as grids and
Clouds (multi-domain administration, firewall, etc) and some specific
applications such as medical and bioinformatics research applications of
industrial concern [30].

3.6 Algorithmic-Level Parallel Model

Granularity: the algorithmic-level parallel model has the largest
granularity. Indeed, the time for exchanging the information is in gen-
eral much less than the computation time of a MOEA. There are rel-
atively low communication requirements for this model. The more im-
portant is the frequency of exchange and the size of exchanged infor-
mation, the smaller is the granularity. This parallel model is the most
suited to large-scale distributed architectures over internet such as grids.
Moreover, the trivial model with independent algorithms is convenient
for low-speed networks of workstations over intranet. As there is no
essential dependency and communication between the algorithms, the
speedup is generally linear for this parallel model. The size of the data
exchanged (for instance the number of Pareto solutions) will influence
the granularity of the model. If the number of Pareto solutions is high

40 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the communication cost will be exorbitant particularly on a large-scale
parallel architectures such as grids.

For an efficient implementation, the frequency of exchange (resp. the
size of the exchanged data) must be correlated to the latency (resp.
bandwidth) of the communication network of the parallel architecture.
To optimize the communication between processors, the exchange topol-
ogy can be specified according to the interconnection network of the
parallel architecture. The specification of the different parameters asso-
ciated with the blind or intelligent migration decision criterion (migra-
tion frequency/probability and improvement threshold) is particularly
crucial on a computational grid. Indeed, due to the heterogeneous na-
ture of computational grids these parameters must be specified for each
MOEA in accordance with the machine it is hosted on.

Scalability: the degree of concurrency of the algorithmic-level par-
allel model is limited by the number of MOEAs involved in solving the
problem. In theory, there is no limit. However, in practice, it is limited
by the owned resources of the target parallel architectures, and also by
the effectiveness aspect of using a large number of MOEAs.

Synchronous versus asynchronous communications: the im-
plementation of the algorithmic-level model is either asynchronous or
synchronous. The asynchronous mode associates with each MOEA an
exchange decision criterion, which is evaluated at each iteration of the
MOEA from the state of its memory. If the criterion is satisfied, the
MOEA communicates with its neighbours. The exchange requests are
managed by the destination MOEAs within an undetermined delay. The
reception and integration of the received information is thus performed
during the next iterations. However, in a computational grid context,
due to the material and/or software heterogeneity issue, the MOEAs
could be at different evolution stages leading to the non-effect and/or
super-solution problem. For instance, the arrival of poor solutions at a
very advanced stage will not bring any contribution as these solutions
will likely not be integrated. In the opposite situation, the cooperation
will lead to premature convergence.

From another point of view, as it is non-blocking, the model is more
efficient and fault tolerant to such a degree a threshold of wasted ex-
changes is not exceeded. In the synchronous mode, the MOEAs perform
a synchronization operation at a predefined iteration by exchanging some
data. Such operation guarantees that the MOEAs are at the same evo-
lution stage, and so prevents the non-effect and super-solution problem
quoted before. However, in heterogeneous parallel architectures, the syn-
chronous mode is less efficient in term of consumed CPU time. Indeed,
the evolution process is often hanging on powerful machines waiting

Parallel Multi-Objective Evolutionary Algorithms 41

the less powerful ones to complete their computation. The synchronous
model is also not fault tolerant as a fault of a single MOEA implies
the blocking of the whole model in a volatile environment. Then, the
synchronous mode is globally less efficient on a computational grid.

Asynchronous communication is more efficient than synchronous com-
munication for shared architectures such as NOWs and desktop grids
(e.g., multiple users, multiple applications). Indeed, as the load of net-
works and processors is not homogeneous, the use of synchronous com-
munication will degrade the performances of the whole system. The
least powerful machine will determine the performance.

On a volatile computational grid, it is difficult to efficiently maintain
topologies such as rings and torus. Indeed, the disappearance of a given
node (i.e., MOEA) requires a dynamic reconfiguration of the topology.
Such reconfiguration is costly and makes the migration process ineffi-
cient. Designing a cooperation between a set of MOEAs without any
topology may be considered. For instance, a communication scheme in
which the target MOEA is selected randomly is more efficient for volatile
architecture such as desktop grids. Many experimental results show that
such topology allows a significant improvement of the robustness and
quality of solutions. The random topology is therefore thinkable and
even commendable in a computational grid context.

Scheduling: concerning the scheduling aspect, in the algorithmic-
level parallel model the tasks correspond to MOEAs. Hence, the different
scheduling strategies will differ as follows:

Static scheduling: the number of MOEAs is constant and corre-
lated to the number of processors of the parallel machine. A static
mapping between the MOEAs and the processors is realized. The
localization of MOEAs will not change during the search.

Dynamic scheduling: MOEAs are dynamically scheduled on the
different processors of the parallel architecture. Hence, the migra-
tion of MOEAs during the search between different machines may
happen.

Adaptive scheduling: the number of MOEAs involved into the
search will vary dynamically. For example, when a machine be-
comes idle, a new MOEA is launched to perform a new search.
When a machine becomes busy or faulty, the associated MOEA is
stopped.

Fault-tolerance: the memory state of the algorithmic-level paral-
lel model required for the checkpointing mechanism is composed of the

42 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

memory of each MOEA and the information being migrated (i.e., pop-
ulation, archive, generation number).

3.7 Iteration-Level Parallel Model

Granularity: a medium granularity is associated to the iteration-
level parallel model. The ratio between the evaluation of a partition
and the communication cost of a partition determines the granularity.
This parallel model is then efficient if the evaluation of a solution is
time-consuming and/or there are a large number of candidate solutions
to evaluate. The granularity will depend on the number of solutions in
each sub-population.

Scalability: the degree of concurrency of this model is limited by
the size of the population. The use of large populations will increase the
scalability of this parallel model.

Synchronous versus asynchronous communications: introduc-
ing asynchronism in the iteration-level parallel model will increase the
efficiency of parallel MOEAs. In the iteration-level parallel model, asyn-
chronous communications are related to the asynchronous evaluation of
partitions and construction of solutions. Unfortunately, this model is
more or less synchronous. Asynchronous evaluation is more efficient
for heterogeneous or shared or volatile parallel architectures. Moreover,
asynchronism is necessary for optimization problems where the compu-
tation cost of the objective function (and constraints) depends on the
solution and different solutions may have different evaluation cost.

Asynchronism may be introduced by relaxing the synchronization con-
straints. For instance, steady-state algorithms may be used in the re-
production phase [6].

The two main advantages of the asynchronous model over the syn-
chronous model are fault tolerance and robustness if the fitness compu-
tation takes very different computations time. Whereas some time-out
detection can be used to address the former issue, the latter one can be
partially overcome if the grain is set to very small values, as individuals
will be sent out for evaluations upon request of the workers. There-
fore, the model is blocking and, thus, less efficient on a heterogeneous
computational grid. Moreover, as the model is not fault tolerant, the
disappearance of an evaluating agent requires the redistribution of its
individuals to other agents. As a consequence, it is essential to store all
the solutions not yet evaluated. The scalability of the model is limited
to the size of the population.

Parallel Multi-Objective Evolutionary Algorithms 43

Scheduling: in the iteration-level parallel model, tasks correspond
to the construction/evaluation of a set of solutions. Hence, the different
scheduling strategies will differ as follows:

Static scheduling: here, a static partitioning of the population is
applied. For instance, the population is decomposed into equal
size partitions depending on the number of processors of the par-
allel homogeneous non-shared machine. A static mapping between
the partitions and the processors is realized. For a heterogeneous
non-shared machine, the size of each partition must be initialized
according to the performance of the processors. The static schedul-
ing strategy is not efficient for variable computational costs of equal
partitions. This happens for optimization problems where different
costs are associated to the evaluation of solutions. For instance, in
genetic programming individuals may widely vary in size and com-
plexity. This makes a static scheduling of the parallel evaluation
of the individuals not efficient.

Dynamic scheduling: a static partitioning is applied but a dynamic
migration of tasks can be carried out depending on the varying load
of processors. The number of tasks generated may be equal to the
size of the population. Many tasks may be mapped on the same
processor. Hence, more flexibility is obtained for the scheduling
algorithm. For instance, the approach based on the master-workers
cycle stealing may be applied. To each worker is first allocated a
small number of solutions. Once it has performed its iterations
the worker requests from the master additional solutions. All the
workers are stopped once the final result is returned. Faster and
less loaded processors handle more solutions than the others. This
approach allows to reduce the execution time compared to the
static one.

Adaptive scheduling: the objective in this model is to adapt the
number of partitions generated to the load of the target architec-
ture. More efficient scheduling strategies are obtained for shared,
volatile and heterogeneous parallel architectures such as desktop
grids.

Fault-tolerance: the memory of the iteration-level parallel model
required for the checkpointing mechanism is composed of different par-
titions. The partitions are composed of a set of (partial) solutions and
their associated objective values.

44 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3.8 Solution-Level Parallel Model

Granularity: this parallel model has a fine granularity. There is a
relatively high communication requirements for this model. In the func-
tional decomposition parallel model, the granularity will depend on the
ratio between the evaluation cost of the sub-functions and the commu-
nication cost of a solution. In the data decomposition parallel model, it
depends on the ratio between the evaluation of a data partition and its
communication cost.

The fine granularity of this model makes it less suitable for large-
scale distributed architectures where the communication cost (in terms
of latency and/or bandwidth) is relatively important, such as in grid
computing systems. Indeed, its implementation is often restricted to
clusters or network of workstations or shared memory machines.

Scalability: the degree of concurrency of this parallel model is lim-
ited by the number of sub-functions or data partitions. Although its
scalability is limited, the use of the solution-level parallel model in con-
junction with the two other parallel models enables to extend the scal-
ability of a parallel MOEA.

Synchronous versus asynchronous communications: the im-
plementation of the solution-level parallel model is always synchronous
following a master-workers paradigm. Indeed, the master must wait for
all partial results to compute the global value of the objective functions.
The execution time T will be bounded by the maximum time Ti of the
different tasks. An exception occurs for hard-constrained optimization
problems, where feasibility of the solution is first tested. The master
terminates the computations as soon as a given task detects that the
solution does not satisfy a given hard constraint. Due to its heavy syn-
chronization steps, this parallel model is worth applying to problems in
which the calculations required at each iteration are time consuming.
The relative speedup may be approximated as follows:

Sn =
T

α+ T/n
,

where α is the communication cost.
Scheduling: in the solution-level parallel model, tasks correspond to

sub-functions in the functional decomposition and to data partitions in
the data decomposition model. Hence, the different scheduling strategies
will differ as follows:

Static scheduling: usually, the sub-functions or data are decom-
posed into equal size partitions depending on the number of pro-
cessors of the parallel machine. A static mapping between the

Parallel Multi-Objective Evolutionary Algorithms 45

sub-functions (or data partitions) and the processors is applied.
As for the other parallel models, this static scheme is efficient for
parallel homogeneous non-shared machines. For a heterogeneous
non-shared machine, the size of each partition in terms of sub-
functions or data must be initialized according to the performance
of the processors.

Dynamic scheduling: dynamic load balancing will be necessary for
shared parallel architectures or variable costs for the associated
sub-functions or data partitions. Dynamic load balancing may be
easily achieved by evenly distributing at run-time the sub-functions
or the data among the processors. In optimization problems, where
the computing cost of the sub-functions is unpredictable, dynamic
load balancing is necessary. Indeed, a static scheduling cannot
be efficient because there is no appropriate estimation of the task
costs (i.e., unpredictable cost).

Adaptive scheduling: in adaptive scheduling, the number of sub-
functions or data partitions generated is adapted to the load of
the target architecture. More efficient scheduling strategies are
obtained for shared, volatile and heterogeneous parallel architec-
tures such as desktop grids.

Fault-tolerance: the memory of the solution-level parallel model
required for the checkpointing mechanism is straightforward. It is com-
posed of the solution(s) and their partial objective value calculations.

Depending on the target parallel architecture, table 4 presents a gen-
eral guideline for the efficient implementation of the different parallel
models of MOEAs. For each parallel model (algorithmic-level, iteration-
level, solution-level), the table shows its characteristics according to the
outlined criteria (granularity, scalability, asynchronism, scheduling and
fault-tolerance).

4. Conclusions and Perspectives

Parallel and distributed computing can be used in the design and im-
plementation of MOEAs to speedup the search, to improve the quality
of the obtained solutions, to improve the robustness, and to solve large
scale problems. The clear separation between parallel design and paral-
lel implementation aspects of MOEAs is important to analyze parallel
MOEAs. The most important lessons of this paper can be summarized
as follows:

In terms of parallel design, the different parallel models for MOEAs
have been unified. Three hierarchical parallel models have been

46 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 4: Efficient implementation of parallel MOEAs according to some performance
metrics and used strategies.

Property Algorithmic-level Iteration-level Solution-level
Granularity Coarse Medium Fine

(Frequency of exchange, (Nb. of solutions (Eval. sub-functions,
size of information) per partition) eval. data partitions)

Scalability Number Neighborhood size, Nb. of sub-functions,
of MOEAs populations size nb. data partitions

Asynchronism High Moderate Exceptional
(Information exchange) (Eval. of solutions) (Feasibility test)

Scheduling and MOEA Solution(s) Partial
Fault-tolerance solution(s)

extracted: algorithmic-level, iteration-level and solution-level par-
allel models.

In terms of parallel implementation, the question of an efficient
mapping of a parallel model of MOEAs on a given parallel ar-
chitecture and programming environment (i.e., language, library,
middleware) is handled. The focus was made on the key criteria
of parallel architectures that influence the efficiency of an imple-
mentation of parallel MOEAs.

One of the perspectives in the coming years is to achieve Exascale per-
formance. The emergence of heterogeneous platforms composed of multi-
core chips and many-core chips technologies will speedup the achieve-
ment of this goal. In terms of programming models, cloud computing
will become an important alternative to traditional high performance
computing for the development of large-scale MOEAs that harness mas-
sive computational resources. This is a great challenge as nowadays
cloud frameworks for parallel MOEAs are just emerging.

In the future design of high-performance computers, the ratio between
power and performance will be increasingly important. The power rep-
resents the electrical power consumption of the computer. An excess
in power consumption uses unnecessary energy, generates waste heat
and decreases reliability. Very few vendors of high-performance architec-
ture publicize the power consumption data compared to the performance
data.

In terms of target optimization problems, parallel MOEAs constitute
unavoidable approaches to solve large scale real-life challenging problems
(e.g., engineering design, data mining). They are also an important al-
ternative to solve dynamic and uncertain optimization MOPs, in which

Parallel Multi-Objective Evolutionary Algorithms 47

the complexities in terms of time and quality are more difficult to han-
dle by traditional sequential approaches. Moreover, parallel models for
MOPs with uncertainty have to be deeply investigated.

Acknowledgement: This work is part of a project that has received
funding from the European Unions Horizon 2020 research and innova-
tion program under grant agreement No 692286.

References

[1] M. Basseur, F. Seynhaeve, and E.-G. Talbi. Adaptive mechanisms for multi-
objective evolutionary algorithms. Proceedings of the Congress on Engineering
in System Application (CESA), pages 72–86, 2003.

[2] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra. Graphics Processing Unit
(GPU) Programming Strategies and Trends in GPU Computing. Journal of
Parallel and Distributed Computing, 73(1):4–13, 2013.

[3] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley, 1997.

[4] B. Chapman, G. Jost, R. van der Pas, and D. J. Kuck. Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[5] C. A. Coello and M. Reyes. A study of the parallelization of a coevolutionary
multi-objective evolutionary algorithm. Lecture Notes in Artificial Intelligence,
2972:688–697, 2004.

[6] M. Depolli, R. Trobec, and B. Filipič. Asynchronous master-slave parallelization
of differential evolution for multi-objective optimization. Evolutionary Compu-
tation, 21(2):261–291, 2013.

[7] B. Dorronsoro, G. Danoy, A. J. Nebro, and P. Bouvry. Achieving super-linear
performance in parallel multi-objective evolutionary algorithms by means of
cooperative coevolution. Computers & Operations Research, 40(6):1552–1563,
2013.

[8] S. Duarte and B. Barán. Multiobjective network design optimisation using paral-
lel evolutionary algorithms. Proceedings of the XXVII Conferencia Latinoamer-
icana de Informática (CLEI), 2001.

[9] I. Foster and C. Kesselman (Eds.) The grid: Blueprint for a new computing
infrastructure. Morgan Kaufmann, San Fransisco, 1999.

[10] P. Hyde. Java thread programming. Sams, 1999.

[11] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel com-
puting: Design and analysis of algorithms. Addison Wesley, 1994.

[12] Z. Li, Y. Bian, R. Zhao, and J. Cheng. A Fine-Grained Parallel Multi-objective
Test Case Prioritization on GPU. Lecture Notes in Computer Science, 8084:111–
125, 2013.

[13] T. V. Luong, E. Taillard, N. Melab, and E-G. Talbi. Parallelization Strategies for
Hybrid Metaheuristics Using a Single GPU and Multi-core Resources. Lecture
Notes in Computer Science, 7492:368–377, 2012.

[14] A. M. Mora, P. Garćıa-Sánchez, J. J. Merelo Guervós, and P. A. Castillo. Pareto-
based multi-colony multi-objective ant colony optimization algorithms: an island
model proposal. Soft Computing, 17(7):1175–1207, 2013.

48 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[15] S. Mostaghim, J. Branke, and H. Schmeck. Multi-objective particle swarm opti-
mization on computer grids. Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), pages 869–875, 2007.

[16] A. J. Nebro, F. Luna, E.-G. Talbi, and E. Alba. Parallel multiobjective opti-
mization. In E. Alba (Ed.) Parallel metaheuristics, Wiley, 2005, pages 371–394.

[17] S. Nesmachnow. Parallel multiobjective evolutionary algorithms for batch
scheduling in heterogeneous computing and grid systems. Computational Op-
timization and Applications, 55(2):515–544, 2013.

[18] K. E. Parsopoulos, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N.
Vrahatis. Vector evaluated differential evolution for multiobjective optimiza-
tion. Proceedings of the IEEE 2004 Congress on Evolutionary Computation
(CEC’04), 2004.

[19] J. Rowe, K. Vinsen, and N. Marvin. Parallel GAs for multiobjective functions.
Proceedings of the 2nd Nordic Workshop on Genetic Algorithms and Their Ap-
plications (2NWGA), pages 61–70, 1996.

[20] B. Sotomayor and L. Childers. Globus toolkit 4: Programming Java services.
Morgan Kaufmann, 2005.

[21] N. Srinivas and K. Deb. Multiobjective optimization using non-dominated sort-
ing in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1995.

[22] T. J. Stanley and T. Mudge. A parallel genetic algorithm for multi-objetive mi-
croprocessor design. Proceedings of the Sixth International Conference on Ge-
netic Algorithms, pages 597–604, 1995.

[23] R. Szmit and A. Barak. Evolution Strategies for a Parallel Multi-Objective
Genetic Algorithm. Proceedings of the Genetic and Evolutionary Computation
Conference, pages 227–234, 2000.

[24] E.-G. Talbi. Parallel combinatorial optimization. Wiley, 2006.

[25] E.-G. Talbi and P. Bessière. Superlinear speedup of a parallel genetic algorithm
on the SuperNode. SIAM News, 24(4):12–27, 1991.

[26] E.-G. Talbi, S. Cahon, and N. Melab. Designing cellular networks using a parallel
hybrid metaheuristic on the computational grid. Computer Communications,
30(4):698–713, 2007.

[27] E.-G. Talbi, S. Mostaghim, H. Ishibushi, T. Okabe, G. Rudolph, and C.C. Coello.
Parallel approaches for multi-objective optimization. Lecture Notes in Computer
Science, 5252:349–372, 2008.

[28] F. de Toro, J. Ortega, E. Ros, S. Mota, B. Paechter, and J.M. Mart́ın. PSFGA:
Parallel processing and evolutionary computation for multiobjective optimisa-
tion. Parallel Computing, 30(5-6):721–739, 2004.

[29] D. A. van Veldhuizen, J. B. Zydallis, and G. B. Lamont. Considerations in en-
gineering parallel multi-objective evolutionary algorithms. IEEE Transasctions
on Evolutionary Computation, 7(2):144–173, 2003.

[30] G. Yao, Y. Ding, Y. Jin, and K. Hao. Endocrine-based coevolutionary multi-
swarm for multi-objective workflow scheduling in a cloud system. Soft Comput-
ing, 1–14, 2016.

[31] R. Zeidman. Designing with FPGAs and CPLDs. Elsevier, 2002.

II

THEORY AND ALGORITHMS

ARTIFICIAL BEE COLONY
OPTIMIZATION APPROACH TO
DEVELOP STRATEGIES FOR THE
ITERATED PRISONER’S DILEMMA

Manousos Rigakis, Dimitra Trachanatzi, Magdalene Marinaki,
Yannis Marinakis
School of Production Engineering and Management, Technical University of Crete, Greece

mrigakis@isc.tuc.gr, dtrachanatzi@isc.tuc.gr, magda@dssl.tuc.gr, marinakis@ergasya.tuc.gr

Abstract This study proposes a binary Artificial Bee Colony (ABC) approach
to develop game strategies for Iterated Prisoner’s Dilemma (IPD). To
determine the quality of the evolved strategies, a comparison is made
between this binary ABC approach, several known man-made strategies
and strategies developed by Particle Swarm Optimization (PSO) algo-
rithm. In this paper, we examine the suitability of the nature inspired
ABC algorithm to generate strategies for IPD which has not been inves-
tigated before. In general, the ABC algorithm provides better strategies
against PSO and benchmark strategies.

Keywords: Artificial bee colony, Iterated prisoner’s dilemma, Particle swarm opti-
mization.

1. Introduction

The Prisoner’s Dilemma (PD) is a well-known game of strategy in sev-
eral sciences such as economics [9], biology [6], game theory, computer
science and political science. Originally, it was proposed by Merril Flood
and Melvin Dresher in 1950 [7] as a non-cooperative pair game and later
Albert W. Tucker [15] characterized it as PD. In 1944 the theory of
the two player non-cooperative game was introduced by Von Neumann
and Morgenstern formalizing the mathematical base in the field of game
theory [12]. This game is useful to demonstrate the evolution of cooper-
ative behavior. The main method to study PD is proposed by Axelrod
in 1987 [2] using Genetic Algorithms (GAs). Darwen and Yao followed
Axelrod’s work to evolve strategies for the IPD using co-evolution [5].
They also extended their research in a variation of IPD where players

51

52 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

have a range of intermediate choices [3, 4]. Since then, some work has
been done at the study of IPD using nature inspired algorithms. Tekol
and Acan in 2003 applied Ant Colony Optimization (ACO) to develop
robust game strategies [14] and in 2005 Franken and Engelbrecht used
Particle Swarm Optimization (PSO) to approach IPD [8].

In this paper, we examine the suitability of the nature inspired arti-
ficial bee colony algorithm [10] to evolve strategies for the iterated pris-
oner’s dilemma. Specifically, our IPD approach uses the binary ABC
algorithm to generate a bit string in order to produce a complete play-
ing strategy. Overall the strategy of the ABC approach plays against
man-made strategies and against PSO-players. This paper includes the
following sections. In Section 2 we give the necessary background about
the prisoner’s dilemma. Section 3 includes the description of our ap-
proach, the definition of the benchmark strategies used, the main steps
of our algorithm and a brief analysis of the PSO algorithm. Section 4
contains experimental results and in Section 5 conclusions and future
work are given.

2. Prisoner’s Dilemma

The prisoner’s dilemma is referred to a non-zero-sum, a non-coopera-
tive game, named by Albert W. Tucker in 1950 and is one of the most
famous problems in game theory. It is applied to many cases of two
conflicted players. The non-zero-sum term implies that when one player
wins, the loss of the other is not a necessity. In addition, the non-
cooperative implies that players have no way to communicate with each
other prior to the game, they have no knowledge of the others’ decision
of historic behavior and they are not able of making any kind of agree-
ment with the other prisoner. A general description [15] is given in the
following. Two persons are jointly charged with a crime and held in sep-
arate cells. They have two possible choices: the prisoner can cooperate
(C) meaning that he/she will keep quite and keep to the pre-planned
story made with the other prisoner before they have both been arrested
or the prisoner can defect (D) meaning that she/he will reach an agree-
ment with the police and accuse the other prisoner. Thus, the prisoner
that defects is free to go if the other prisoner decides to cooperate and
the prisoner that cooperates will be jailed for m years. In case that both
of them decide to cooperate, then, they will both be jailed for n years
(where n < m). Finally, if both of them decide to defect, they will both
be jailed for r years (where n < r < m). In order to model the game in
a matrix form, the payoff matrix is used. The payoff that every player
gains according to his/her choice is given in Table 1 [2]. The first value

ABC Optimization Approach to Develop Strategies for the IPD 53

Table 1: Payoff matrix for prisoner’s dilemma

Player II

Cooperate Defect

Player I
Cooperate R,R S,T
Defect T,S P,P

mentioned inside the cells refers to the payoff of the player I and the
second to the player II. The payoffs [2] included in Table 1 have a code
letter according to the players’ action. The letter R denotes the payoff
if both players cooperate as a reward, S expresses the sucker’s payoff,
in case of cooperation against defection. T is the temptation payoff to
defect against a cooperating opponent and P denotes the punishment
payoff if both decide to defect. The prisoners dilemma is defined by the
following inequalities on the value of S, P , R, T .

T > R > P > S (1)

2R > S + T (2)

This first constraint is a classification of the payoffs. The temptation
payoff is the highest and the suckers payoff is the lowest. It also ensures
that parallel cooperation is more profitable than parallel defection. The
second constraint ensures that mutual cooperation of the players is more
profitable than one player’s defection against cooperation of the other
and backwards. For this study, the numerical payoff of each decision is
given in Table 2 which is same to the payoff matrix used by Axelrod [2].
This general description is actually aligned with the one-shot prisoner’s

Table 2: Payoff matrix used for this paper

Player II

Cooperate Defect

Player I
Cooperate 3,3 0,5
Defect 5,0 1,1

dilemma, meaning that each prisoner has only one opportunity to de-
cide his action: cooperation or defection. In the way that the game is
constructed, the most profitable solution for a player is to defect, irrel-
evant to his opponent strategy. Two scenarios can emerge: to gain the
biggest payoff T if the other player cooperates or to receive a smaller

54 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

payoff P but equal to the payoff of the other player. This way the risk
of receiving the lowest payoff S, as a victim of his opponents confes-
sion, is avoided. This leaves behind the option of mutual cooperation
R, a strategy more profitable than mutual defection. In order to give
the player the chance of choosing this strategy, Axelrod proposed the
Iterated Prisoner’s Dilemma IPD [1]. The iterated prisoner’s dilemma is
actually a sequence of repeated prisoner’s dilemma games. The number
of iterations must be unknown to both players. This hypothesis ensures
that both players will not be trapped into a repeated mutual defection.
To understand this situation, we have to assume that a known number
of iterations transforms the game into a one-shot prisoner’s dilemma re-
peated for every iteration. Thus, if the player knows which is the last
iteration and reasonably defects on that iteration and the same logic is
followed by his opponent, then, the same phenomenon will be carried
out as we look back to the first iteration. Several versions of IPD exist,
depended by the different ways of studying them. Since 1980, when Ax-
elrod used Genetic Algorithms (GAs) to generate strategies for the IPD,
little work has been done in the implementation of evolution algorithms
to the problem [8].

3. Bees Play Prisoner’s Dilemma

3.1 The Proposed ABC Approach

Artificial bee colony algorithm is based on the intelligent behavior of
bee swarms and is mainly applied to continuous time optimization prob-
lems. ABC algorithm has been proposed by Karaboga and Basturk in
2008 [10] and simulates the waggle dance of the bees in their effort to
find food. In the ABC algorithm, the colony consists of three groups
of bees: the employed, the onlookers and the scout bees. Every food
source is referred to only one employed bee, thus, the fleet of the em-
ployed bees to be used is equal to the amount of the food sources. In
this study, we create a set of solutions as we generate a set of random
players equal to the employed bees. For the iterated prisoner’s dilemma
the value of the fitness function is actually the payoff of each player.
Our goal is to estimate the maximum payoff that a player achieves while
playing with all the other random players. Every player i, who is gener-
ated, has a decision vector xij that contains binary values, xij ∈ [0, 1].
Every element of the decision vector describes the player’s strategy on
every game. The number of the played games j is the length of the
vector. When xij = 1, player i cooperates and when xij = 0 player

ABC Optimization Approach to Develop Strategies for the IPD 55

i defects. For example, a decision vector for j = 8 is given below.

Decision Vector 0 1 0 1 0 0 1 1

As we mentioned above, we have a definite number of N players and
N decision vectors. Without exception every player faces all others and
compares the values of the decision vectors. In this way the payoff matrix
is created containing all payoffs the players have achieved from all the
games. The payoff matrix is used to calculate the probability that the
onlooker bees visit the food sources by using roulette wheel selection
method. The necessary probability P (i) is calculated by the following
equation:

Pi =
F (i)

F (N)
=

F (i)∑N
k=1 F (k)

, (3)

where F (i) is the payoff of player i, and F (N) is the sum payoff of
all players N . We are able to conclude that more onlookers are placed
to players with high payoff in order to improve them. Considering that
ABC algorithm was developed for problems with continuous-valued vari-
ables yij ∈ R, the decision vector of each player (discrete values) must be
converted to a continuous-valued vector before proceed with the method.
The function used for this transformation is the following:

sig(xij) =
1

1 + exp(−xij)
. (4)

After the transformation of the decision vectors we apply the equation
(5) of the ABC algorithm that produces new food sources. To be exact,
the equation differs the decision vectors of the players that have been
selected by onlooker bees in pursuance of creating competitive players.
The equation that gives a new food source given by Karaboga and Bas-
turk [10] is the following:

yij(t+ 1) = yij(t) + φ(yij(t)− ykj(t)). (5)

The yij is the decision vector of player i, φ is random number between
(0, 1), ykj is the decision vector of a random player k such as k 6= i and
k ∈ N and t is the current iteration. An essential point of the procedure
is the number of onlooker bees that are allocated to a single food source
to one player. In case of more than one bees, the new decision vectors
yij are produced using equation (5) as many times as the number of bees
allocated to this food source using different φ and different k each time.
Thus, q new vectors are actually generated (q is equal to the number
of onlooker bees). If a player has not been visited by any onlooker bee,
then, his decision vector remains as previous. As we have to deal with a

56 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

combinatorial optimization problem, it is necessary to convert the newly
created decision vectors yij , to binary values according to the following
rule:

xij(t+ 1) =

{
1, if φ < yij(t+ 1)
0, if φ ≥ yij(t+ 1)

(6)

When the conversion has been completed, N + q decision vectors have
been created. Summarizing, N + q players are ready to compete with
each other at prisoner’s dilemma, as we described earlier. When all the
games are completed, the payoffs are calculated. For each individual
player the decision vector with maximum payoff is selected and saved
into the memory. Finally, only one of the N players emerges. This player
has the best decision vector meaning that he has achieved the maximum
payoff against all the others.

We have presented a simulation study of artificial bee colony algo-
rithm for solving PD that is practically without memory. Summariz-
ing the context of the above paragraphs, the initial solution strategies
are randomly created in every simulation irrelevant to the benchmark
strategies (Section 3.2) and to the PSO evolved strategy (Section 3.3)
that our player has to face. In order to improve our player’s perfor-
mance, the algorithm is alternated in a way to memorize the decision
vector that maximizes the player’s payoff after competing with each one
of the strategies. Thus, as the iterations go on, the algorithm includes
our player’s best strategies of the previous iteration as a starting point
of the next iteration. That gives advantage to his generated strategies.
The pseudo-code used is given in Algorithm 1.

3.2 Benchmark Strategies

In order to picture our experimental work, some of the man-made
strategies that participated in Axelrod’s experiments, have been chosen.
Additionally a randomly chosen player has been used, as well as play-
ers who have been generated by a PSO algorithm in order to compare
those two algorithms. The man-made strategies [2] are: Random: This
player has a random binary decision vector and he is the most unpre-
dicted opponent. Always Cooperate (AC): This is the most innocent
strategy, because that player cooperates on every move. Pavlov: This
player repeats the previous played move if that move was beneficial or
plays the opposite if that move was unproductive. Tit-for-tat (TFT):
In this strategy proposed by Anatol Rapoport [13], the player begins
with cooperation but he continues by imitating the last move of his
opponent. Evil tit-for-tat (ETFT): In this strategy, the player be-

ABC Optimization Approach to Develop Strategies for the IPD 57

Algorithm 1 Artificial Bee Colony Algorithm

1: Define number of employed bees (collection of players) (N)
2: Define number of onlooker bees (T) and number of scout bees (S)
3: Define number of executions (W), iterations (L) and games (M)
4: Initialization
5: Randomly create decision vectors (x)
6: Pairing each player with one employed bee
7: Calculate the payoff for each player according Table 2 by playing all

against all
8: Main Phase
9: while the maximum number of iterations has not been reached do

10: Return employed bees to the hive
11: Transform the decision vector to a continued-valued with eq. (4)
12: Calculate Pi and place the onlooker bees using eq. (3)
13: Create new decision vectors using eq. (5)
14: All players compete with each other
15: Compare the payoffs and save the personal best decision vector
16: end while
17: Save the decision vector that gives maximum payoff of all the players
18: Best player plays M games against each of the 5 benchmark strate-

gies (section 3.2)
19: Return to step 4 until W executions have been completed
20: When all executions have been completed, W players have been

generated with ABC algorithm.

gins with defection but he continues by imitating the last move of his
opponent.

3.3 Particle Swarm Optimization Algorithm

In order to compare the quality of our solution through ABC algo-
rithm, we evolve strategies with PSO. Alike to ABC, PSO is an evolu-
tionary technique and it is inspired by the behavior of bird flocks and
swarming theory. Originally, it was introduced by Kennedy and Eber-
hart [11] for optimizing continuous nonlinear functions. The algorithm
simulates the movement of a swarm (population) consisting of particles
(number of players). The swarm moves through a solution space and
each particle represents a feasible solution to the optimization problem.
Each particle associates with a value of the objective function being opti-
mized (payoff). Furthermore, velocity is, also, assigned to each particle
in order to direct the movement towards better solutions (positions).

58 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

In the PSO algorithm, each particle knows its previous best solution
and the best solution of the whole swarm [8]. Thus, particles modify
their positions towards their personal best positions and the global best
position of the whole swarm according to the following equations:

xij(t+ 1) = xij(t) + vij(t+ 1), (7)

vij(t+1) = vij(t)+c1 ∗φ1(pbestij−xij(t))+c2 ∗φ2(gbestj−xij(t)). (8)

The description of the equations (7), (8) is relevant to our approach.
Thus, the equation (7) represents the new decision vector of player i, t
is the current iteration, c1 and c2 are velocity variables (c1 = c2 = 2)
and φ1, φ2 are random numbers in the interval (0,1). Particle’s personal
best obtained value (payoff) is denoted by pbest and gbest denotes the
best obtained value from all the particles in the swarm (the best payoff
from all the players). PSO initially was proposed for continuous-valued
variables, thus, it is necessary to convert the binary-valued decision vec-
tors xij(t) to continuous values and vice-versa. For this purpose, we use
equations (4) and (6) as they are used in the ABC approach (section
3.1).

4. Experimental Results

In this section, a brief analysis of our experiments is presented. The
figures below show the achieved payoffs (in the vertical axis) of ABC
versus benchmark strategies for 20 different executions (players). The
achieved payoff is the total payoff in en execution.

Figure 1: ABC vs RANDOM (ABC: cross, RANDOM: circle)

Figure 1 shows that version 1 of our algorithm (ABC version 1 (with-
out memory)) against random strategies has unpredictable behavior de-

ABC Optimization Approach to Develop Strategies for the IPD 59

spite that this version generates competitive players. The memory that
version 2 provides is meaningless cause of the irregularity of the oppo-
nent strategies.

Figure 2: ABC vs AC (ABC: cross, AC: circle)

It is obvious from Fig. 2 that the AC strategy is ineffective due to
the PD’s formulation as our player achieves higher or equivalent to his
AC-opponent’s payoff at every game. Thus, both our versions always
win the AC strategy.

Figure 3: ABC vs PAVLOV (ABC: cross, PAVLOV: circle)

The generated strategies by version 1 of our algorithm are competi-
tive against Pavlov’s strategies. Version 2 of ABC performs better and
constantly generates strategies able to win Pavlov’s strategies as Fig. 3
shows.

60 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4: ABC vs TFT (ABC: cross, TFT: circle)

Figure 5: ABC vs ETFT (ABC: cross, ETFT: circle)

Figure 4 shows that both versions of our ABC algorithm develop
strategies that help our player to gain higher payoff than a player who
follows the TFT strategy.

The ETFT is the first strategy that our algorithm gives inferior results
at every execution (Fig. 6). A player that follows ETFT strategy has
the advantage to start with defection, thus, he gains payoff regardless
of our player’s move. If our player cooperates initially, he gains zero
payoff and the ETFT opponent gains 5 points of payoff. In case that our
player chooses to defect too, they both gain 1 point of payoff according to
Table 2. Thus, we are reasonably able to assume that ETFT player gains
more payoff than a player who follows any of the other above strategies.

ABC Optimization Approach to Develop Strategies for the IPD 61

The memory that version 2 provides has no effect in the improvement
of our player’s payoff.

Table 3: Percentage differences of payoffs (%) between the two versions of ABC
algorithm and Benchmark strategies.

W=20, N=5, M=5, L=10 W=20, N=20, M=5, L=50

Strategies ABC(Version 1) ABC(Version 2) ABC(Version 1) ABC(Version 2)

AC 1.9863± 0.18 2.5634± 0.15 2.6674± 0.15 3.9222± 0.17
Random 0.1756± 0.17 -0.6832± 0.23 0.3660± 0.17 -0.6077± 0.16
Pavlov 0.1310± 0.17 2.2174± 0.12 0.1683± 0.17 2.8255± 0.18
TFT 0.2818± 0.11 0.3940± 0.17 0.4293± 0.16 0.4300± 0.13
ETFT -0.1897± 0.16 -0.2841± 0,16 -0.1663± 0.19 -0.2201± 0.17

PSO 0.0620± 0.19 0.3331± 0.22 0.1443± 0.13 0.4886± 0.16

The PSO algorithm evolved strategies have been used against both of
the ABC’s versions in the same way that the benchmark strategies did.
W players generated by PSO played the PD versus W other generated
by ABC. The experiments show that PSO develops very competitive
strategies but version 1 and version 2 of ABC algorithm are often more
effective and the ABC’s players gain higher payoffs as Fig. 6 shows.
The most interesting observation is that as the number of iterations
increases the ABC’s players payoffs are increasing too. As it occurs
with most of the benchmark strategies, version 2 with memory performs
better. In Table 3 the percentage differences of payoffs between the
two versions of ABC algorithm and his opponent (benchmark strategies
and PSO) are calculated using the following equation: Percopponent =
(payoffABC − payoffopponent)/payoffopponent. In Table 3 we observe
the stability of our algorithm.

5. Conclusion

In this paper, we present our algorithmic approach for solving the
iterated prisoner’s dilemma using a nature inspired method, the artifi-
cial bee colony algorithm. We have managed to evolve strategies for a
player who faces a PD game for unknown number of iterations and ex-
amine his behavior against benchmark strategies and against generated
strategies from the PSO algorithm. We have come to conclusion that
the ABC algorithm with memory evolves more efficient strategies pro-
viding to our player higher payoff compared to the original memory-less
ABC algorithms. Furthermore, there is room for future work. For in-
stance, the applicability of other nature inspired algorithms to develop
IPD strategies need to be tested and to be compared with our ABC

62 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 6: ABC vs PSO (ABC: cross, PSO: circle)

approach. Also, an extension of our algorithm to N -person IPD [16, 17]
is interesting.

References

[1] R. Axelrod. The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In
L. Davis (Ed.) Genetic Algorithms in Simulated Annealing, pages 32–41, Pitman,
London, 1987.

[2] R. Axelrod and W. D. Hamilton. The evolution of Cooperation. Science,
211:1390–1396, 1981.

[3] P. J. Darwen and X. Yao. Co-evolution in iterated prisoners dilemma with in-
termediate levels of cooperation: Application to missile defense.International
Journal of Computational Intelligence and Applications, 2:83–107, 2002.

[4] P. J. Darwen and X. Yao. Does extra genetic diversity maintain escalation in
a co-evolutionary arms race? International Journal of Knowledge-Based Intelli-
gent Engineering Systems, 4(3):191–200, 2000.

[5] P. J. Darwen and X. Yao. On Evolving Robust Strategies for Iterated Prisoner’s
Dilemma. Proceedings of the AI Workshops on Evolutionary Computation, pages
276–292, 1995.

[6] L. A. Dugatkin. Animal Cooperation Among Unrelated Individuals. Naturwis-
senschaften, 89:533-541, 2002.

[7] M. M. Flood. On game-learning theory and some decision-making experiments.
Technical Report DTIC Document, 1952.

[8] N. Franken and A. P. Engelbrecht. Particle swarm optimization approaches to
coevolve strategies for the iterated prisoner’s dilemma. IEEE Transactions on
Evolutionary Computation, 9(6):562–579, 2005.

[9] S. P. H. Heap and Y. Varoufakis. Game Theory: A Critical Introduction. Rout-
ledge, New York, 1995.

ABC Optimization Approach to Develop Strategies for the IPD 63

[10] D. Karaboga and B. Basturk. On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing, 8(1):687–697, 2008.

[11] J. Kennedy and R. Eberhart. Particle Swarm Optimization. Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pages 1942–1948,
1995.

[12] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, 1944.

[13] A. Rapoport and A. M. Chammah. Prisoner’s dilemma: A study in conflict and
cooperation. University of Michigan Press, 1965.

[14] Y. Tekol and A. Acan. Ants can play prisoner’s dilemma. IEEE Congress on
Evolutionary Computation, 2:1348–1354, 2003.

[15] A. W. Tucker. The mathematics of Tucker: A Sampler. The Two-Year College
Mathematics Journal, 14:228-232, 1983.

[16] X. Yao and P. J. Darwen. An experimental study of n-person iterated prisoners
dilemma games. Informatica, 18(4):435–450, 1994.

[17] X. Yao and P. J. Darwen. Genetic Algorithms and Evolutionary Games. Com-
merce, Complexity and Evolution, pages 313–333, Cambridge University Press,
2000.

SENSITIVITY ANALYSIS OF THE BEE
COLONY OPTIMIZATION ALGORITHM

Tatjana Jakšić Krüger
Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia

Faculty of Technical Sciences, Novi Sad, Serbia

tatjana@mi.sanu.ac.rs

Tatjana Davidović
Mathematical Institute of Serbian Academy of Sciences and Arts, Belgrade, Serbia

tanjad@mi.sanu.ac.rs

Abstract Bee Colony Optimization (BCO) is a nature-inspired population-based
meta-heuristic method that belongs to the class of Swarm intelligence
algorithms. BCO was proposed by Lučić and Teodorović, who were
among the first to use the basic principles of collective bee intelligence
in dealing with optimization problems. Designing a BCO method in
principle includes choosing a procedure for constructive/improvement
moves, an evaluation function and setting BCO parameters to a suitable
values. Topic of this work is addressing the influence of right choice of
BCO underlying procedures, such as the choice of loyalty functions, and
influence of parameter variations on algorithm performance, by means
of visual inspection. Analyses were conducted for simple variant of
scheduling problem. Also, to achieve good alternatives for reported
solutions, new evaluation methods for scheduling problem are presented.

Keywords: Empirical analysis, Meta-heuristics, Parameter tuning, Swarm intelli-
gence.

1. Introduction

Apart from the significant advances in computer technology and prog-
ress in disciplines relevant for solving optimization problems, practical
complex problems are still challenging in the sense that it is hard to solve
realistically large instances in reasonable computation times. On the top
of that issue, there is a question of configuring solver’s parameters. The

65

66 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

performance of most meta-heuristic methods is tightly connected with
the right choice of their parameters, resulting with analyses that involve
yet another optimization problem. One possible approach for dealing
with such issues is empirical analysis, in most of the cases connected
with the concrete application and implementation.

Bee colony optimization is a population-based meta-heuristic method
that was first proposed by Lučić and Teodorović in 2001 [13]. The in-
spiration for creating new multi-agent system, such as BCO, originates
from foraging behavior of the honey bees. This behavior is suitable for
modeling since the practice of collecting and processing nectar is highly
organized. The first version of the BCO algorithm was developed as a
constructive procedure, where each artificial bee is building a solution
from scratch. Later variant of BCO, known as improvement BCO, used
modification of complete solutions. To provide better understanding of
the BCO structure, the introduction into the behavior of the bees in
nature is being presented.

In nature, honey bees succeed to find nectar among limited resources
in quite efficient manner, without control of some central management
and within unpredictable and dynamic environment. The reason for
such a success is the capacity for communication using skills that most
resemble to symbolic language [10]. It was Karl von Frisch that in the
mid-1940s first recognized the waggle dance [18], for which he earned
Nobel Prize in 1973. The bees are using waggle dance to learn about
various properties of food source, such as the position defined by the
direction and the distance.

Basically, a mathematical model of the foraging behavior of honey
bees can be described as follows. Bees that are searching and collecting
the nectar are known as worker bees. They collect and accumulate food
for later use by other bees. The worker bees that are exploring the area,
typically in the neighborhood of their hive, are called scout bees. After
completing the exploration, scout bees return to the hive and inform
their hive-mates about the locations, quantity and quality of the avail-
able food sources in the areas they have examined. In the case they have
discovered nectar, scout bees dance in the so-called “dance floor area” of
the hive using a ritual called “waggle dance”, in an attempt to attract
the remaining members of the colony to follow their lead. If a bee decides
to leave the hive and collect the nectar, it will follow one of the dancing
scout bees to the previously discovered location. After returning to the
hive with a load of nectar, the foraging bee then decides for one of the
several scenarios: (1) it can try to recruit its hive-mates with the dance
ritual before returning to the food location; (2) it can continue with the
foraging behavior at the discovered nectar source, without recruiting the

Sensitivity Analysis of the Bee Colony Optimization Algorithm 67

rest of the colony; (3) it can abandon the food source and return to its
role of an uncommitted follower [3, 4]. Although it is yet unknown how
an uncommitted bee decides among several recruiters, the fact is that
“the loyalty and recruitment among bees are always a function of the
quantity and quality of the food source” [8, 17].

2. The BCO Algorithm

The BCO method is based on engagement of a group of artificial bees
(B individuals) in search for the optimal solution [8]. The homogeneity
of artificial bees is being presumed, where each bee generates one solution
to the problem. The homogeneity implies that, unlike worker bees in
nature, all the artificial bees in BCO are involved in foraging process.
The search process of artificial bees is conducted through iterations,
during which bees also communicate in order to compare the quality
of obtained solutions, until some predefined stopping criteria is being
satisfied. In regard to this clear distribution of tasks for artificial bees,
each iteration of the BCO algorithm can be represented as a composition
of alternating phases (steps): forward pass and backward pass.

During the forward pass, all the artificial bees are performing the
exploration independent from each other, and therefore, no information
is being exchanged in this phase. The method of exploration depends on
the implementation of the corresponding BCO algorithm, that is, choice
of heuristic. The exploration is performed through certain (predefined)
number of moves to either construct the part of a solution [7] or modify
the existing complete solution [6]. The number of moves within one
forward pass can be represented as a function of the parameter NC. The
parameter NC represents the second parameter of the BCO method and
its values are influencing the exploitation of the search. Typically, it is
used to determine the frequency of information exchange between bees,
that is, the number of forward/backward passes during one iteration.
At the end of the forward pass the new (partial or complete) solution is
generated for each bee [8].

During the backward pass of the BCO algorithm all the artificial bees
share the information about the discovered solutions. The information
being exchanged in the BCO algorithm contains the quality of each
(partial) solution, with respect to the best and the worst solution. Each
artificial bee decides, with a probability depending on the solution qual-
ity, whether it will stay loyal to its solution or not. The artificial bees
that stay loyal to their solutions are becoming recruiters. Artificial bees
that are not loyal to their current solutions, become uncommitted, and
have to select among the solutions advertised by the recruiters. The se-

68 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

lection process for one of the advertised solutions is stochastic, in such a
way that better solutions are given higher probabilities to be chosen for
further exploration. Consequently, within each backward pass all bees
are being divided into two groups: recruiters, and uncommitted bees.

Initialization: Read input data.
Do

(1) Assign a(n) (empty) solution to each bee.
(2) For (i = 0; i < NC; i+ +)

// forward pass
(i) Perform move for each bee.
// backward pass
(ii) Evaluate the (partial/complete) solutions;
(iii) Loyalty decisions;
(iv) If (bee not loyal), choose a recruiter by roulette wheel.

(3) Evaluate all solutions. Update xbest and f(xbest)
While stopping criterion is not satisfied.
return (xbest, f(xbest))

Figure 1: Pseudo-code for BCO

The pseudocode of the BCO algorithm is given in Fig. 1. Steps (i) and
(ii) are problem dependent and should be resolved in each implementa-
tion of the BCO algorithm. On the contrary, other steps of the BCO are
problem independent. These steps specify loyalty decision (step (iii))
and recruiting process (step (iv)), and are therefore described in more
detail in the following text.

2.1 Loyalty Decision

In order for bees to share information about the quality of discovered
(partial) solutions, the BCO algorithm is running through three stages:
1. Evaluation; 2. Loyalty decision; and 3. Recruitment. If value Cb (b =
1, 2, ..., B) denotes the evaluation value of the b-th bee (partial) solution,
then it is being normalized to the [0, 1] interval in such a way that larger
normalized value Ob corresponds to the better (partial) solution. Usually
the evaluation is implemented so that it corresponds to the formulation
of the objective function [15].

In the next stage of backward pass the loyalty functions allow, for bees
who start exploration from different points in the search space, to decide
whether to become uncommitted followers, or to continue exploring al-
ready known solutions. The probability that b-th bee (at the beginning

Sensitivity Analysis of the Bee Colony Optimization Algorithm 69

of the new forward pass) is loyal to its previously generated (partial)
solution can be expressed as follows:

p0,u+1
b = e−

1−Ob
u , b = 1, 2, . . . , B, (1)

where parameter u corresponds to the forward pass counter. In this
form equation (1) assures that the bee b will stay loyal with a higher
probability to discovered (partial) solutions of a good quality (the ones
with higher Ob value). Moreover, as the search process advances the
influence of the already discovered (partial) solution increases, i.e., the
probability that bee will keep and advertise its current solution has larger
value.

Until recently, loyalty function p0,u+1
b was most often used when deal-

ing with optimization problems. From an analytical perspective, it can
be reasoned that its utilization agrees well when the search process is
implemented so that often interruptions during backward pass should
be avoided. In other words, when it is obvious that the search path of
a bee will most probably lead to a good solutions, then increasing its
loyalty during one iteration assists well such endeavor. However, when
the emphasis should be on the exploration of the solution space, different
perspective into the measure of bees loyalty needs to be considered. In
recent work [16] it was reported that for some variants of BCO, better
performance could be achieved if the current forward pass index (u) was
omitted in the loyalty decision process. Some other probability func-
tions were examined in [14]. A new study was therefore conducted for
10 different loyalty functions:

(1) p0,u+1
b = e−

1−Ob
u , (6) p5,u+1

b = e−(1−Ob)
√
u/
√
u+1,

(2) p1
b = e−Omax−Ob , (7) p6,u+1

b = e−(1−Ob)/ log u,

(3) p2
b = Ob (8) p7,u+1

b = e−(1−Ob)/u log(u+1),

(4) p3,nit
b = e−(1−Ob)/nit , (9) p8

b = e−2∗(1−Ob),

(5) p4,u+1
b = e−(1−Ob)/

√
u, (10) p9,u+1

b = e−(1−Ob) log (u+1)/ log (u+2).

Two classes of loyalty functions can be distinguished: Class I, as a func-
tion of parameter Ob (p1,2,8

b), and Class II as a two variable function of

Ob and counter u or iteration counter nit (p0,3,4,5,6,7,9
b).

2.2 Recruiting Process

The probability that b’s (partial) solution would be chosen by any
uncommitted bee depends on the solution quality of a recruiter b and

70 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

equals to:

pb =
Ob
R∑
k=1

Ok

, b = 1, 2, . . . , R, (2)

where Ok represents normalized value for the objective function of the
k-th advertised partial solution and R denotes the current number of
recruiters.

3. Sensitivity Analysis of BCO

Designing a BCO method in principle includes choosing a procedure
for constructive/improvement moves, an evaluation function and setting
BCO parameters to a certain values that are usually determined by some
set of pilot studies, some previously published work or even intuition.
However, the analysis of different settings for loyalty function is lacking
in current literature, even though it is a part of the generic section of
the BCO method and is not problem specific. One of our goals was to
address this issue.

Empirical analysis of the meta-heuristic method belongs to interdis-
ciplinary research and in many cases can require great effort due to the
stochastic nature of the method or, in some cases, tuning large number
of parameters whose interaction should be expected [11]. Unlike specific
orientated optimization algorithms, meta-heuristics methods are cate-
gorized by its parameters and/or different modules [2]. Such structure,
when implemented, can expose different behavior as parameter values
are changing. During the last decade, different tools for experimental
analysis were proposed and/or inspected, most of them based on model-
ing response values with linear or nonlinear models and/or implementing
three basic steps: screening, experimentation and exploitation [1, 9, 19].
The literature on this topic today is overwhelming, so the right choice
of the tunning method for BCO remains one of the future challenges.

The aim of this work is to provide first insights on behaviour of BCO
by following guidelines of many researches who were concerned with me-
thodical empirical analysis of heuristic and meta-heuristic methods. A
thorough scientific testing of BCO method can be computationally too
extensive, which is why first steps into empirical analysis of BCO is
addressing questions of sensitivity analysis. Sensitivity analysis corre-
sponds to analysis of variation of algorithm’s response values, such as
quality of solution (usefulness, utility) or time of execution, while chang-
ing its parameter configuration [12]. We examined here a constructive
variant of BCO algorithm and used a simple scheduling problem as an
example.

Sensitivity Analysis of the Bee Colony Optimization Algorithm 71

Problem formulation. Let m be the total number of identical pro-
cessors engaged, and n number of non-preemptive independent tasks.
The considered scheduling problem consists of assigning tasks to pro-
cessors, and determining their starting times. Let T = {1, 2, . . . , n}
be a given set of independent tasks, where each tasks i ∈ T has to
be processed by exactly one among the identical processors from the
set P = {1, 2, . . . ,m}. Each processor can process only one tasks at
the time, and once the tasks has started it will continue to run on the
same processor until completion. Let li be the processing time of task i
(i = 1, 2, . . . , n), which is known and fixed. The goal is to find a schedule
of tasks on processors such that the corresponding completion time of
all tasks is minimized. The mathematical programming formulation of
the problem can be found in [7], together with the implementation of
BCO algorithm that was used in this work. Problem here is referred to
as finding minimal makespan.

Problem instances. Instances used for testing BCO algorithm
represent randomly generated instances with known optimal solutions
[7]. They were introduced in [5] for Multiprocessor Scheduling Prob-
lems with Communications Delays. The test instances are named as
Iogra< n > < m >, where n designates number of tasks, and m denotes
number of processors (graph density was set to zero). Specifically, in the
work of Davidović et al [7] different problem-size instances were used,
i.e., m = {2, 4, 6, 8, 9, 10, 12} and number of tasks ranging from 100 to
500. It was concluded that n does not influence the complexity of the
problem, as confirmed in new studies. Additionally, new results have
shown that the influence of the varying number of processors on the
complexity of the problem is not so straightforward. Structure of these
problem instances is introduced using box-plots and presented in Fig. 2.

4. Results

Evaluation function f1
b = ymax, introduced in the paper of Davidović

et al. [7] depends only on the value of the makespan (ymax), and therefore
is more receptive due to its lower computational costs. Newly proposed
function f2

b = ymax/L
′ depends on two parameters, makespan and the

current sum of computational time of non-scheduled tasks L′. With
introduction of evaluation function f2

b better partial solution was asso-
ciated with larger values (maximality principle), which suggested new
course of how the problem can be solved while maintaining objective
of minimizing makespan. To best describe new approaches, a concept
of methods of evaluations was introduced in order to illustrate different
evaluation of partial solution in the backward pass of BCO. In case of f1

b

72 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 2: Box-plot for m = 12, 16 and 9 instances in relation to the n, where possible
outliers are marked with red crosses.

both maximization and minimization principles can be used, thus yield-
ing two different methods of evaluations. When partial solution with
biggest makespan is evaluated as the best, it’s normalized value is equal
to 1, while the solution with lowest makespan will be appointed with nor-
malized value 0. This method of evaluation is denoted here as max, f1

b .
In case of minimization, partial solution with lowest makespan is marked
as the best among the population of solutions, and its normalized value
corresponds to 1, while maximal makespan will be normalized to value
0. Such method of evaluation is denoted here as min, f1

b . Justification
for incorporating these methods comes from initial set of studies when it
was recognized that the solution with smaller makespan doesn’t neces-
sarily lead to best result and that both minimal and maximal makespan
can be used to quantify good partial solution.

An experiment will be considered as a set of 100 independent runs
of the investigated algorithm. All experiments were conducted for pre-
defined values of parameters. In case of the test instances Iogra100 12/16
the experiments were accomplished on complete parameter’s search space
(Fig. 3). However, for instances where n ≥ 150 the experiments were
conducted on sub-regions of parameters search space. Such restriction
comes from limitations imposed on values of NC as they are dependent
on number of constructive moves in BCO instance. For example, as
the number of tasks increases, maximal number of forward/backward
passes also increases which greatly expands the parameters search sub-
space S ⊆ B × NC. Since experimental analyses should be conducted

Sensitivity Analysis of the Bee Colony Optimization Algorithm 73

for each pair (B,NC) it would be too time consuming to include values
for NC > 100. The choice of values for maximal number of bees was
determined arbitrary. Domains of all BCO parameters are provided in
Table 1.

Table 1: Parameter space for experimental analysis of BCO.

Parameter Domain

method of evaluation min, f1
b ; max, f1

b ; max, f2
b

loyalty function pib, i ∈ [0, .., 9]
B [1, 20]
NC [1, 100]

In each run of an experiment the solution quality was measured within
the stopping criteria defined as maximum number of iterations, while
maximal number of iterations was set to 100. The set of results used to
conduct sensitivity analysis of the BCO parameters is being presented
in Fig. 3.

Figure 3: The influence of parameter NC on the averate solution quality in regard
to the method of evaluation and loyalty function.

Graphics in Fig. 3 illustrate influence of different BCO parameters
on reported average solutions quality, measured by percent error, for
two problem instances of different class and same number of tasks. The

74 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

main goal of this presentation was to visually inspect improvements in
the solution quality when parameter NC changes its value in respect to
structural parameters of BCO. As three methods of evaluations were
used, graphics are arranged to distinguish their influence on each loy-
alty functions when NC ∈ [1, 100]. Specifically, each color on a plot
corresponds to different loyalty function, whereas dashed black line sig-
nifies reference (start) case when NC = 1, B = 20. Reference case is
used to simulate the behaviour of an underlying heuristic. All values
on the graphics correspond to a number of bees that generated best re-
sults. It should be noted that parameter B can take different values
when reporting on the best value. For example, on problem instance
Iogra100 12 and for method of evaluation min, f1

b , presented profiles of
average results are mostly generated when B = 20. On the same in-
stance, the best average result in the case of configuration (max, f1

b ,p9
b)

was achieved when B = 18. Actually the best solutions were generated
when large population of bees was utilized (B ≥ 18).

There are few interesting observations drawn from Fig. 3. First, for
some cases of loyalty functions the influence of methods of evaluation
is not distinguishable, as it is the case for p0,3,7

b . The reason for such
behaviour comes from the fact that these three loyalty functions can
converge fast toward cases where the majority of the partial solutions
will be transfered to the next iteration. It is most likely that the search
is stranded in the local minimum. Therefore, it can be concluded that
loyalty functions p0,3,7

b show robustness to changes of other qualitative
and quantitative BCO parameters, however, without significant improve-
ment in the solution quality when compared with reference case.

Unlike previous group of loyalty functions, some do not converge fast
(p4,5,6,9
b) or not converge at all (p1,2,8

b). Such a property can yield bigger
perturbations in the reported solution quality since the number of partial
solutions that will be used for exploitation, varies throughout an itera-
tion. This variation depends on the utilization of evaluation function (or
method of evaluation) and the structure of problem instance. Although
showing significant fluctuations, those loyalty functions are able to bring
improvements into the solution quality, at least for minimization of f1

b .
Among them, loyalty functions p2

b and p8
b perform the best in respect to

the starting case NC = 1.
In addition, graphics also reveal that inside of these set of loyalty

functions certain groups exhibit similar behaviour. Such groups are:
p1,5,9
b , p2,8

b and p4,6
b . To distinguish the influence of loyalty functions

within a group, further analysis needs to be conducted on the properties
of recruitment process. However, this is beyond the scope of this paper.

Sensitivity Analysis of the Bee Colony Optimization Algorithm 75

Since the results were sensitive to the choice of problem instance, it
was obvious that additional analysis on the whole considered set of prob-
lem instances should be undertaken. Such presentation was then used
to determine a robust set of parameters configurations that would gen-
erate the best results. For this reason a group of graphics presenting
the influence of BCO parameters on different problem instances is given
in Fig. 4. As before, the value for B varies in interval [18, 20] when
generating good quality soutions, with one exception where B = 15 was
reported by function p8

b on problem instance Iogra400 12. The series of
graphics on Fig. 4 consists of Fig. 3 and eight more, in regard to the di-
mension of a problem instance. Once more it should be noted that NC
values do not cover complete parameter space for problems of dimension
n > 100 due to high computational cost. However, we can still notice
similarities between the graphics from different groups, and draw similar
conclusions as in case of n = 100. First paramount conclusion is related
to Class II type of loyalty functions, such as pkb , k ∈ {0, 3, 4, 5, 6, 7, 9}.
From this group, loyalty functions p0

b , p
3
b and p7

b are the most conservative
due to small changes in the reported average solutions over the complete
interval NC ∈ [1, 100], regardless of method of evaluation. Additionally,
they have generated practically insignificant improvements, and as such
do not represent good choice for the BCO method on considered set of
problem instances. Remaining Class II loyalty functions showed high
sensitivity to utilization of method of evaluation and problem instance.
No pattern was able to be identified in respect to NC that would gen-
erate good solutions. Actually, only p5

b and p9
b succeeded to be better

then the starting NC = 1 case but solely on instances Iogra100 12/16,
Iogra150 16, Iogra200 12, Iogra250 16 and Iogra300 12/16. Also, these
two loyalty functions exhibit similar behavior throughout the search.
Loyalty functions of Class I, p1

b , p
2
b , p

8
b , showed very high sensitivity to

changes in quantitative values of B and NC and choice of problem in-
stance. Between these three, the most unsuccessful was p1

b and generated

solutions that resemble those of p5,9
b . Loyalty functions p2

b and p8
b are the

only one that presented certain pattern for values of NC which brings
improvements with respect to the starting case NC = 1.

76 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

F
ig

u
re

4
:

Il
lu

st
ra

ti
n
g

th
e

in
fl
u
en

ce
o
f

m
et

h
o
d

o
f

ev
a
lu

a
ti

o
n
,

lo
y
a
lt

y
fu

n
ct

io
n

a
n
d

p
a
ra

m
et

er
N
C

o
n

th
e

p
er

fo
rm

a
n
ce

o
f

B
C

O
o
n

p
ro

b
le

m
o
f

sc
h
ed

u
li
n
g

in
d
ep

en
d
en

t
ta

sk
s

o
n

id
en

ti
ca

l
p
ro

ce
ss

o
rs

.

Sensitivity Analysis of the Bee Colony Optimization Algorithm 77

5. Conclusion

We have tested the influence of different BCO method’s parameters on
the quality of solutions. In total four BCO parameters were analyzed: B,
NC, method of evaluation and loyalty function. Sensitivity analysis was
conducted by means of visual inspection of series of graphics categorized
by the type of problem instance. Furthermore, each graphic consists of
set of plots that reveal the influence of loyalty function with regard to
method of evaluation, for fixed values of bees and varying number of
parameter NC.

Conducted empirical analysis showed that on provided set of problem
instances in 50% of cases best results were obtained for minimization
of f1

b . Furthermore, good quality was obtained for larger population of
bees, that is B ∈ [18, 20], and when NC ≥ 90. The most successful
loyalty functions were those of Class I, p2

b and p8
b in particular, which

were not (often) used previously in the literature. We can conclude
that on considered benchmark set of problem instances, configurations
{min, f1

b , p
2,8
b , B ∈ [18, 20], NC ≥ 90} were most successful, being the

only one to offer significant improvements in the solution quality in
comparison with reference case. Some additional tests indicate that
successful values of NC can be restricted to [0.9n, n], which has yet to
be confirmed.

The possible directions for future work could be implementing some of
the tuning methods mentioned in [9], on constructive and improvement
versions of BCO.

Acknowledgment: This research has been supported by Serbian Min-
istry of Education, Science and Technological development, Grant. Nos.
174010, 174033, 174008, 044006.

References

[1] T. Bartz-Beielstein and M. Preuß. Experimental analysis of optimization algo-
rithms: Tuning and beyond. In Theory and Principled Methods for the Design
of Metaheuristics, pages 205–245, Springer, 2014.

[2] M. Birattari. Tuning metaheuristics: a machine learning perspective. Studies in
Computational Intelligence, vol. 197. Springer, 2009.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from natural
to artificial systems. Oxford, 1999.

[4] S. Camazine and J. Sneyd. A model of collective nectar source selection by
honey bees: self-organization through simple rules. Journal of Theoretical Biol-
ogy, 149(4):547–571, 1991.

[5] T. Davidović and T. G. Crainic. Benchmark-problem instances for static
scheduling of task graphs with communication delays on homogeneous multi-

78 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

processor systems. Computers & Operations Research, 33(8):2155–2177, 2006.

[6] T. Davidović, D. Ramljak, M. Šelmić, and D. Teodorović. Bee colony optimiza-
tion for the p-center problem. Computers & Operations Research, 38(10):1367–
1376, 2011.

[7] T. Davidović, M. Šelmić, D. Teodorović, and D. Ramljak. Bee colony opti-
mization for scheduling independent tasks to identical processors. Journal of
Heuristics, 18(4):549–569, 2012.

[8] T. Davidović, D. Teodorović, and M. Šelmić. Bee Colony Optimization
Part I: The Algorithm Overview. Yugoslav Journal of Operational Research,
25(1):1367–1376, 2014.

[9] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing evo-
lutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

[10] J. L. Gould. Honey bee recruitment: the dance-language controversy. Science,
189(4204):685–693, 1975.

[11] H. H. Hoos and T. Stützle. Stochastic local search: Foundations & applications.
Elsevier, 2005.

[12] H. H. Hoos and T. Stützle. Empirical analysis of randomized algorithms. In T.
F. Gonzalez (Ed.) Handbook of Approximation Algorithms and Metaheuristics,
Chapter 14, Chapman & Hall/CRC, 2007.

[13] P. Lučić and D. Teodorović. Bee system: modeling combinatorial optimiza-
tion transportation engineering problems by swarm intelligence. Preprints of
the TRISTAN IV, pages 441–445, 2001.

[14] P. Maksimović and T. Davidović. Parameter Calibration in the Bee Colony Op-
timization Algorithm. Proceedings of the 11th Balkan Conference on Operational
Research, pages 263–272, 2013.

[15] Z. Michalewicz and David B. Fogel. How to solve it: modern heuristics. Springer,
2004.

[16] M. Nikolić and D. Teodorović. Empirical study of the Bee Colony Optimization
(BCO) algorithm. Expert Systems with Applications, 40(11):4609–4620, 2013.

[17] D. Teodorović. Bee colony optimization (BCO). Innovations in swarm intelli-
gence, Studies in Computational Intelligence, vol. 248, pages 39–60. Springer,
2009.

[18] K. von Frisch. Decoding the language of the bee. Science, 185(4152):663–668,
1974.

[19] X.-S. Yang, S. Deb, M. Loomes, and M. Karamanoglu. A framework for
self-tuning optimization algorithm. Neural Computing and Applications, 23(7-
8):2051–2057, 2013.

A PARAMETER CONTROL SCHEME FOR
DE INSPIRED BY ACO

Dražen Bajer, Goran Martinović
Faculty of Electrical Engineering, Josip Juraj Strossmayer University of Osijek, Croatia

drazen.bajer@etfos.hr, goran.martinovic@etfos.hr

Abstract Differential evolution requires a prior setting of its parameters. Appro-
priate values are not always easy to determine, even more since they
may change during the optimisation process. This is where parameter
control comes in. Accordingly, a scheme inspired by ant colony optimi-
sation for controlling the crossover-rate and mutation factor is proposed.
Conceptually, artificial ants guided by a pheromone model select param-
eter value pairs for each individual. The pheromone model is steadily
updated in order to reflect the current optimisation state. Promis-
ing results were achieved in the comprehensive experimental analysis.
Nonetheless, much room for potential improvements is available.

Keywords: Ant colony optimisation, Construction graph, Differential evolution, Pa-
rameter control, Pheromone model.

1. Introduction

Differential evolution (DE) [17, 19] is a simple and effective population-
based search and optimisation method. It has been successfully applied
to various global optimisation problems, although originally proposed
for numerical optimisation (see, e.g., [2, 6, 10, 12]). Like other evolu-
tionary algorithms (EAs), DE also requires the setting of its parameters
prior to running and its performance is largely dependent on those set-
tings. Another issue is the fact that different parameter settings may be
suitable for different problems [5, 22, 23]. Accordingly, although various
recommendations for setting the parameters exist (see, e.g., [17, 19]), the
search for adequate parameter values (parameter tuning) that will result
in satisfactory performance on a given problem requires a considerable
effort and usually boils down to a trial and error approach. Furthermore,
“optimal” values of the parameters may change during the optimisation
[8, 23]. This problem cannot be solved by just finding good parame-
ter values a priori, but requires a constant adjustment of those values

79

80 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(parameter control). The need for parameter control in EAs was re-
alised early [5]. Finally, well designed schemes can improve or enhance
performance in terms of robustness and convergence-rate [23].

This paper proposes a parameter control scheme for DE, inspired by
ant colony optimisation (ACO). More particularly, a scheme for control-
ling the parameters representing the crossover-rate and mutation factor.
Two sets of parameter values are provided, and for each individual a
value pair is selected. Conceptually, the selection is made by artificial
ants (each solution is assigned one), while their choices are influenced
by artificial pheromone.

The remainder of the paper is organised as follows. Section 2 briefly
describes DE and ACO, it also provides a short overview of parameter
control in DE. The proposed parameter control scheme is described in
Section 3. In Section 4 the obtained experimental results are reported
and discussed. Finally, the drawn conclusions are stated in Section 5.

2. Preliminaries

2.1 Differential Evolution

Differential evolution is an example of a fairly successful EA for nu-
merical optimisation. Besides that, it is conceptually simple which makes
it attractive to practitioners attempting to solve their problem or prob-
lems using a bio-inspired optimisation algorithm. A brief description of
the canonical or standard DE, as outlined in Algorithm 1, follows.

The population of DE is composed of NP individuals typically called
vectors vj = (vj1, . . . ,v

j
d) ∈ Rd, j = 1, . . . , NP . In each generation/itera-

tion a new population is created by mutation and crossover of individ-
uals, i.e., vectors of the current population. Mutation and crossover
produce a trial vector (offspring)

tji =

vr1i + F · (vr2i − vr3i),

if Ui(0, 1) ≤ CR or i = rj

vji ,

otherwise

, i = 1, . . . , d, (1)

where vr1, vr2 and vr3 are randomly selected vectors from the current
population, and which are selected anew for each target vector vj , such
that j 6= r1 6= r2 6= r3. The parameter F ∈ [0,∞〉 is the scale (mutation)
factor, while CR ∈ [0, 1] is the crossover-rate, Ui(0, 1) is a uniform deviate
in [0, 1], and rj is randomly chosen from the set {1, . . . , d}. After the new
trial vector population of size NP is created, a one-to-one selection takes
place. More specifically, a trial vector tj passes into the next generation

A Parameter Control Scheme for DE Inspired by ACO 81

only if it is equal or better (in terms of the objective function f) than
the corresponding target vector vj .

The described algorithm represents the canonical DE, usually denoted
as DE/rand/1/bin [17, 19]. Many other variants that improve on the
canonical algorithm have been proposed in the literature. A comprehen-
sive review of DE variants can be found in, e.g., [14].

2.2 Parameter control in differential evolution

Essentially, the DE algorithm requires the setting of three parameters.
A multitude of different parameter control mechanisms or schemes for
DE can be found in the literature. Most of those schemes are designed
for controlling a subset of the parameters, most notably CR and F . For
example, a few simple deterministic mechanisms for varying the value
of parameter F during the optimisation process can be found in [3, 9].
Those propose to randomly vary F inside a preset interval, or to linearly
reduce it with the number of performed iterations. Tvrd́ık [21] proposed,
among other, a scheme where for each individual one value pair of F and
CR, from nine available, is chosen probabilistically. The probabilities as-
sociated with the pairs are based on their success. The adaptive scheme
by Yu and Zhang [22] utilizes the quality of population individuals and
their distance from the best-so-far. Based on that data and defined rules
the values of F and CR are appropriately adjusted. In the self-adaptive
scheme proposed by Brest et al. [1], each individual is assigned its own
value of F and CR. The assigned values are regenerated randomly before
mutation and crossover take place with set probabilities. Noman et al.
[15] took a similar approach, where the parameter values assigned to a
individual are regenerated (randomly) only if its offspring is worse than
the current population average. Furthermore, Zhang and Sanderson [23]
proposed a scheme where the values of CR and F assigned to each in-
dividual are generated by Gaussian and Cauchy deviates, respectively.

Algorithm 1 Canonical DE (DE/rand/1/bin)

1: Set NP , CR and F , and initialize population
2: while termination condition not met do
3: for j := 1→ NP do
4: create trail vector tj (Eq. (1))
5: end for
6: for j := 1→ NP do
7: if f(tj) ≤ f(vj) then
8: vj := tj

9: end if
10: end for
11: end while

82 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

In both cases the values are around the means of previously successful
parameter values taken from the whole population. New values are gen-
erated each time before mutation and crossover take place. This scheme
was adopted and refined in other studies, like the ones in [7, 20]. Also,
Zhao et al. [24] recently proposed a scheme that is somewhat similar
but differs in the calculation of the mean/location around which new
values of F and CR are generated. Moreover, new values of CR and F
are generated by, conversely to the approach taken in [23], by Cauchy
and Gaussian deviates, respectively.

2.3 Ant Colony Optimisation

Ant colony optimisation [4, 18] is a meta-heuristic in which a popu-
lation of artificial ants cooperates in the search for solutions to a given
opitmisation problem. The main inspiration comes from the indirect
communication among ants (stigmergy) via the pheromone trails laid
by them as they move. A number of ACO algorithms have been pro-
posed and successfully applied to various optimisation problems [13].

Prior to the application of ACO, the problem at hand must be trans-
formed into the problem of finding the best path on a weighted graph
(construction graph). Solutions are constructed incrementally by the
ants as they traverse the construction graph, whereby each node rep-
resents a solution component. The choices of paths to take are made
probabilistically, and are influenced by artificial pheromone trails and
eventually available heuristic information, which represent the phero-
mone model. The values associated with the pheromone model (graph
weights associated with the arcs or nodes) are dynamically modified.
This is achieved through pheromone deposition by selected ants, and a
preceding pheromone evaporation.

3. Proposed Parameter Control Scheme

Although all DE parameters are interdependent, most of the ap-
proaches from the literature seem to be limited to the control of param-
eters F and CR. This may lead to the conclusion that a well designed
scheme can adjust those values in accordance with the set population size
NP . Hence, the proposed scheme is intended for controlling parameters
F and CR.

In the proposed scheme the sets SF = {Fi = 0.1 · i : i = 1, . . . , p=10}
and SCR = {CRi = 0.1 · (i−1) : i = 1, . . . , q = 11} are given, repre-
senting available values of F and CR, respectively. Good value pairs
(Fk, CRl) ∈ SF × SCR are selected for and assigned to each vector vj

separately. In order to facilitate the selection and to establish good val-

A Parameter Control Scheme for DE Inspired by ACO 83

ues, the problem is modeled as a complete bipartite graph, as illustrated
in Fig. 1. Conceptually, artificial ants assigned to each vector, traverse
the construction graph. Each node is associated with a value from the
set SF , i.e., the set SCR. This way, parameters values are selected. The
selection is probabilistic (roulette wheel selection), and the probability
of selecting some value Fk ∈ SF or CRl ∈ SCR is

pF,k =
τF,k∑p
i=1 τF,i

, pCR,l =
τCR,l∑q
i=1 τCR,i

, k = 1, . . . , p, l = 1, . . . , q, (2)

where τF,k and τCR,l are the artificial pheromone deposited on node (F, k)
and (CR, l), respectively. This represents the pheromone model.

The pheromone values are updated after selecting the new genera-
tion. First, evaporation takes place, followed by the deposition of new
pheromone, that is

τF,k = (1−ρ)τF,k +
∑
j∈J

∆τ jF,k, k = 1, . . . , p,

τCR,l = (1−ρ)τCR,l +
∑
j∈J

∆τ jCR,l, l = 1, . . . , q,
(3)

where ρ ∈ 〈0, 1] is the evaporation-rate (=0.1), J is the set of indices of

trial vectors that made it into the new generation, ∆τ jF,k and ∆τ jCR,l are

the pheromone to be deposited for vector vj on node (F, k) and (CR, l),
respectively. A value of 0.1 is deposited on nodes associated with the
parameter values selected for vj , whereas a value of 0 is deposited on
the remaining nodes. The pheromone values are bounded by τmin = 0.1
and τmax = 1.

4. Experimental Analysis

An experimental analysis was conducted in order to assess the ad-
vantages and shortcomings of the proposed parameter control scheme.
The analysis was conducted on the benchmark functions prepared for
the IEEE CEC2013 [11]. The test suite is composed of 28 functions.

The proposed scheme was incorporated into the canonical DE (de-
noted as DE(PBPS)) for the analysis. A comparison with the canon-
ical DE and the same algorithm incorporating the scheme utilised in
DER9 [21] (denoted as DE(DER9)), the scheme utilised in aDE [15] (de-
noted as DE(aDE)), and the scheme utilised in SLADE [24] (denoted as
DE(SLADE)) was performed. This way, only the impact of the parameter
control schemes was assessed and a fair comparison was enabled.

84 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 1: Construction graph and associated parameter values.

4.1 Experiment Setup

For each used algorithm and problem instance, 51 independent algo-
rithm runs were performed. All algorithms were allowed a maximum of
104·d function evaluations. Termination occurred as soon as the targeted
optimisation error ∆f < 10−8 was reached or the maximum number of
function evaluations (NFEmax) was performed. Further on, the common
population size of NP = 100 (used in, e.g., [1, 7, 20]) was used in all
algorithms, while F = 0.5 and CR = 0.9 (used in, e.g., [1, 15, 16, 22]
along with NP =100) were used in the canonical DE.

4.2 Results and Discussion

The results obtained on the test functions for d= 10 and d= 30 are
reported in Table 1 and 4, respectively. The tables show the mean and
standard deviation (std. dev.). The Wilcoxon signed rank test with a
confidence interval of 95% was performed in order to find if the differ-
ences (in means) are statistically significant. Accordingly, the symbol
(−) indicates a difference in favour of the DE incorporating the pro-
posed scheme (DE(PBPS)) compared to a given algorithm, the opposite
is indicated by the symbol (+), whereas the symbol (≈) indicates an
absence of statistical significance. Furthermore, Tables 2 and 5 show
the success-rate in reaching the targeted optimisation error for the con-
sidered algorithms.

A Parameter Control Scheme for DE Inspired by ACO 85

According to the shown results, the DE(PBPS) algorithm performed in
summary better than the other algorithms used in the comparison. This
is also evident from Fig. 2. It may be noted that best results on uni-
modal functions (f1 ∼ f5) for d=10 were achieved by DE and DE(aDE),
but this was not the case for d= 30. Considering multimodal functions
(f6 ∼ f20), in most cases, the best results were achieved by DE(PBPS).
This is most prominent on problems for d = 10, and slightly less for
d= 30. A similar observation can be made in the case of composition
functions (f21 ∼ f28). Nonetheless, it must be noted that in just a few
cases, the differences in means are very small or virtually nonexistent,
but are statistically significant according to the performed test. Those
are certainly of no practical importance. Figures 3 and 4 show, for
several chosen functions, the average optimisation error ∆f in relation
with the number of performed function evaluations. The figures suggest
a convergence-rate of DE(PBPS) that is greater or close to the best com-
petitor. Interesting to note, on multimodal and composition functions
usually better performance was achieved with a DE algorithm incorpo-
rating one of the used parameter control schemes. There are several
cases in which the canonical DE got trapped early on in a local opti-
mum, unable to escape it. This hints at one of the benefits parameter
control seems to provide.

Another relevant matter are the time complexities of the considered
algorithms since the parameter control schemes introduce a certain com-
putational overhead. Tables 3 and 6 provide insight into how much this
affects the overall execution times and thus the complexity. The shown
data have been obtained according to [11], but on function 13 instead of
14 because most of the algorithms were able to reach the targeted opti-
misation error on 14 however non on function 13. It must be remarked
that the timings have been repeated 25 times in order to accommodate
variations in execution times and that the median values (as per C—
approximated complexity) are reported. As may be noted the largest
complexity is ascribed to DE(DER9) and DE(PBPS). Nonetheless, those
are not substantially larger compared to the other used algorithms in-
corporating parameter control schemes.

Based on the obtained results, it is clear that parameter control can
provide an edge over static parameter settings. This seems to be espe-
cially the case on more complex problems (multimodal and composition
functions, and higher dimensions). In that regard, the algorithms incor-
porating parameter control schemes provided greater convergence-rates
and were principally less susceptible to being trapped in local optima.

86 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 2: Number of functions on which DE(PBPS) achieved a lower or equal mean.

5. Conclusion

This paper proposed a scheme for controlling the crossover-rate and
scale factor of DE. From a conceptual viewpoint, artificial ants select
value pairs from the sets of available parameter values. Their choices
are influenced by a pheromone model which is steadily updated. The
proposed scheme was incorporated into the canonical DE, and the ob-
tained experimental results suggest good performance.

The main drawback of the proposed scheme is certainly the number of
its own parameters. However, they are fixed and need not be changed.
It is reasonable to assume that not all are equally important regrading
performance, and an analysis in that direction may prove fruitful.

Although promising results were achieved, room for potential im-
provements is available. Currently, the same amount of pheromone is
deposited for each successful parameter value pair, but adjusting that
amount according to the achieved improvement may be beneficial. Sim-
ilarly, the other parameters could be dynamically adjusted as in some
successful ACO algorithms. Another direction that should be followed,
is the selection of appropriate DE strategies, along with the parameters.
In that regard, two possibilities are open, the selection of the crossover
and mutation operator separately, or together as one strategy.

A Parameter Control Scheme for DE Inspired by ACO 87

T
a

bl
e

1
:

R
es

u
lt

s
o
n

fu
n
ct

io
n
s

fo
r
d

=
1
0
.

f
D

E
D

E
(
a
D

E
)

D
E
(
D

E
R
9
)

D
E
(
S
L
A
D

E
)

D
E
(
P
B
P
S
)

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

1
0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

7
.6

5
7
E
-0

1
(
−

)
5
.3

0
E
+

0
0

0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

2
0
.0

0
0
E
+

0
0

(
+

)
0
.0

0
E
+

0
0

2
.0

1
2
E
+

0
2

(
−

)
2
.8

5
E
+

0
2

0
.0

0
0
E
+

0
0

(
+

)
0
.0

0
E
+

0
0

7
.1

6
9
E
+

0
5

(
−

)
6
.5

1
E
+

0
5

2
.6

1
4
E
+

0
1

1
.4

2
E
+

0
2

3
1
.5

6
9
E
-0

1
(
≈

)
1
.8

2
E
-0

1
1
.3

5
4
E
+

0
0

(
≈

)
2
.5

8
E
+

0
0

5
.0

3
4
E
+

0
3

(
−

)
1
.0

4
E
+

0
4

8
.6

9
0
E
+

0
7

(
−

)
4
.7

7
E
+

0
8

1
.1

6
5
E
+

0
0

2
.0

6
E
+

0
0

4
0
.0

0
0
E
+

0
0

(
+

)
0
.0

0
E
+

0
0

1
.2

2
7
E
+

0
2

(
−

)
1
.6

0
E
+

0
2

0
.0

0
0
E
+

0
0

(
+

)
0
.0

0
E
+

0
0

5
.1

9
4
E
+

0
3

(
−

)
2
.5

0
E
+

0
3

1
.8

5
7
E
-0

3
1
.2

2
E
-0

2
5

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

3
.7

1
8
E
-0

1
(
−

)
1
.7

3
E
+

0
0

0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

6
1
.9

2
5
E
-0

1
(
+

)
1
.3

7
E
+

0
0

8
.0

8
1
E
+

0
0

(
−

)
3
.7

8
E
+

0
0

3
.8

4
8
E
-0

1
(
+

)
1
.9

2
E
+

0
0

1
.2

4
8
E
+

0
1

(
−

)
1
.2

6
E
+

0
1

5
.3

8
8
E
+

0
0

4
.9

3
E
+

0
0

7
6
.3

5
1
E
-0

4
(
+

)
4
.0

5
E
-0

4
1
.8

2
4
E
-0

3
(
+

)
4
.5

7
E
-0

3
2
.3

2
8
E
+

0
0

(
−

)
1
.8

9
E
+

0
0

6
.3

9
3
E
+

0
0

(
−

)
4
.9

0
E
+

0
0

3
.0

3
5
E
-0

2
7
.0

1
E
-0

2
8

2
.0

3
6
E
+

0
1

(
≈

)
6
.2

2
E
-0

2
2
.0

3
6
E
+

0
1

(
≈

)
7
.5

5
E
-0

2
2
.0

3
6
E
+

0
1

(
≈

)
7
.6

8
E
-0

2
2
.0

3
5
E
+

0
1

(
≈

)
7
.5

7
E
-0

2
2
.0

3
6
E
+

0
1

8
.0

7
E
-0

2
9

1
.6

6
4
E
-0

1
(
+

)
3
.8

4
E
-0

1
4
.0

8
7
E
+

0
0

(
−

)
1
.9

7
E
+

0
0

5
.0

5
5
E
+

0
0

(
−

)
7
.5

5
E
-0

1
2
.3

6
0
E
+

0
0

(
−

)
1
.1

9
E
+

0
0

8
.2

0
3
E
-0

1
8
.0

4
E
-0

1
1
0

3
.8

0
3
E
-0

1
(
−

)
1
.4

0
E
-0

1
9
.6

4
1
E
-0

2
(
−

)
7
.5

3
E
-0

2
1
.4

8
5
E
-0

1
(
−

)
3
.3

3
E
-0

2
7
.8

9
4
E
-0

1
(
−

)
1
.7

5
E
+

0
0

4
.3

3
7
E
-0

2
2
.6

2
E
-0

2
1
1

1
.7

0
1
E
+

0
1

(
−

)
4
.1

2
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

1
.9

5
1
E
-0

2
(
≈

)
1
.3

9
E
-0

1
0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

1
2

2
.5

4
4
E
+

0
1

(
−

)
4
.1

1
E
+

0
0

1
.5

0
7
E
+

0
1

(
−

)
3
.4

7
E
+

0
0

1
.4

3
0
E
+

0
1

(
−

)
2
.3

1
E
+

0
0

7
.8

6
3
E
+

0
0

(
−

)
2
.7

0
E
+

0
0

6
.2

7
6
E
+

0
0

2
.1

7
E
+

0
0

1
3

2
.5

6
1
E
+

0
1

(
−

)
5
.0

5
E
+

0
0

1
.6

0
1
E
+

0
1

(
−

)
4
.8

7
E
+

0
0

1
.4

7
6
E
+

0
1

(
−

)
3
.9

9
E
+

0
0

1
.3

6
8
E
+

0
1

(
−

)
6
.8

3
E
+

0
0

8
.3

3
4
E
+

0
0

4
.3

0
E
+

0
0

1
4

1
.0

2
4
E
+

0
3

(
−

)
1
.4

1
E
+

0
2

7
.1

9
4
E
-0

1
(
−

)
6
.4

7
E
-0

1
2
.4

4
9
E
-0

3
(
≈

)
1
.2

2
E
-0

2
1
.1

0
3
E
-0

2
(
−

)
2
.7

1
E
-0

2
0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

1
5

1
.3

0
5
E
+

0
3

(
−

)
1
.4

7
E
+

0
2

1
.1

0
4
E
+

0
3

(
−

)
1
.6

9
E
+

0
2

9
.2

3
1
E
+

0
2

(
+

)
1
.4

3
E
+

0
2

4
.8

4
1
E
+

0
2

(
+

)
1
.7

4
E
+

0
2

1
.0

1
9
E
+

0
3

1
.4

4
E
+

0
2

1
6

1
.0

1
0
E
+

0
0

(
+

)
1
.8

1
E
-0

1
1
.1

0
9
E
+

0
0

(
≈

)
2
.0

7
E
-0

1
9
.8

6
5
E
-0

1
(
+

)
1
.6

8
E
-0

1
8
.6

1
2
E
-0

1
(
+

)
1
.7

5
E
-0

1
1
.1

1
4
E
+

0
0

1
.9

6
E
-0

1
1
7

2
.9

2
4
E
+

0
1

(
−

)
3
.1

0
E
+

0
0

1
.0

4
8
E
+

0
1

(
−

)
1
.5

0
E
-0

1
1
.0

1
2
E
+

0
1

(
≈

)
0
.0

0
E
+

0
0

1
.0

1
4
E
+

0
1

(
−

)
6
.5

9
E
-0

2
1
.0

1
2
E
+

0
1

0
.0

0
E
+

0
0

1
8

3
.6

1
1
E
+

0
1

(
−

)
4
.2

8
E
+

0
0

3
.4

2
6
E
+

0
1

(
−

)
3
.6

0
E
+

0
0

3
.4

2
3
E
+

0
1

(
−

)
3
.8

0
E
+

0
0

2
.0

9
1
E
+

0
1

(
+

)
3
.7

8
E
+

0
0

3
.0

8
7
E
+

0
1

3
.0

7
E
+

0
0

1
9

2
.0

0
9
E
+

0
0

(
−

)
3
.2

9
E
-0

1
5
.1

0
3
E
-0

1
(
−

)
7
.9

4
E
-0

2
4
.2

0
3
E
-0

1
(
≈

)
5
.6

4
E
-0

2
1
.7

9
3
E
-0

1
(
+

)
1
.1

3
E
-0

1
4
.3

5
3
E
-0

1
6
.1

4
E
-0

2
2
0

2
.5

1
9
E
+

0
0

(
+

)
2
.4

7
E
-0

1
2
.8

3
6
E
+

0
0

(
−

)
2
.2

4
E
-0

1
2
.8

2
6
E
+

0
0

(
−

)
2
.4

2
E
-0

1
2
.5

9
2
E
+

0
0

(
≈

)
4
.0

4
E
-0

1
2
.6

3
8
E
+

0
0

3
.0

5
E
-0

1
2
1

3
.6

8
8
E
+

0
2

(
≈

)
7
.3

5
E
+

0
1

3
.5

9
0
E
+

0
2

(
≈

)
8
.5

3
E
+

0
1

3
.0

8
0
E
+

0
2

(
+

)
1
.0

9
E
+

0
2

3
.7

9
5
E
+

0
2

(
≈

)
5
.9

6
E
+

0
1

3
.7

0
8
E
+

0
2

7
.5

7
E
+

0
1

2
2

1
.0

4
1
E
+

0
3

(
−

)
2
.0

6
E
+

0
2

4
.7

9
7
E
+

0
1

(
−

)
2
.7

9
E
+

0
1

2
.1

2
0
E
+

0
1

(
−

)
6
.9

1
E
+

0
0

1
.2

0
1
E
+

0
1

(
+

)
8
.7

1
E
+

0
0

1
.5

8
6
E
+

0
1

9
.9

8
E
+

0
0

2
3

1
.1

9
8
E
+

0
3

(
−

)
1
.4

7
E
+

0
2

1
.1

4
6
E
+

0
3

(
−

)
2
.0

0
E
+

0
2

9
.7

8
9
E
+

0
2

(
≈

)
1
.8

5
E
+

0
2

5
.9

8
5
E
+

0
2

(
+

)
2
.0

7
E
+

0
2

9
.7

1
3
E
+

0
2

1
.9

0
E
+

0
2

2
4

1
.9

6
6
E
+

0
2

(
≈

)
1
.8

3
E
+

0
1

1
.8

9
5
E
+

0
2

(
≈

)
2
.5

4
E
+

0
1

1
.9

7
1
E
+

0
2

(
−

)
2
.6

1
E
+

0
1

1
.8

3
8
E
+

0
2

(
≈

)
3
.6

1
E
+

0
1

1
.9

1
1
E
+

0
2

2
.8

6
E
+

0
1

2
5

2
.0

0
5
E
+

0
2

(
≈

)
1
.4

8
E
+

0
0

1
.9

6
3
E
+

0
2

(
≈

)
1
.7

2
E
+

0
1

1
.9

8
2
E
+

0
2

(
−

)
2
.5

3
E
+

0
1

1
.9

8
1
E
+

0
2

(
−

)
1
.8

8
E
+

0
1

1
.9

5
5
E
+

0
2

2
.0

6
E
+

0
1

2
6

1
.3

6
2
E
+

0
2

(
−

)
2
.8

3
E
+

0
1

1
.2

2
3
E
+

0
2

(
−

)
9
.8

8
E
+

0
0

1
.1

5
6
E
+

0
2

(
−

)
4
.3

8
E
+

0
0

1
.1

6
2
E
+

0
2

(
−

)
1
.9

0
E
+

0
1

1
.0

7
3
E
+

0
2

5
.5

8
E
+

0
0

2
7

3
.0

7
8
E
+

0
2

(
−

)
2
.7

2
E
+

0
1

3
.0

0
0
E
+

0
2

(
≈

)
2
.6

2
E
-0

3
3
.2

7
4
E
+

0
2

(
−

)
4
.5

1
E
+

0
1

3
.1

7
0
E
+

0
2

(
−

)
3
.4

4
E
+

0
1

3
.0

2
0
E
+

0
2

1
.4

0
E
+

0
1

2
8

2
.8

8
2
E
+

0
2

(
≈

)
4
.7

5
E
+

0
1

2
.7

6
5
E
+

0
2

(
≈

)
6
.5

1
E
+

0
1

2
.5

6
9
E
+

0
2

(
≈

)
8
.3

1
E
+

0
1

3
.0

8
2
E
+

0
2

(
−

)
6
.7

6
E
+

0
1

2
.8

0
4
E
+

0
2

6
.0

1
E
+

0
1

—
1
3

1
6

1
3

1
7

(
−

)
—

8
1
1

9
5

(
≈

)
—

7
1

6
6

(
+

)

T
a

bl
e

2
:

S
u
cc

es
s-

ra
te

o
n

fu
n
ct

io
n
s

fo
r
d

=
1
0
.

f
1

2
3

4
5

6
7

∼
9

1
0

1
1

1
2
,
1
3

1
4

1
5

∼
2
1

2
2

2
3

∼
2
8

D
E

1
0
0
%

1
0
0
%

2
%

1
0
0
%

1
0
0
%

8
4
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

0
%

D
E
(
a
D

E
)

1
0
0
%

0
%

0
%

0
%

1
0
0
%

0
%

0
%

2
%

1
0
0
%

0
%

2
%

0
%

0
%

0
%

D
E
(
D

E
R
9
)

1
0
0
%

1
0
0
%

0
%

1
0
0
%

1
0
0
%

9
2
%

0
%

0
%

1
0
0
%

0
%

9
6
%

0
%

0
%

0
%

D
E
(
S
L
A
D

E
)

7
6
%

0
%

0
%

0
%

8
0
%

0
%

0
%

0
%

9
8
%

0
%

7
3
%

0
%

2
%

0
%

D
E
(
P
B
P
S
)

1
0
0
%

8
%

0
%

8
%

1
0
0
%

8
%

0
%

6
%

1
0
0
%

0
%

1
0
0
%

0
%

0
%

0
%

88 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 3: Convergence behaviour on several chosen functions for d=10.

Table 3: Complexity in terms of execution times on function 13 for d=10.

Timing T 2 T1 T0 C = (T 2 − T1)/T0

DE 0.7086 s 0.5930 s 0.0699 s 1.6526
DE(aDE) 0.7198 s 0.5914 s 0.0699 s 1.8381
DE(DER9) 0.7388 s 0.5893 s 0.0698 s 2.1399
DE(SLADE) 0.7466 s 0.5974 s 0.0701 s 2.1296
DE(PBPS) 0.7441 s 0.5966 s 0.0694 s 2.1262

A Parameter Control Scheme for DE Inspired by ACO 89

T
a

bl
e

4
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

fu
n
ct

io
n
s

fo
r
d

=
3
0
.

f
D

E
D

E
(
a
D

E
)

D
E
(
D

E
R
9
)

D
E
(
S
L
A
D

E
)

D
E
(
P
B
P
S
)

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

m
e
a
n

s
t
d
.

d
e
v
.

1
0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

2
.7

4
2
E
+

0
1

(
−

)
1
.1

9
E
+

0
2

0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

2
4
.3

0
6
E
+

0
5

(
−

)
3
.3

1
E
+

0
5

1
.2

4
1
E
+

0
6

(
−

)
1
.0

6
E
+

0
6

7
.8

1
1
E
+

0
4

(
+

)
4
.5

3
E
+

0
4

2
.1

3
8
E
+

0
7

(
−

)
1
.2

9
E
+

0
7

2
.1

4
8
E
+

0
5

1
.4

5
E
+

0
5

3
1
.1

9
3
E
+

0
0

(
+

)
5
.0

7
E
+

0
0

1
.3

6
5
E
+

0
6

(
+

)
2
.0

0
E
+

0
6

7
.3

8
2
E
+

0
7

(
−

)
7
.1

8
E
+

0
7

3
.7

2
1
E
+

0
9

(
−

)
7
.5

4
E
+

0
9

2
.7

7
3
E
+

0
6

3
.4

2
E
+

0
6

4
9
.0

1
4
E
+

0
2

(
−

)
4
.4

5
E
+

0
2

1
.0

2
3
E
+

0
4

(
−

)
5
.4

9
E
+

0
3

9
.0

5
6
E
+

0
0

(
≈

)
1
.1

5
E
+

0
1

3
.8

0
0
E
+

0
4

(
−

)
1
.0

5
E
+

0
4

1
.4

9
5
E
+

0
1

2
.3

5
E
+

0
1

5
0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

8
.6

5
6
E
+

0
1

(
−

)
2
.4

7
E
+

0
2

0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

6
1
.0

3
0
E
+

0
1

(
+

)
6
.1

1
E
+

0
0

2
.0

3
0
E
+

0
1

(
≈

)
1
.6

7
E
+

0
1

9
.7

1
6
E
+

0
0

(
+

)
5
.6

2
E
+

0
0

8
.1

1
5
E
+

0
1

(
−

)
4
.2

4
E
+

0
1

1
.6

7
8
E
+

0
1

8
.4

5
E
+

0
0

7
8
.1

0
7
E
-0

2
(
+

)
1
.2

8
E
-0

1
1
.3

7
2
E
+

0
0

(
+

)
1
.0

7
E
+

0
0

5
.4

0
4
E
+

0
1

(
−

)
9
.6

6
E
+

0
0

5
.9

4
7
E
+

0
1

(
−

)
2
.2

0
E
+

0
1

1
.6

5
7
E
+

0
1

8
.2

6
E
+

0
0

8
2
.0

9
5
E
+

0
1

(
−

)
4
.5

9
E
-0

2
2
.0

9
5
E
+

0
1

(
≈

)
4
.1

3
E
-0

2
2
.0

9
4
E
+

0
1

(
≈

)
5
.6

1
E
-0

2
2
.0

9
4
E
+

0
1

(
≈

)
5
.2

0
E
-0

2
2
.0

9
5
E
+

0
1

5
.5

0
E
-0

2
9

2
.4

1
9
E
+

0
1

(
−

)
1
.4

8
E
+

0
1

3
.1

0
7
E
+

0
1

(
−

)
2
.2

3
E
+

0
0

2
.9

0
4
E
+

0
1

(
−

)
1
.6

1
E
+

0
0

2
.1

5
5
E
+

0
1

(
−

)
3
.4

5
E
+

0
0

1
.4

8
4
E
+

0
1

4
.1

8
E
+

0
0

1
0

5
.9

9
2
E
-0

3
(
+

)
5
.4

3
E
-0

3
9
.2

0
4
E
-0

2
(
≈

)
5
.2

6
E
-0

2
6
.1

4
8
E
-0

3
(
+

)
7
.1

0
E
-0

3
5
.6

0
4
E
+

0
1

(
−

)
1
.0

1
E
+

0
2

8
.8

1
8
E
-0

2
4
.3

4
E
-0

2
1
1

1
.3

0
0
E
+

0
2

(
−

)
2
.4

9
E
+

0
1

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

0
.0

0
0
E
+

0
0

(
≈

)
0
.0

0
E
+

0
0

4
.6

7
9
E
+

0
0

(
−

)
2
.4

9
E
+

0
1

0
.0

0
0
E
+

0
0

0
.0

0
E
+

0
0

1
2

1
.8

1
9
E
+

0
2

(
−

)
8
.7

5
E
+

0
0

8
.6

8
2
E
+

0
1

(
−

)
1
.8

8
E
+

0
1

1
.0

9
5
E
+

0
2

(
−

)
1
.7

6
E
+

0
1

7
.6

6
6
E
+

0
1

(
−

)
2
.9

7
E
+

0
1

3
.9

6
5
E
+

0
1

1
.3

0
E
+

0
1

1
3

1
.8

1
9
E
+

0
2

(
−

)
9
.6

6
E
+

0
0

1
.3

3
0
E
+

0
2

(
−

)
2
.2

4
E
+

0
1

1
.4

0
6
E
+

0
2

(
−

)
1
.8

4
E
+

0
1

1
.2

3
9
E
+

0
2

(
−

)
2
.6

3
E
+

0
1

7
.4

1
1
E
+

0
1

2
.0

1
E
+

0
1

1
4

6
.3

2
3
E
+

0
3

(
−

)
4
.6

5
E
+

0
2

1
.2

3
6
E
+

0
2

(
−

)
7
.6

0
E
+

0
1

5
.3

0
7
E
-0

3
(
≈

)
1
.0

9
E
-0

2
1
.0

3
2
E
+

0
0

(
−

)
4
.8

5
E
+

0
0

3
.6

7
4
E
-0

3
9
.0

3
E
-0

3
1
5

7
.1

0
6
E
+

0
3

(
−

)
2
.7

0
E
+

0
2

5
.6

1
0
E
+

0
3

(
≈

)
5
.5

0
E
+

0
2

4
.7

3
0
E
+

0
3

(
+

)
2
.9

5
E
+

0
2

3
.2

7
7
E
+

0
3

(
+

)
5
.3

4
E
+

0
2

5
.5

0
9
E
+

0
3

3
.2

4
E
+

0
2

1
6

2
.4

7
4
E
+

0
0

(
≈

)
2
.5

3
E
-0

1
2
.3

7
0
E
+

0
0

(
≈

)
3
.5

4
E
-0

1
2
.0

3
2
E
+

0
0

(
+

)
2
.8

3
E
-0

1
1
.5

5
5
E
+

0
0

(
+

)
2
.7

4
E
-0

1
2
.3

5
6
E
+

0
0

2
.7

9
E
-0

1
1
7

1
.8

2
6
E
+

0
2

(
−

)
1
.8

1
E
+

0
1

3
.7

0
1
E
+

0
1

(
−

)
3
.7

2
E
+

0
0

3
.0

4
3
E
+

0
1

(
≈

)
0
.0

0
E
+

0
0

3
.0

7
7
E
+

0
1

(
−

)
7
.8

9
E
-0

1
3
.0

4
3
E
+

0
1

1
.4

0
E
-0

6
1
8

2
.1

1
2
E
+

0
2

(
−

)
9
.7

4
E
+

0
0

1
.8

6
3
E
+

0
2

(
−

)
1
.7

4
E
+

0
1

1
.9

7
1
E
+

0
2

(
−

)
1
.4

4
E
+

0
1

1
.0

4
1
E
+

0
2

(
+

)
1
.5

6
E
+

0
1

1
.6

9
2
E
+

0
2

1
.1

3
E
+

0
1

1
9

1
.5

1
0
E
+

0
1

(
−

)
8
.9

4
E
-0

1
2
.2

2
4
E
+

0
0

(
−

)
3
.6

7
E
-0

1
1
.8

1
9
E
+

0
0

(
≈

)
1
.6

1
E
-0

1
4
.1

0
3
E
+

0
0

(
−

)
1
.9

3
E
+

0
1

1
.8

0
9
E
+

0
0

1
.3

7
E
-0

1
2
0

1
.2

0
9
E
+

0
1

(
−

)
2
.6

5
E
-0

1
1
.2

0
7
E
+

0
1

(
−

)
4
.0

6
E
-0

1
1
.2

0
0
E
+

0
1

(
−

)
2
.7

0
E
-0

1
1
.0

9
9
E
+

0
1

(
+

)
8
.0

5
E
-0

1
1
.1

6
7
E
+

0
1

3
.6

3
E
-0

1
2
1

3
.2

2
9
E
+

0
2

(
≈

)
7
.8

9
E
+

0
1

2
.8

7
5
E
+

0
2

(
≈

)
7
.2

9
E
+

0
1

3
.5

2
5
E
+

0
2

(
−

)
1
.0

4
E
+

0
2

4
.9

6
5
E
+

0
2

(
−

)
3
.6

4
E
+

0
2

2
.9

8
7
E
+

0
2

8
.4

4
E
+

0
1

2
2

6
.2

5
1
E
+

0
3

(
−

)
5
.7

9
E
+

0
2

2
.7

2
0
E
+

0
2

(
−

)
9
.5

0
E
+

0
1

8
.0

8
5
E
+

0
1

(
+

)
2
.8

2
E
+

0
1

1
.0

7
5
E
+

0
2

(
+

)
2
.4

2
E
+

0
1

1
.1

6
0
E
+

0
2

2
.0

3
E
+

0
1

2
3

7
.0

8
8
E
+

0
3

(
−

)
2
.8

2
E
+

0
2

6
.2

0
5
E
+

0
3

(
−

)
5
.0

7
E
+

0
2

5
.1

5
8
E
+

0
3

(
+

)
3
.6

0
E
+

0
2

3
.7

7
5
E
+

0
3

(
+

)
6
.7

6
E
+

0
2

5
.8

0
2
E
+

0
3

4
.4

6
E
+

0
2

2
4

2
.0

0
0
E
+

0
2

(
+

)
1
.9

8
E
-0

2
2
.0

4
8
E
+

0
2

(
+

)
4
.8

8
E
+

0
0

2
.6

8
7
E
+

0
2

(
−

)
6
.0

2
E
+

0
0

2
.4

6
9
E
+

0
2

(
−

)
1
.4

0
E
+

0
1

2
.1

7
9
E
+

0
2

7
.4

8
E
+

0
0

2
5

2
.4

0
0
E
+

0
2

(
+

)
4
.2

8
E
+

0
0

2
.4

9
2
E
+

0
2

(
+

)
1
.1

1
E
+

0
1

2
.9

1
0
E
+

0
2

(
−

)
5
.0

2
E
+

0
0

2
.7

5
0
E
+

0
2

(
−

)
1
.2

0
E
+

0
1

2
.5

3
7
E
+

0
2

5
.6

3
E
+

0
0

2
6

2
.0

3
9
E
+

0
2

(
−

)
1
.9

6
E
+

0
1

2
.0

2
1
E
+

0
2

(
−

)
1
.4

5
E
+

0
1

2
.0

0
0
E
+

0
2

(
+

)
2
.9

2
E
-0

3
2
.0

1
8
E
+

0
2

(
−

)
2
.8

4
E
+

0
0

2
.0

0
0
E
+

0
2

6
.7

6
E
-0

3
2
7

3
.0

4
9
E
+

0
2

(
+

)
2
.9

2
E
+

0
1

3
.7

5
3
E
+

0
2

(
+

)
9
.8

0
E
+

0
1

1
.0

4
3
E
+

0
3

(
−

)
3
.8

2
E
+

0
1

8
.6

3
4
E
+

0
2

(
−

)
9
.9

5
E
+

0
1

5
.5

4
3
E
+

0
2

1
.2

6
E
+

0
2

2
8

3
.0

0
0
E
+

0
2

(
≈

)
0
.0

0
E
+

0
0

3
.0

0
0
E
+

0
2

(
≈

)
0
.0

0
E
+

0
0

3
.0

0
0
E
+

0
2

(
≈

)
0
.0

0
E
+

0
0

7
.6

3
4
E
+

0
2

(
−

)
6
.0

0
E
+

0
2

3
.0

0
0
E
+

0
2

0
.0

0
E
+

0
0

—
1
6

1
3

1
1

2
1

(
−

)
—

5
1
0

9
1

(
≈

)
—

7
5

8
6

(
+

)

T
a

bl
e

5
:

S
u
cc

es
s-

ra
te

o
n

fu
n
ct

io
n
s

fo
r
d

=
3
0
.

f
1

2
∼

4
5

6
∼

9
1
0

1
1

1
2
,
1
3

1
4

1
5

∼
2
8

D
E

1
0
0
%

0
%

1
0
0
%

0
%

4
1
%

0
%

0
%

0
%

0
%

D
E
(
a
D

E
)

1
0
0
%

0
%

1
0
0
%

0
%

0
%

1
0
0
%

0
%

0
%

0
%

D
E
(
D

E
R
9
)

1
0
0
%

0
%

1
0
0
%

0
%

2
%

1
0
0
%

0
%

7
8
%

0
%

D
E
(
S
L
A
D

E
)

3
7
%

0
%

6
%

0
0
%

3
7
%

0
%

2
%

0
%

D
E
(
P
B
P
S
)

1
0
0
%

0
%

1
0
0
%

0
%

0
%

1
0
0
%

0
%

8
4
%

0
%

90 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4: Convergence behaviour on several chosen functions for d=30.

Table 6: Complexity in terms of execution times on function 13 for d=30.

Timing T 2 T1 T0 C = (T 2 − T1)/T0

DE 2.8882 s 2.5804 s 0.0700 s 4.3995
DE(aDE) 2.9027 s 2.5717 s 0.0699 s 4.7350
DE(DER9) 2.9882 s 2.5931 s 0.0715 s 5.5254
DE(SLADE) 2.9089 s 2.5887 s 0.0703 s 4.5523
DE(PBPS) 2.9598 s 2.5876 s 0.0705 s 5.2804

A Parameter Control Scheme for DE Inspired by ACO 91

References

[1] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: A comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10:646–657, 2006.

[2] L. Coelho, T. Bora, and L. Lebensztajn. A chaotic approach of differential evo-
lution optimization applied to loudspeaker design problem. IEEE Transactions
on Magnetics, 48:751–754, 2012.

[3] S. Das, A. Konar, and U. K. Chakraborty. Two improved differential evolution
schemes for faster global search. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 991–998, 2005.

[4] M. Dorigo and T. Stützle. Ant colony optimization. Bradford Company, 2004.

[5] A. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3:124–141, 1999.

[6] A. Glotić and A. Zamuda. Short-term combined economic and emission hy-
drothermal optimization by surrogate differential evolution. Applied Energy,
141:42–56, 2015.

[7] S. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan. An adaptive differen-
tial evolution algorithm with novel mutation and crossover strategies for global
numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 42:482–500, 2012.

[8] G. Karafotias, M. Hoogendoorn, and A. Eiben. Parameter control in evolu-
tionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary
Computation, 19:167–187, 2015.

[9] H.-K. Kim, J.-K. Chong, K.-Y. Park, and D. Lowther. Differential evolution
strategy for constrained global optimization and application to practical engi-
neering problems. IEEE Transactions on Magnetics, 43:1565–1568, 2007.

[10] P. Korošec and J. Šilc. Applications of the differential ant-stigmergy algorithm
on real-world continuous optimization problems. In W. P. dos Santos (Ed.) Evo-
lutionary Computation, InTech, 2009.

[11] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernández-Dı́az. Problem
definitions and evaluation criteria for the CEC 2013 special session on real-
parameter optimization. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou, China and Nanyang Technological University, Singapore,
Technical Report, 201212, 2013.

[12] G. Martinović, D. Bajer, and B. Zorić. A differential evolution approach to di-
mensionality reduction for classification needs. International Journal of Applied
Mathmatics and Computer Science, 24:111–122, 2014.

[13] B. C. Moahn and R. Baskaran. A survey: Ant Colony Optimization based recent
research and implementation on several engineering domain. Expert Systems
with Applications, 39:4618–4627, 2012.

[14] F. Neri and V. Tirronen. Recent Advances in Differential Evolution: A Survey
and Experimental Analysis. Artificial Intelligence Review, 33:61–106, 2010.

[15] N. Noman, D. Bollegala, and H. Iba. An adaptive differential evolution algo-
rithm. Proceedings of the IEEE Congress on Evolutionary Computation (CEC),
pages 2229–2236, 2011.

92 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[16] R. C. Pedrosa Silva, R. A. Lopes, and F. G. Guimarães. Self-adaptive muta-
tion in the differential evolution. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 1939–1946, 2011.

[17] K. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer-Verlag, New York, 2005.

[18] K. Socha and M. Dorigo. Ant colony optimization for continuous domains. Eu-
rpean Journal of Operation Research, 185:1155–1173, 2008.

[19] R. Storn and K. Price. Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimzation,
11:341–359, 1997.

[20] R. Tanabe and A. Fukunaga. Success-history based parameter adaptation for
Differential Evolution. Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC), pages 71–78, 2013.

[21] J. Tvrd́ık. Competitive Differential Evolution. Proceedings of the International
Conference on Soft Computing MENDEL, pages 7–12, 2006.

[22] W.-J. Yu and J. Zhang. Adaptive differential evolution with optimization state
estimation. Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO), pages 1285–1292, 2012.

[23] J. Zhang and A. C. Sanderson. JADE: Adaptive differential evolution with
optional external archive. IEEE Transasctions of Evolutionary Computation,
13:945–958, 2009.

[24] Z. Zhao, J. Yang, Z. Hu, and H. Che. A differential evolution algorithm with self-
adaptive strategy and control parameters based on symmetric Latin hypercube
design for unconstrained optimization problems. European Journal of Operation
Research, 250:30–45, 2016.

EXPERIMENTAL ALGORITHMICS
APPLIED TO ON-LINE MACHINE
LEARNING

Thomas Bartz-Beielstein
SPOTSeven Lab, TH Köln, Gummersbach, Germany

thomas.bartz-beielstein@th-koeln.de

Abstract The application of methods from experimental algorithmics to on-line or
streaming data is referred to as experimental algorithmics for streaming
data (EADS). This paper proposes an experimental methodology for
on-line machine learning algorithms, i.e., for algorithms that work on
data that are available in a sequential order. It is demonstrated how
established tools from experimental algorithmics can be applied in the
on-line or streaming data setting. The massive on-line analysis frame-
work is used to perform the experiments. Benefits of a well-defined
report structure are discussed.

Keywords: Experimental algorithmics, Massive on-line analysis, On-line machine
learning, Streaming data.

1. Introduction: Experimental Algorithmics

This article is devoted to the question “Why is an experimental method-
ology necessary for the analysis of on-line algorithms?” We will mention
two reasons to motivate the approach presented in this paper. First,
without a sound methodology, there is the danger of generating arbi-
trary results, i.e., results that happened by chance; results that are not
reproducible; results that depend on the seed of a random number gen-
erator; results that are statistically questionable; results that are sta-
tistically significant, but scientifically meaningless; results that are not
generalizable; etc. Second, experiments are the cornerstone of the sci-
entific method. Even the discovery of scientific highly relevant results
is of no use, if they remain unpublished or if they are published in an
incomprehensible manner. Discussion is the key ingredient of modern
science.

93

94 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Experimental algorithmics (EA) uses empirical methods to analyze
and understand the behavior of algorithms. Experimental algorithmics
evolved over the last three decades and provides tools for sound experi-
mental analysis of algorithms. Main contributions, which influenced the
field of EA are McGeoch’s thesis “Experimental Analysis of Algorithms”
[19], the experimental evaluation of simulated annealing by Johnson et
al. [18], and the article about designing and reporting computational
experiments with heuristic methods from Barr et al. [1]. And, Hooker’s
papers with the striking titles “Needed: An empirical science of algo-
rithms” and “Testing Heuristics: We Have It All Wrong” [15, 16], which
really struck a nerve. Theoreticians recognized that their methods can
benefit from experimental analysis and the discipline of algorithm engi-
neering was established [8]. Parameter tuning methods gained more and
more attention in the machine learning (ML) and computational intelli-
gence (CI) communities. Eiben and Jelasity’s “Critical Note on Experi-
mental Research Methodology in EC” [11] enforced the discussion. This
increased awareness resulted in several tutorials, workshops, and special
sessions devoted to experimental research in evolutionary computation.
Results from these efforts are summarized in the collection “Experimen-
tal Methods for the Analysis of Optimization Algorithms” [2].

This overview is by far not complete, and several important publica-
tions are missing. However, it illustrates the development of an emerg-
ing field and its importance. The standard approach described so far
focuses on relatively small, static data sets that can be analyzed off-line.
We propose an extension of EA to the field of stream data, which will
be referred to as experimental algorithmics for streaming data (EASD).
This extension is motivated by the enormous growth of data in the last
decades. Machine learning, i.e., automatically extract information from
data, was considered the solution to the immense increase of data. The
field of data mining evolved to handle data that does not fit into working
memory: Data mining became popular, because it provides tools for very
large, but static data sets. Models cannot be updated when new data
arrives. Nowadays, data are collected in nearly every device—massive,
data streams are ubiquitous. Especially, industrial production processes
generate huge and dynamic data. This leads to the development of the
data stream paradigm. Bifet et al. [5] describe core assumptions of data
stream processing as follows:

(S-1) The training examples can be briefly inspected a single time only.

(S-2) The data arrive in a high speed stream.

(S-3) Because the memory is limited, data must be discarded to process
the next examples.

Experimental Algorithmics Applied to On-Line Machine Learning 95

(S-4) The order of data arrival is unknown.

(S-5) The model is updated incrementally, i.e., directly when a new
data arrives.

(S-6) Anytime property: The model can be applied at any point be-
tween training examples.

(S-7) Last but not least: theory is nice, but empirical evidence of algo-
rithm performance is necessary.

We will develop an experimental methodology for on-line machine
learning, i.e., for situations in which data becomes available in a sequen-
tial order. The data is used to update the predictor for future data at
each step. On-line learning differs from traditional batch learning tech-
niques, which generate the predictor by learning on the entire training
data set at once. The terms “on-line” and “data stream” will be used
synonymously in the following.

This paper is structured as follows. Section 2 compares the traditional
batch setting with the stream data setting. How to assess model perfor-
mance is described in Section 3. A simple experiment, which exemplifies
the EASD approach, is presented in Sec. 4. This article concludes with
a summary in Section 5.

2. Batch Versus Stream Classification

By comparing the traditional batch and the stream classification, the
following observations can be made: Both classification procedures par-
tition the data into test and training set. In contrast to batch classi-
fication, stream classification is a cyclic process, which uses nonperma-
nent data. The elementary steps used in both settings are illustrated
in Fig. 1. The figure is based on the data stream classification cycle in
Bifet et al. [6].

The batch classification cycle processes data as follows:

(CB-1) Input, i.e., the algorithm receives the data.

(CB-2) Learn, i.e., the algorithm processes the data and generates its
own data structures (builds a model).

(CB-3) Predict, i.e., the algorithm predicts the class of unseen data
using the test set.

Data availability differs in the stream classification cycle. Additional
restrictions have to be considered [6]. Freely adapted from Bifet et al. [6],
the data stream processing can be described as follows:

96 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Input
Requirement R-1

Learning,
Training

Requirements
R-2 and R-3

Model
Requirement R-4

Training
data

Test
data Predictions

Learning,
Training

Model

Training
data

Test
data

Predictions

Input

Figure 1: Left: The batch classification cycle. Right: The stream classification cycle.
Dotted lines represent nonpermanent data. Both classification cycles partition the
data into test and training set. To keep the illustration simple, this split is not
shown.

(CS-1) Input, i.e., the algorithm receives the next data from the stream.
At his stage of the process, the process only once (R-1) requirement
has to be considered: Data stream data is accepted as they arrive.
After inspection, the data is not available any more. However, the
algorithm itself is allowed to set up an archive (memory).

(CS-2) Learn, i.e., the algorithm processes the data and updates its
own data structures (updates the model). The limited memory and
limited time requirements (R-2) and (R-3), respectively, have to
be considered. Data stream algorithms allow processing data that
are several times bigger than the working memory and real-time
processing requires that the algorithm process the data quickly (or
even faster) than they arrive.

(CS-3) Predict, i.e., the algorithm is able to receive the next data. It
is also able to predict the class of unseen data. The predict at any
point requirement has to be considered. The best model should be
generated as efficiently as possible.

3. Assessing Model Performance

Elementary performance criteria for data stream algorithms are based
on

Experimental Algorithmics Applied to On-Line Machine Learning 97

(P-1) Time (speed): We consider the amount of time needed (i) to
learn and (ii) to predict. If the time limit is reached, continuing the
data processing will take longer or results will loose precision. This
consequence is not so hard as the space limit, because overriding
the space limit will force the algorithm to stop.

(P-2) Space (memory): A simple strategy for the handling space budget
is to stop once the limit is reached. To continue processing if the
the space limit is reached is to force the algorithm to discard parts
of its data.

(P-3) Error rates (statistical measures): The prediction error is consid-
ered. Several error measures are available [17, 26].

A contingency table or confusion matrix is a standard methods to
summarize results. Based on the values from the confusion matrix, the
accuracy can be determined as the percentage of correct classifications,
i.e., it is defined as the sum of the number of true positives and the
number of true negatives divided by the total number of examples (total
population). Since accuracy can be misleading (consider the so-called
accuracy paradox), further measures are commonly used [27]: For ex-
ample, the precision is defined as the number of true positives divided
by the number of true positives and false positives. Precision is also
referred to as the positive predictive value (PPV). Or, the negative pre-
dictive value (NPV) is defined as the number of true negatives divided by
the number of true negatives and false negatives. The specifity (or true
negative rate, TNR) is defined as the number of true negatives divided
by the number of true negatives and false positives. And, the sensitivity
(or true positive rate (TPR) or recall) is defined as the number of true
positives divided by the number of true positives and the number of false
negatives. Using training data to measure these statistical measures can
lead to overfitting and result in poorly generalizable models. Therefore,
testing data, i.e., using unseen data, should be used [13].

Generating test data appears to be trivial at the first sight. However,
simply splitting the data into two sets might cause unwanted effects, e.g.,
introduce bias, or result in an inefficient usage of the available informa-
tion. The test data generation process needs careful considerations in
order to avoid these fallacies. In the dynamic data stream setting, plenty
of data is available. The simple holdout strategy can be used without
causing the problems mentioned in the batch setting. In contrast to the
batch settings, large data sets for exact accuracy estimations can be used
for testing without problems. The simplest approach is just holding out
one (large) single reference data set during the whole learning (training)

98 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

phase. Using this holdout data set, the model can be evaluated period-
ically. A graphical plot (accuracy versus number of training samples)
is the most common way presenting results. Very often, the compari-
son of two algorithms is based on graphical comparisons by visualizing
trends (e.g., accuracy) over time [6]. To obtain reliable results, statistical
measures such as the standard error of results, are recommended. The
statistical analysis should be accompanied by a comprehensive reporting
scheme, which includes the relevant details for understanding and possi-
ble replication of the findings [23]. Only a few publications that perform
an extensive statistical analysis are available [10]. Fortunately, the open
source framework for data stream mining MOA is available and provides
tools for an extensive experimental analysis [14].

Simulators for Data Stream Analysis. Random data stream sim-
ulators are a valuable tool for the experimental analysis of data stream
algorithms. For our experiments in Section 4 a static data set, which
contained pre-assigned class labels, was used to simulate a real-world
data stream environment. The open source framework for data stream
mining MOA [14] is able to generate a few thousand examples up to sev-
eral hundred thousand examples per second. Additional noise can slow
down the speed, because it requires the generation of random numbers.

4. A Simple Experiment in the EASD
Framework

The Scientific Question. Before experimental runs are performed,
the scientific question, which motivates the experiments, should be clearly
stated. To exemplify the EASD approach, the following task is consid-
ered: Machine learning methods, which combine multiple models to im-
prove prediction accuracy, are called ensemble data mining algorithms.
Diversity of the different models is necessary to reach this performance
gain compared to individual models. Each individual ML algorithm re-
quires the specification of some parameters. Building ensembles requires
the specification of additional algorithm parameters, e.g., the number of
ensemble members. The scientific question can be formulated as follows:
“How does the number of models to boost affect the performance of on-
line learning algorithms?” To set up experiments, a specific algorithm
(or a set of algorithms) has to be selected. Oza et al. presented a simple
on-line bagging and boosting algorithm, OzaBoost [20]. The effect of the
number of models to boost on the algorithm performance is an important
research question, which will be analyzed in the following experiments.

Experimental Algorithmics Applied to On-Line Machine Learning 99

Therefore, the experimental setup as well as the implementation details
have to be specified further.

Implementation Details. Our observations are based on the Mas-
sive On-line Analysis (MOA) framework for data stream mining. The
MOA framework provides programs for evaluation of ML algorithms
[14, 6]. We will consider a typical classification setting, which can trans-
ferred into a regression setting without any fundamental changes. The
model is trained on data with known classes. In the MOA classification
setting, the following assumptions are made by Bifet et al. [6]:

(i) Small and fixed number of variables,

(ii) large number of examples,

(iii) limited number of possible class labels, typically less than ten,

(iv) the size of the training data will not fit into working memory,

(v) the available time for training is restricted,

(vi) the available time for classification is restricted, and

(vii) drift can occur.

We used OzaBoost , the incremental on-line boosting of Oza and Rus-
sel [21], which was implemented in Version 12.03 of the MOA software
environment [14]. OzaBoost uses the following parameters: The clas-
sifier to train, l, the number of models to boost. s, and the option to
boost with weights only, p. Experiments were performed in the sta-
tistical programming environment R [24]. The sequential parameter
optimization toolbox (SPOT) was used for the experimental setup [3].
SPOT is implemented as an R package [4]. An additional R package,
RMOA, was written to make the classification algorithms of MOA eas-
ily available to R users. The RMOA package is available on github
(https://github.com/jwijffels/RMOA).

Empirical Analysis. The number of models to boost will be referred
to as s in the following. In addition to s, the classifier to train will be
modified as well. It will be referred to as l. Therefore, two algorithm
parameters will be analyzed. The accuracy was used as a performance
indicator. Using this setting, the scientific question can be concretized
as the following research question: “How does the number of models to
boost, s, affect the performance of the OzaBoost algorithm?”

100 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Optimization Problem. After the algorithm was specified, a test
function, e.g., an optimization problem, or a classification task, has to
be defined. MOA provides tools to generate data streams. To keep the
setup simple, we used the iris data set [12], which is a available as an R
dataset [24].

Pre-experimental Planning. Before experimental runs are started,
it is important to calibrate the problem difficulty to avoid floor- and
ceiling effects. We will perform a comparison with a simple algorithm.
If the simple algorithm is able to find the optimal solution with a limited
computational budget, then the experimental setup is not adequate (too
easy). If the simple algorithm is not able to find any solution, this
may indicate that the problem is too hard. The naive Bayes classifier,
which was used as the simple algorithm, obtained an accuracy of 91
percent. Because no floor- or ceiling effects were observed, we continue
our experimentation with the OzaBoost algorithm.

Task and Experimental Setup. Two parameters of the OzaBoost
algorithm were analyzed:

(i) the base learner, l, and

(ii) the ensemble size, s.

Hoeffding trees were used as base learners in our experiments [22]. In
addition to the standard Hoeffding tree [10], a random Hoeffding tree
was used in out experiments as a base learner. To be more specific,
the categorical variable l was selected from the set {HoeffdingTree,
RandomHoeffdingTree}, see Bifet et al. [7] for details. Values between
one and one hundred were used for the ensemble size s.

Results and Visualizations. A comparison of the mean values
from the two learners shows a significant difference: the first learner, i.e.,
RandomHoeffdingTree, obtained a mean accuracy of 0.66 (standard de-
viation (s.d.) = 0.06), whereas the mean accuracy of the second learner,
i.e., HoeffdingTree, is 0.81 (s.d. = 0.18). The distributions of the ac-
curacies are plotted in Fig. 2 and provide a detailed presentation of the
results. Although the mean values of the two learners are different, the
standard deviation of the HoeffdingTree learner approximately three
times higher than the standard deviation of the RandomHoeffdingTree.
This is reflected in the plots: the HoeffdingTree algorithm is not able
to find an acceptable classification in some experimental runs.

Therefore, an additional analysis of the relationship between ensemble
size and accuracy for the HoeffdingTree learner is of interest. We plot

Experimental Algorithmics Applied to On-Line Machine Learning 101

Figure 2: Comparison of the two learners. 0 = RandomHoeffdingTree, 1 =
HoeffdingTree. Left: Density plots (accuracy, y). The dotted lines represent the
mean values of the corresponding learners. Right: Boxplots (accuracy). Same data
as in the panel on the left were used in the boxplots. The comparison of these two
plots nicely illustrates strength and weakness of the plotting methods.

the results from the HoeffdingTree learner and add a smooth curve
computed by loess (LOcal regrESSion) to a scatter plot [9]. loess

fitting is done locally, i.e., the fit at a point x is based on points from
a neighborhood of x, weighted by their distance from x. The result is
shown in Fig. 3. This plot indicates that outliers occur if the sample
size is small, i.e., s < 60.

Observations. The results reveal that the HoeffdingTree learner
performs better (on average) than the RandomHoeffdingTree learner,
but appears to be more sensitive to the settings of the ensemble size.

Discussion. The selection of a suitable base learner is important.
Results indicate that too small ensemble sizes worsen the algorithm’s
performance. This statement has to be investigated further, e.g., by
finding improved parameter settings for the OzaBoost learner. The se-
quential parameter optimization framework can be used for tuning the
learner. A typical result from this tuning procedure is shown in the
right panel of Fig. 3. In this plot, the accuracy, which was obtained by
OzaBoost, is plotted against the number of iterations of the SPO tuner.

102 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

● ●●

20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

size

y

0 10 20 30 40

-0
.9

-0
.7

-0
.5

-0
.3

Index
y

Figure 3: Left: Results, i.e., accuracy (y), obtained with the HoeffdingTree learner
(l = 1) plotted against ensemble size (s). Right: A typical result from the parameter
tuning procedure. Accuracy (y) is plotted against the number of algorithm runs
(Index). The negative accuracy is shown, because the tuner requires minimization
problems.

5. Summary and Outlook

An experimental methodology for the analysis of on-line data was pre-
sented. Differences between the traditional batch setting and the on-line
setting were emphasized. Although useful, the actual practice of com-
paring run-time plots of on-line algorithms, e.g., accuracy versus time,
should be complemented by more advanced tools from exploratory data
analysis [25] and statistical tools, which were developed for the analysis
of traditional algorithms. It was demonstrated, that statistical methods
from experimental algorithmics can be successfully applied in the on-
line setting. A combination of MOA, RMOA and the SPO toolbox was
used to demonstrate the applicability and usefulness of standard tools
from experimental algorithmics. The design and analysis of the algo-
rithm were performed in the EASD framework. This report methodol-
ogy, which is also described and exemplified by Preuss [23], is an integral
part of the EASD framework.

References

[1] R. Barr, B. Golden, J. Kelly, M. Rescende, and W. Stewart. Designing and
Reporting on Computational Experiments with Heuristic Methods. Journal of
Heuristics, 1(1):9–32, 1995.

[2] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss (Eds.) Experi-
mental Methods for the Analysis of Optimization Algorithms. Springer, Berlin,

Experimental Algorithmics Applied to On-Line Machine Learning 103

Heidelberg, New York, 2010.

[3] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. The Sequential Parameter
Optimization Toolbox. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss (Eds.) Experimental Methods for the Analysis of Optimization Algo-
rithms, pages 337–360. Springer, Berlin, Heidelberg, New York, 2010.

[4] T. Bartz-Beielstein and M. Zaefferer. SPOT Package Vignette. Technical report,
2011.

[5] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online
Analysis. The Journal of Machine Learning Research, 11:1601–1604, 2010.

[6] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Data Stream Mining. pages
1–185, May 2011.

[7] A. Bifet, R. Kirkby, P. Kranen, and P. Reutemann. Massive online analysis -
Manual, Mar. 2012.

[8] G. Cattaneo and G. Italiano. Algorithm engineering. ACM Computing Surveys,
31(3):3, 1999.

[9] J. M. Chambers and T. J. Hastie (Eds.). Statistical Models in S. Statistical
Models in S. Wadsworth and Brooks/Cole, Pacific Grove, CA, 1992.

[10] P. Domingos and G. Hulten. Mining high-speed data streams. Proceedings of the
the Sixth ACM SIGKDD International Conference, pages 71–80, 2000.

[11] A. E. Eiben and M. Jelasity. A Critical Note on Experimental Research Method-
ology in EC. Proceedings of the Congress on Evolutionary Computation (CEC),
pages 582–587, 2002.

[12] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

[13] T. Hastie. The elements of statistical learning : data mining, inference, and
prediction. Springer, New York, 2nd ed., 2009.

[14] G. Holmes, B. Pfahringer, P. Kranen, T. Jansen, T. Seidl, and A. Bifet. MOA:
Massive Online Analysis, a Framework for Stream Classification and Clustering.
Proceedings of the International Workshop on Handling Concept Drift in Adap-
tive Information Systems in conjunction with European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), pages 3–16, 2010.

[15] J. N. Hooker. Needed: An empirical science of algorithms. Operations Research,
42(2):201–212, 1994.

[16] J. N. Hooker. Testing Heuristics: We Have It All Wrong. Journal of Heuristics,
1(1):33–42, 1996.

[17] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accu-
racy. International Journal of Forecasting, 22(4):679–688, 2006.

[18] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by
Simulated Annealing: an Experimental Evaluation. Part I, Graph Partitioning.
Operations research, 37(6):865–892, 1989.

[19] C. C. McGeoch. Experimental Analysis of Algorithms. PhD thesis, Carnegie
Mellon University, Pittsburgh PA, 1986.

104 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[20] N. C. Oza and S. Russell. Experimental comparisons of online and batch ver-
sions of bagging and boosting. Proceedings of the Seventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 359–364,
2001.

[21] N. C. Oza and S. Russell. Online bagging and boosting. Proceedings of the 8th
International Workshop on Artificial Intelligence and Statistics, pages 105–112,
2001.

[22] B. Pfahringer, G. Holmes, and R. Kirkby. New Options for Hoeffding Trees.
In AI 2007: Advances in Artificial Intelligence, pages 90–99. Springer, Berlin
Heidelberg, 2007.

[23] M. Preuss. Multimodal Optimization by Means of Evolutionary Algorithms. Nat-
ural Computing Series. Springer International Publishing, Cham, 2015.

[24] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015.

[25] J. W. Tukey. Explorative data analysis. Addison-Wesley, 1977.

[26] C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model perfor-
mance. Climate Research, 30(7982):1–4, 2005.

[27] X. Zhu. Knowledge Discovery and Data Mining: Challenges and Realities: Chal-
lenges and Realities. Gale virtual reference library. Information Science Refer-
ence, 2007.

DISADVANTAGES OF STATISTICAL
COMPARISON OF STOCHASTIC
OPTIMIZATION ALGORITHMS

Tome Eftimov
Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

tome.eftimov@ijs.si

Peter Korošec
Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia

peter.korosec@ijs.si

Barbara Koroušić Seljak
Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

barbara.korousic@ijs.si

Abstract In this paper a short overview and a case study in a statistical compari-
son of stochastic optimization algorithms are presented. The algorithms
are part of the Black-Box Optimization Benchmarking 2015 competi-
tion that was held at the 5th GECCO Workshop for Real-Parameter
Optimization. The question about the difference between parametric
and non-parametric tests for single-problem analysis and for multiple-
problem analysis is addressed in this paper. The main contributions are
the disadvantages that can appear by using multiple-problem analysis,
in the case when the data of some algorithms includes outliers.

Keywords: Comparative study, Non-parametric tests, Parametric tests, Statistical
methods, Stochastic optimization algorithms.

1. Introduction

Over the last years, many machine learning and stochastic optimiza-
tion algorithms have been developed. For each new algorithm, according

105

106 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

to its performance, we need to decide whether it is better than the com-
pared algorithms used on the same problem.

One of the most common ways to compare algorithms used on the
same problem is to use statistical tests as comparison techniques of their
performance [4, 5, 6, 9, 10]. The common thing of the comparative
studies, independently of the research area (machine learning, stochastic
optimization or some other research areas), is that they are based on the
idea of hypothesis testing [18].

The hypothesis testing, also called significance testing, is a method of
statistical inference that could be used for testing a hypothesis about pa-
rameter in a population, using data measured in a data sample, or about
the relationship between two or more populations, using data measured
in data samples. The method starts by defining two hypotheses, the null
hypothesis H0 and the alternative hypothesis HA. The null hypothesis
is a statement that there is no difference or no effect and the alternative
hypothesis is a statement that directly contradicts the null hypothesis
by indicating the presence of a difference or an effect. This step in the
hypothesis testing is very important, because mis-stating the hypothe-
ses will disrupt the rest of the process. The second step is to select an
appropriate test statistic T , which is a mathematical formula that al-
lows researchers to determine the likelihood of obtaining the outcomes
if the null hypothesis is true. Then, the level of significance α, also
called significance level, which is the probability threshold below which
the null hypothesis will be rejected, needs to be selected. The last step
of the hypothesis testing is to make a decision either to reject the null
hypothesis in favor of the alternative or not to reject it. The last step
can be done with two different approaches. In the standard approach,
the possible values of the test statistic for which the null hypothesis is
rejected, also called the critical region, are calculated using the distribu-
tion of the test statistic and the probability of the critical region that is
the level of significance α. Then the observed value of the test statistic
Tobs is calculated according to the observations from the data sample. If
the observed value of the test statistic is in the critical region, the null
hypothesis is rejected, and if not, it fails to reject the null hypothesis.
In the alternative approach, instead of defining the critical region, a p-
value that is the probability of obtaining the sample outcome, given the
null hypothesis is true, is calculated. The null hypothesis is rejected, if
the p-value is less than the selected significance level (the most common
values for it are 0.05 and 0.01), and if not, it fails to reject the null
hypothesis.

In this paper we follow the recommendations given in some papers
[4, 5, 6, 9, 10] in order to perform correct statistical comparison of

Disadvantages of Statistical Comparison of Stochastic Optimization . . . 107

the behavior of some of the stochastic optimization algorithms over
optimization problems presented of the Black-Box Benchmarking 2015
(BBOB 2015) competition helded at the 5th GECCO Workshop on
Real-Parameter Optimization organized at the Genetic and Evolution-
ary Computation Conference (GECCO 2015) [1].

This paper can be seen as a tutorial and a case study on the use of
statistical tests for comparison of stochastic optimization algorithms. In
Section 2 we give a review and important comments with regard to the
standard statistical tests, the parametric tests, and the non-parametric
tests. Section 3 presents the empirical study carried out on the results
from the workshop in different scenarios, using pairwise comparison for
single-problem analysis, pairwise comparison for multiple-problem anal-
ysis, multiple comparisons for single-problem analysis, and multiple com-
parisons for multiple-problem analysis. In Section 4 we conclude the
paper by discussing the disadvantages of the standard statistical tests
that are used for statistical comparisons of the behavior of stochastic
optimization algorithms.

2. Parametric Versus Non-parametric Statistical
Tests

In order to distinguish what to use for your data, between the para-
metric and the non-parametric test, the first step is to check the assump-
tions of the parametric tests, also called required conditions for the safe
use of parametric tests. So the first step is to use the methods for check-
ing the validity of these required conditions. If the data does not satisfy
the required conditions for the safe use of parametric tests, then the tests
could lead to incorrect conclusions, and it is better to use the analogous
non-parametric test. In general, a non-parametric test is less restrictive
than a parametric one, but it is less powerful than a parametric one,
when the required conditions for the safe use of the parametric test are
true [10].

2.1 Required Conditions for the Safe Use of
Parametric Tests

The assumptions or the required conditions for the safe use of para-
metric tests are the independence, the normality, and the homoscedas-
ticity of the variances of the data.

Two events, A and B are independent, if the fact that A occurs does
not affect the probability of B occurring. When we compare the behavior
of the stochastic optimization algorithms, they are usually independent.

108 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The assumption of normality is just a hypothesis that a random vari-
able of interest, or in our case the data from the data sample, is dis-
tributed according to the normal or Gaussian distribution with mean µ
and standard deviation σ. In order to check the validity of this con-
dition, the recommended statistical tests are Kolmogorov-Smirnov [19],
Shapiro-Wilk [23], and D’Agostino-Pearson [3]. The validity of this con-
dition can be also checked by using graphical representation of the data
using histograms and qunatile-quantile plots (Q-Q plots) [7].

The homoscedasticity indicates the hypothesis of equality of variances,
and the Levene’s test is used to check the validity of this condition [13].
Using this test we can see whether or not a given number of samples
have equal variances or not.

2.2 An Overview of Some Standard Statistical Tests

In Table 1 we give an overview of the most commonly used statistical
tests that can be used for statistical comparison between two or multiple
algorithms. We do not go into details for each of them, because they
are standard statistical tests [18]. Which of them is chosen depends
on the type of analysis we want to perform, either single-problem or
multiple-problem analysis.

Table 1: An overview of parametric and non-parametric tests

Two Algorithms Multiple Algorithms

Parametric tests Paired T-Test Repeated-Measures ANOVA

Non-parametric tests
Wilcoxon Signed-Rank Test,

The Sign Test
Friedman Test,

Iman-Davenport Test

The single-problem analysis is the scenario when the data comes from
multiple runs of the stochastic optimization algorithms on one problem,
one function. This scenario is common in stochastic optimization al-
gorithms, since they are of stochastic nature, meaning we do not have
any guaranty that the result will be optimal for every run. Moreover,
typically even the path leading to the final solution is often different. So
to test the quality of the algorithm, it is not enough to performed just
one run, but many of them from which we can draw some conclusions.

The second scenario or the multiple-problem analysis is the scenario
when several stochastic optimization algorithms are compared on multi-
ple problems, multiple functions. In this case, in most papers the authors
use the averaged results for each function to compose a sample of results
for each algorithm.

Disadvantages of Statistical Comparison of Stochastic Optimization . . . 109

3. Case Study: Black-Box Optimization
Benchmarking 2015

In order to go through the recommendations of how to perform sta-
tistical comparisons of stochastic optimization algorithms and to see the
possible problems that appear, the results from the Black-Box Bench-
marking 2015 [1] are used. The Black-Box Benchmarking 2015 is a
competition that provides single-objective functions for benchmarking.
In addition, it enables analyses of the performance of the competing
algorithms, and makes it understandable what are the advantages and
disadvantages for each algorithm.

From the competition the algorithms BSif, BSifeg, BSrr, and Srr are
used for statistical comparisons. The capital letters, S or BS, denote
STEP or Brent-STEP method, respectively. The lowercase letters de-
note the dimension selection strategy: “rr” for round-robin, “if” for the
EWMA estimate of the improvement frequency, and “ifeg” for “if” com-
bined with ε-greedy strategy [21]. For each of them the results for 24
different noiseless test functions in 5 dimensionality (2, 3, 5, 10, and
20) are selected. At the end, the statistical comparison is performed
by comparing the algorithms on 22 different noiseless functions because
some of them do not provide data for two functions of the benchmark
when the dimension is 20.

The test functions are from 5 groups: separable functions, functions
with low or moderate conditioning, function with hight conditioning and
unimodal, multi-modal functions with adequate global structure, and
multi-modal functions with week global structure. More details about
them can be found in [15].

We have done the statistical comparisons in “R programming lan-
guage”, by using the “lawstat” package [11] for the Levene’s Test, the
“stats” package [22] for the Kolmogorov-Smirnov Test, the Paired-T Test
[16], the Shapiro-Wilk Test, and the Wilcoxon Signed-Rank Test [17], and
the “scmap” package [2] for the Iman-Davenport Test [6], the Friedman
Test [6], and the Friedman Algined-Rank Test [6].

3.1 Pairwise and Multiple Comparisons for
Single-Problem Analysis

In this section pairwise comparison for single-problem analysis is pre-
sented together with comments for multiple comparisons for single-problem
analysis. The BSif and BSifeg algorithms are the two algorithms used
for pairwise comparison. The pairwise comparisons between these two
algorithms for single-problem analysis are performed on 22 benchmark
functions when the dimension is 10.

110 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

At the beginning of each statistical comparison, the required condi-
tions for the safe use of the parametric tests are checked.

In case of the single-problem analysis the multiple runs of the algo-
rithm on the same function are independent.

To check for normality, the Shapiro-Wilk Test and graphical represen-
tations by representing the data using histograms and quantile-quantile
plots are used. The p-values from the Shapiro-Wilk Test are presented
in the Table 2, and when the p-value is smaller than the significance
level (we used 0.05), then the null hypothesis is rejected, and we assume
the data is not normally distributed.

Table 2: Test of normality using Shapiro-Wilk Test

f1 f2 f3 f4 f5 f6 f7 f8

p-value BSif - (.61) ∗(.00) (.70) ∗(.01) ∗(.02) ∗(.01) (.05)
p-value BSifeg - ∗(.03) ∗(.00) (.47) ∗(.01) ∗(.00) (.28) ∗(.00)

f9 f10 f11 f12 f13 f14 f15 f16

p-value BSif
∗(.00) ∗(.00) (.49) (.23) ∗(.01) ∗(.00) ∗(.02) (.05)

p-value BSifeg
∗(.00) ∗(.01) (.28) ∗(.00) ∗(.00) ∗(.00) ∗(.02) (.24)

f17 f18 f19 f20 f21 f22

p-value BSif (.21) ∗(.04) (.16) ∗(.01) ∗(.00) ∗(.00)
p-value BSifeg (.24) (.13) (.07) (.10) ∗(.00) ∗(.00)

∗ indicates that the normality condition is not satisfied.

From the same table we can see that there are 6 cases in which the
data from both algorithms comes from normal distribution (f1, f4, f11,
f16, f17, f19), 6 cases in which the data only from one of the algorithms
comes from normal distribution (f2, f7, f8, f12, f18, f20), and 10 cases
in which the data from both algorithms is not normally distributed (f3,
f5, f6, f9, f10, f13,f14, f15, f21, f22).

In Fig. 1 and Fig. 2, the graphical representation of the data with
normal and non-normal distribution is presented, respectively. Using
the histograms, we can see if the distribution of the data is close to the
shape of the distribution we are interested. The red line corresponds
to the normal curve with the mean value and the standard deviation
obtained from the data. The Q-Q plot is a probability plot, which is a
graphical method for comparing two probability distributions by plotting
their quantiles against each other. In our case the distribution of the
data is compared with the normal distribution. If the data is normally

Disadvantages of Statistical Comparison of Stochastic Optimization . . . 111

Histogram of BSifeg

BSifeg

Fr
eq
ue
nc
y

50 60 70 80 90 100 110 120

0
1

2
3

4
5

a) Histogram of BSifeg.

-1 0 1

50
60

70
80

90
10
0

11
0

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

b) QQ-plot of BSifeg.

Figure 1: Example of normal distribution for the BSifeg algorithm for f11 with di-
mension 10.

112 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Histogram of BSifeg

BSifeg

Fr
eq
ue
nc
y

0e+00 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09 7e-09

0
2

4
6

8
10

a) Histogram of BSifeg.

-1 0 1

0e
+0
0

1e
-0
9

2e
-0
9

3e
-0
9

4e
-0
9

5e
-0
9

6e
-0
9

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

b) QQ-plot of BSifeg.

Figure 2: Example of non-normal distribution for the BSifeg algorithm for f3 with
dimension 10.

Disadvantages of Statistical Comparison of Stochastic Optimization . . . 113

distributed, the data points in the Q-Q normal plot can be approximated
with a straight diagonal line.

The next step of the analysis is to check the homoscedasticity. In
Table 3 the p-values from the Levene’s Test for checking homoscedastic-
ity, based on means, are presented. When the p-value obtained by this
test is smaller than the significance level (we used 0.05), then the null
hypothesis is rejected, and this indicates the existence of a violation of
the hypothesis of equality of variances.

Table 3: Test of homoscedasticity using the Levene’s Test

f1 f2 f3 f4 f5 f6 f7 f8 f9

p-value - (.08) (.98) (.99) 1 (.05) (.57) (.07) ∗(.01)

f10 f11 f12 f13 f14 f15 f16 f17 f18

p-value (.97) (.37) ∗(.00) ∗(.00) ∗(.04) (.26) (.27) (.85) (.29)

f19 f20 f21 f22

p-value (.77) (.94) (.41) (.66)

∗ indicates that the homoscedasticity condition is not satisfied.

After checking the required conditions for the safe use of the para-
metric tests, the pairwise comparison of these two algorithms on each
function separately is performed using the Paired-T Test as parametric
test and the Wilcoxon Signed-Rank Test as non-parametric test. The p-
values obtained by these two tests for the pairwise comparison of the two
algorithms are presented in Table 4, where the p-value smaller than the
significance level of 0.05, indicates that there is a significant statistical
difference between the performance of the two algorithms.

From the Table 4 we can see that for functions f9 and f22 we obtained
different results according to the Paired-T Test and the Wilcoxon Signed-
Rank Test. In order to select the true result, first we need to check the
results for the validity of the required conditions for the safe use of para-
metric tests. If we look at Table 2, we can see that for these two functions
the normality condition is not satisfied, so we can not use the parametric
tests because they could lead to incorrect conclusions, and we need to
consider the result obtained by the Wilcoxon Signed-Rank Test. Using
this test in the case of both functions the null hypothesis is rejected using
a significance level of 0.05, so there is a significant statistical difference
between the performance of the two algorithms, BSif and BSifeg, over
functions, f9 and f22.

114 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 4: Statistical comparison of BSif and BSifeg algorithms using Paired-T Test
and Wilcoxon Signed-Rank Test

f1 f2 f3 f4 f5 f6 f7 f8

p-value Paired−T - (.19) (.32) (.76) - ∗(.02) (.81) ∗ (.02)
p-value Wilcoxon - (.08) (.72) (.72) - ∗(.03) (.60) ∗(.00)

f9 f10 f11 f12 f13 f14 f15 f16

p-value Paired−T (.08) (.40) (.18) (.11) ∗(.00) ∗(.03) (.06) (.64)
p-value Wilcoxon

∗(.00) (.17) (.26) (.42) ∗(.00) ∗(.00) (.05) (.39)

f17 f18 f19 f20 f21 f22

p-value Paired−T (.34) (.95) (.76) (.87) (.14) (.14)
p-value Wilcoxon (.68) (.71) (.98) (.93) (.14) ∗(.01)

∗ indicates that the null hypothesis is rejected, using α = 0.05.
p-value Paired−T, and p-value Wilcoxon indicate the p-values obtained by Paired-T Test and
Wilcoxon Signed-Rank Test, respectively.

If we want to perform multiple comparisons for single-problem analy-
sis, we need to go through the same steps as in the pairwise comparison,
but we need to use the repeated-masures ANOVA as parametric test [12],
and the Friedman Test or Iman-Davenport Test as non-parametric tests.
If there is significance statistical difference between the algorithms we
can continue with some post-hoc procedures relevant to the test we used
[6].

3.2 Pairwise and Multiple Comparisons for
Multiple-Problem Analysis

In this section multiple comparisons for multiple-problem analysis are
presented togehter with comments for pairwise comparison. Following
the recommendations from some papers [6, 10] that addressed the same
topic, the averaged results for each function with dimension 10 are used
to compose a sample of results for each algorithm. The BSifeg, BSrr,
and Srr are the algorithms used for comparison over multiple functions.

First, the conditions for the safe use of the parametric test are checked.
The condition for independence is satisfied, as we explained above.

The p-values for normality condition obtained by using the Shapiro-
Wilk Test are presented in Table 5, from where we can see that neither
of the algorithms assumes that the data comes from normal distribution.

Disadvantages of Statistical Comparison of Stochastic Optimization . . . 115

Table 5: Test of normality using Shapiro-Wilk Test

BSifeg BSrr Srr

p-value ∗(.00) ∗(.00) ∗(.00)

∗ indicates that the normality condition is not satisfied.

The homoscedasticity is checked by applying the Levene’s Test. The
p-value obtained from the Levene’s Test is 0.63, from which it follows
that the homoscedasticity is satisfied.

Because the normality condition is not satisfied, we cannot use the
repeated-measures ANOVA as parametric test, and we can continue the
analysis by using the Friedman Test, the Iman-Davenport Test, and the
Friedman Aligned-Rank Test as non-parametric tests. The differences
between these three tests and the recommendations when to use them are
explained in [6], and the p-values we obtained are presented in Table 6.

Table 6: Multiple comparisons for multiple-problem analysis

Friedman Test Iman-Davenport Test Friedman Aligned-rank Test

p-value ∗(.03) ∗(.02) ∗(.04)

∗ indicates that the null hypothesis is rejected, using α = 0.5 .

Using the p-values reported in Table 6, according to the three tests
that are used, the null hypothesis is rejected, and there is a significant
statistical difference between these three algorithms.

In order to see the difference that appears between the performance
of the three algorithms, the distributions of the data for each algorithm
are presented in Fig. 3. In the figure we can see that there is no differ-
ence between the distributions of the data of the three algorithms that
are used in multiple-problem analysis. To confirm this, we introduced
the Kolmogorov-Smirnov Test to compare the distributions between the
pairs of algorithms, and the p-values are presented in Table 7, from
where we can see that the p-values obtained are greater than 0.05, so we
can not reject the null hypothesis, therefor the distributions of the data
between the pairs of the algorithms are the same.

The question that arises here is, if this difference between the algo-
rithms obtained by the use of the non-parametric tests is inforced by
averaging the results from multiple runs for each function to compose a
sample of results for each algorithm. Averages are known to be sensitive
to outliers. For example, in machine learning, different techniques that
can be used to remove outliers are presented [20, 14]. It happened for

116 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

-20 -15 -10 -5 0 5 10

0.
00

0.
05

0.
10

0.
15

Density functions

N = 20 Bandwidth = 0.8948

D
en
si
ty

Srr
BSifeg
BSrr

Figure 3: Probability distributions of the data of BSifeg, BSrr, and Srr used in
multiple-problem analysis.

Table 7: Two-sample Kolmogorov-Smirnov Test

(BSifeg,BSrr) (BSifeg,Srr) (BSrr,Srr)

p-value 1 (.86) (.99)

example that in 15 runs the average result of one function for a given
algorithm was better than another algorithm, but in new 15 runs the
average result of the same function and the same algorithm could be
worse than the other algorithm, and this happened because in the new
15 runs we have some outliers, or some poor runs. One solution could be
to perform several multiple runs of an algorithm on the same problem,
and then to average the averages results obtained by the runs. But in
stochastic optimization we are not interested to have so many runs, be-
cause this is time-consuming. Another solution, also our further work,
is to try to find what we can use as a measure for comparison of stochas-
tic optimization algorithms that are robust on outliers, instead of using
averaging of the results.

The pairwise comparison for multiple-problem analysis could be done
using the same steps, but using the Paired-T Tets as parametric test,

Disadvantages of Statistical Comparison of Stochastic Optimization . . . 117

and the Wicoxon Signed-Rank Test or the The Sign Test [8] as non-
parametric tests.

4. Conclusion

In this paper a tutorial and a case study of statistical comparison be-
tween the behaviour of stochastic optimization algorithms are presented.

The main conclusion of the paper are the disadvantages that can ap-
pear in the multiple-problem analysis following the recommendations of
other tutorials that address this topic. These disadvantages can happen
by averaging the results from multiple runs for each function to compose
a sample of results for each algorithm, in the case when the data includes
outliers. In general, the outliers can be skipped using some techniques,
but they need to be used with great care. But for multiple-problem
analysis skipping outliers is really a question because only the results
for certain problems would be changed and not for other problems. All
this leads to a need of some new measures that will be robust to outliers
and can be used to compose a sample for each algorithm over multiple
problems, and after that to continue the analysis by using some standard
statistical tests.

References

[1] Black-box benchmarking 2015. http://coco.gforge.inria.fr/doku.php?id=

bbob-2015, accessed: 2016-02-01.

[2] B. Calvo and G. Santafe. scmamp: Statistical comparison of multiple algorithms
in multiple problems. The R Journal, 2015.

[3] R. B. D’agostino, A. Belanger, and R. B. D’Agostino Jr. A suggestion for us-
ing powerful and informative tests of normality. The American Statistician,
44(4):316–321, 1990.

[4] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine Learning Research, 7:1–30, 2006.

[5] J. Derrac, S. Garćıa, S. Hui, P. N. Suganthan, and F. Herrera. Analyzing con-
vergence performance of evolutionary algorithms: a statistical approach. Infor-
mation Sciences, 289:41–58, 2014.

[6] J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3–
18, 2011.

[7] J. Devore. Probability and Statistics for Engineering and the Sciences. Cengage
Learning, 2015.

[8] W. J. Dixon and A. M. Mood. The statistical sign test. Journal of the American
Statistical Association, 41(236):557–566, 1946.

[9] S. Garćıa, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric
tests for multiple comparisons in the design of experiments in computational

118 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

intelligence and data mining: Experimental analysis of power. Information Sci-
ences, 180(10):2044–2064, 2010.

[10] S. Garćıa, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms behaviour: a case
study on the CEC2005 special session on real parameter optimization. Journal
of Heuristics, 15(6):617–644, 2009.

[11] J. L. Gastwirth, Y. R. Gel, W. L. Wallace Hui, V. Lyubchich, W. Miao,
and K. Noguchi. lawstat: Tools for Biostatistics, Public Policy, and Law,
2015, r package version 3.0. [Online]. Available: https://CRAN.R-project.org/
package=lawstat.

[12] E. R. Girden. ANOVA: Repeated measures. Sage, 1992.

[13] G. V. Glass. Testing homogeneity of variances. American Educational Research
Journal, 3(3):187–190, 1966.

[14] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques. Elsevier,
2011.

[15] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box opti-
mization benchmarking 2010: Experimental setup. Research Report RR-7215,
INRIA, 2010.

[16] H. Hsu and P. A. Lachenbruch. Paired t test. In Wiley Encyclopedia of Clinical
Trials, 2008.

[17] F. Lam and M. Longnecker. A modified wilcoxon rank sum test for paired data.
Biometrika, 70(2):510–513, 1983.

[18] E. L. Lehmann, J. P. Romano, and G. Casella. Testing statistical hypotheses.
Wiley, New York, 1986.

[19] H. W. Lilliefors. On the kolmogorov-smirnov test for normality with mean and
variance unknown. Journal of the American Statistical Association, 62(318):399–
402, 1967.

[20] M. Nikolova. A variational approach to remove outliers and impulse noise. Jour-
nal of Mathematical Imaging and Vision, 20(1-2):99–120, 2004.

[21] P. Poš́ık and P. Baudǐs. Dimension selection in axis-parallel brent-step method
for black-box optimization of separable continuous functions. Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary Computation
Conference, pages 1151–1158, 2015.

[22] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015. [Online]. Avail-
able: https://www.R-project.org/.

[23] S. S. Shapiro and R. Francia. An approximate analysis of variance test for nor-
mality. Journal of the American Statistical Association, 67(337):215–216, 1972.

THE IMPACT OF QUALITY INDICATORS
ON THE RATING OF MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMS

Miha Ravber, Marjan Mernik, Matej Črepinšek
Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia

miha.ravber@um.si, marjan.mernik@um.si, matej.crepinsek@um.si

Abstract Comparing the results of single objective optimizers is an easy task in
comparison to multi-objective optimizers for which the result is usually
an approximation of the Pareto optimal front. These approximation
sets must first be evaluated. One of the most popular methods for
evaluation is the use of quality indicators, for which the result is a
real valued number that reflects a certain aspect of quality. Evaluating
and comparing multi-objective optimizers is an important issue. It has
been empirically proven that chess ranking can be successfully applied
to ranking and comparing single objective evolutionary algorithms. In
this paper, the method was adapted to multi-objective evolutionary
algorithms (MOEAs). The comparison of several different quality in-
dicators in the chess rating system was conducted in order to get a
better insight on their characteristics and how they affect the ranking
of MOEAs. Although it is expected that quality indicators with the
same optimization goals would yield a similar ranking of MOEAs, it
has been shown that results can be contradictory.

Keywords: Chess rating, Evolutionary algorithms, Multi-objective optimization,
Performance assessment, Quality indicator.

1. Introduction

The goal of multi-objective optimization (MOO) is to obtain the
Pareto optimal front that contains the best trade-off solutions. Since
many multi-objective optimization problems (MOP) are difficult to solve,
the outcome of the optimization is usually an approximation of the
Pareto front. In order to compare these approximations, they need to
be evaluated. Evaluating the quality of these approximations is itself
an MOP. Zitzler et al. [20] suggested three optimization goals that
need to be measured: the distance of the resulting nondominated set to

119

120 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the Pareto optimal front should be minimized; a good (in most cases
uniform) distribution of the solutions found is desirable; the extent of
the obtained nondominated front should be maximized. Comparing the
performance of MOEAs remains an open problem. The most popular
measures are quality indicators (QI); the term “performance metric” is
also used to quantify the differences between approximation sets.

Many different QIs for measuring the quality of approximation sets
have been proposed in the literature [1, 8, 9, 10, 12, 14, 15, 19, 20, 23, 24].
Each QI has been designed with a standpoint that takes one or more
previously mentioned optimization goals into consideration. This means
that no single indicator alone can reliably measure MOEA performance.
It should be noted that several surveys and experiments have been con-
ducted to analyze individual indicators [7, 8, 16, 24]. The results have
shown inconsistencies and contradictions in the assessment of various
approximation sets. It was argued in [7] and [16], that without estab-
lished comparison criteria, claims based on heuristically chosen QIs do
little to determine a given MOEAs actual efficiency and effectiveness. In
addition, the conclusions are useless for answering the question of which
algorithms are superior to others. Can it be argued that one algorithm
is better than another even though the outcome depends on the selected
QI?

The aim of this paper is to obtain better insight into the impact of the
selected QI for the comparison of MOEAs. The focus is on the analysis
of different QIs with the help of a chess rating system.

The remainder of the paper is organized as follows. In Section 2,
some basic concepts of quality indicators are introduced. The chess
rating system with Glicko-2 is presented in Section 3. In Section 4, the
execution of the experiment and results are presented. Finally, the paper
concludes in Section 5.

2. Quality Indicators

Approximation sets can be compared using dominance relations. How-
ever, there are numerous limitations to using this approach. For exam-
ple, the extent to which one algorithm is better than another cannot be
expressed nor can it be expressed in which aspects this is so. Further-
more, when using dominance relations, there are cases in which approx-
imation sets are incomparable. In order to overcome these limitations,
QIs have been designed. These indicators quantitatively measure ap-
proximations of Pareto optimal fronts. Therefore, QIs are in essence
functions that assign each approximation set a real number that re-
flects different aspects of quality or quality differences. Zitzler et al.

The Impact of Quality Indicators on the Rating of MOEAs 121

[24] defined a quality indicator I as an m-ary function I : Ωm → R
that assigns each vector (A1, A2, . . . , Am) of m approximation sets a
real value I (A1, . . . , Am). Once the approximation sets are evaluated
by indicators, different conclusions can be drawn about their relations.
For different aspects of quality, different indicators need to be used.

Figure 1: The concept of comparison methods adapted from [24].

Quality indicators have been categorized into different groups from
different points of view to better understand their nature [24, 7, 10].
They are mainly categorized by the aspects of quality that they as-
sess. These aspects include the closeness to the Pareto-optimal front,
the number of elements of the Pareto-optimal front found, and the max-
imum spread of solutions. Quality indicators are also classified based
on the number of approximation sets they take as an argument. Unary
indicators accept one approximation and binary accept two. However,
in principle indicators that accept an arbitrary number of arguments are
also possible. When evaluating with unary indicators the resulting real
values need to be compared in order to see which result set is better. Bi-
nary indicators, in contrast, compare two result sets to determine which
one is better. Therefore, when comparing t sets using binary indicators
t(t1), comparisons need to be carried out to obtain the final ranking.
Some unary indicators require a reference set to perform the evaluation,
which must be taken into consideration since real-world problems have
unknown Pareto-optimal fronts. When the reference set is available, any
indicator can be converted from binary to unary. There are also other

122 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

categories that are not used as often, such as computational complex-
ity, the sensitivity to scaling, the number of objectives, etc. It is also
desirable that an indicator be compatible and complete with respect to
dominance relations.
Quality indicators need interpretation, and different comparison meth-
ods can be used. This is best illustrated by Zitzler (Fig. 1) [24] where
concepts of comparison methods using either only unary or only binary
indicators are presented. Case (a) uses a single unary QI, (b) a single
binary QI, and (c) a combination of two unary QIs. In cases (a) and (b),
the indicator I evaluates the approximation sets A and B. The result
is passed to the interpretation function E that decides the outcome. In
case (c), two indicators are applied to A and B then the resulting two
indicator values are combined in a vector, I(A) for A and vector I(B) for
B. The vectors are passed to the interpretation function E that decides
the outcome.

Table 1: Quality indicators and their properties.

Quality Indicator Convergence Uniformity Spread
Requires
reference set

CS [23]
√

Iε+ [24]
√ √

GD [15]
√ √

HV [23]
√ √ √

IGD [1], IGD+ [9]
√ √ √ √

MPFE [14]
√ √

MS [20]
√ √

R2 [8]
√ √

S [12]
√

Generalized Spread ∆ [19]
√ √

In this paper, eleven QIs are used, based on prevalence and different
properties. Selected indicators are listed with their quality aspects in
Table 1. When comparing algorithms, usually a handful of QIs are se-
lected and then the experiment is performed and evaluated with selected
statistical methodologies. In our case, the Chess Rating System for Evo-
lutionary Algorithms (CRS4EAs) [13] is used. The outcome of the game
was determined by methods a and b (Fig. 1), depending whether the
indicator is unary or binary.

The Impact of Quality Indicators on the Rating of MOEAs 123

3. Chess Rating System for Evolutionary
Algorithms (CRS4EAs)

In this paper, we use CRS4EAs based on the Glicko-2 system, in
which each player receives his rating R, rating deviation RD and rating
volatility σ [6]. The volatility measure indicates the degree of expected
fluctuation in a players rating. When a player has an unpredictable per-
formance such as exceptionally strong results after a period of stability,
the volatility measure is high. If a player performs at a consistent level,
the volatility measure is low. The rating deviation indicates how reliable
a players rating is. A small rating deviation means a player plays often
and has a reliable rating. In contrast, if the rating deviation is high, his
rating is unreliable. A players strength can be summarized in the form
of a 95% confidence interval. It can be said that we are 95% confident
that the players rating R is within an interval [R− 2RD,R+ 2RD]. To
apply a rating, multiple games between multiple players within a rat-
ing period (tournament) need to be performed. Before the tournament
starts the ratings, rating deviations and rating volatilities for all players
need to be set. If a player is new or not established, his performance
rating has to be defined first. The experiment was performed with the
Evolutionary Algorithm Rating System (EARS) [5] framework that sup-
ports CRS4EAs. The codes for the different algorithms, problems, and
calculation of quality indicators are available in the jMetal framework
[4] and MOEA framework [11]. Each MOEA represents a chess player
and searches for the best Pareto front approximation for a given prob-
lem represents a chess game. In a game, two MOEAs play against each
other where the outcome is decided when each approximation set is eval-
uated with the given QI. Each player plays multiple games against all
participants in the tournament.

4. Experiment

In this section, the experiment execution and results are presented.
Chess ranking leaderboards of five algorithms with eleven QIs were com-
pared.

4.1 Experimental Settings

In the experiment, five MOEAs were chosen for the tournament:
IBEA [22], MOEA/D [17], NSGA-II [3], PESA-II [2] and SPEA2 [21].
The benchmark contains well-known unconstrained problems from the
CEC 2009 special session and competition on the performance assess-
ment of multi-objective optimization algorithms [18]. Population size

124 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

for all five MOEAs was set to be 100 for all of the 2-objective prob-
lems and 300 for the 3-objective problems, according to [16]. The rest
of parameters setting of the algorithms are set according to the source
code of [4, 11]. The maximum number of evaluations for a problem was
set to 300,000. The number of independent runs of the tournament was
set to 30. For the chess rating, Glickman recommended setting rating
R to 1500, rating deviation RD to 350, and rating volatility σ to 0.06
[6]. A tournament was conducted for each QI. It should be noted that
approximation sets were normalized prior to evaluation since different
objective functions can have a different magnitude.

4.2 Experimental Execution

Figure 2 displays the flowchart of a single execution of the experiment
in EARS. The experiment is conducted in the form of tournaments. Each
tournament consists of k = 5 algorithms {a1, a2, . . . , a5}, N = 10 opti-
mization problems and is performed in n = 30 independent runs. Each
algorithm returns the best solution set for each optimization problem
over n independent runs (k ∗N ∗n results). These results are then eval-
uated with the QI that was given for the current tournament. After
evaluation, the resulting two real values are passed to the interpretation
function. The comparison methods use a single unary QI or a single
binary QI (Fig. 1 a and b). A set {ai, aj}l,m is a single comparison or
a single game between two algorithms ai and aj for the optimization
problem Fl over run m where i, j ∈ {1, . . . , k} , i 6= j, l ∈ {1, . . . , N}
and m ∈ {1, . . . , n}. The solution sets yi and yj from algorithms ai
and aj for the problem Fl on run m are evaluated with the given qual-
ity indicator I and passed to the interpretation function E that defines
the outcome of the comparison. Therefore, one tournament consists of
(k ∗ (k − 1) /2) ∗N ∗n games. At the end of the tournament, the results
are gathered in the forms of wins, losses, and draws. Afterward, the
ratings, rating deviations, and rating volatilities are updated. All the
data is collected and presented on a leaderboard. The tournament was
repeated for each QI, resulting in eleven leaderboards.

4.3 Results and discussion

The results for all QIs are presented in Table 2. All algorithms have
played through the whole tournament for each indicator. For each indi-
cator, there are two rows. The first row contains the final rating and rank
for a given algorithm. The second row contains the 95% confidence in-
tervals. For all players in all tournaments, the rating deviations reached
their minimum value (50) [13]. The low value of RD was achieved with

The Impact of Quality Indicators on the Rating of MOEAs 125

Figure 2: Flowchart of experiment execution in EARS [5].

an adequate number of tournaments, and it indicates that players com-
peted frequently and have a stable rating. As expected, indicators are
not unified in the ranking of algorithms, which is reflected in the devia-
tion from the average rank displayed in the last row. Regardless of the
incoherence in the ranking, some indicators assess the approximations
similarly. Based on similarities in ranking, indicators can be divided
into three groups. The biggest group contains seven indicators: HV ,
IGD, IGD+, Iε+, R2, MS and ∆. The first three indicators have the

126 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 2: Leaderboards of five algorithms with eleven QIs on unconstrained CEC 2009
benchmark problems. For each indicator the rating intervals RI with 95% confidence
(RD ± 2RD) are presented.

IBEA MOEA/D NSGA-II PESAII SPEA2

HV 1380 (5) 1649 (1) 1538 (2) 1461 (4) 1471 (3)
[1280,1480] [1549,1749] [1438,1638] [1361,1561] [1371,1571]

IGD 1228 (5) 1700 (1) 1581 (2) 1453 (4) 1538 (3)
[1128,1328] [1600,1800] [1481,1681] [1353,1553] [1438,1638]

IGD+ 1414 (5) 1605 (1) 1566 (2) 1437 (4) 1478 (3)
[1314,1514] [1505,1705] [1466,1666] [1337,1537] [1378,1578]

Iε+ 1390 (5) 1599 (1) 1522 (3) 1440 (4) 1548 (2)
[1290,1490] [1499,1699] [1422,1622] [1340,1540] [1448,1648]

R2 1287 (5) 1598 (2) 1647 (1) 1400 (4) 1567 (3)
[1187,1387] [1498,1698] [1547,1747] [1300,1500] [1467,1667]

MS 1218 (5) 1624 (2) 1770 (1) 1339 (4) 1549 (3)
[1118,1318] [1524,1724] [1670,1870] [1239,1439] [1449,1649]

∆ 1266 (5) 1570 (3) 1628 (2) 1370 (4) 1667 (1)
[1166,1366] [1470,1670] [1528,1728] [1270,1470] [1567,1767]

CS 1818 (1) 1399 (4) 1287 (5) 1525 (2) 1471 (3)
[1718,1918] [1299,1499] [1187,1387] [1425,1625] [1371,1571]

GD 1848 (1) 1292 (4) 1291 (5) 1622 (2) 1447 (3)
[1748,1948] [1192,1392] [1191,1391] [1522,1722] [1347,1547]

MPFE 1954 (1) 1170 (5) 1339 (4) 1644 (2) 1392 (3)
[1854,2054] [1070,1270] [1239,1439] [1544,1744] [1292,1492]

S 1831 (1) 1158 (5) 1421 (4) 1633 (2) 1457 (3)
[1731,1931] [1058,1258] [1321,1521] [1533,1733] [1357,1557]

x̄ 3.9 2.9 3.1 3.6 3

same ranking. The remaining indicators (Iε+, R2, MS and ∆) have
ranked differently, but there is no significant difference between the al-
gorithms that switched ranks. The other two groups ranked the MOEAs
very differently than the bigger group. If only the ranking is considered,
two pairs of indicators are obtained, which differ only in the rank of
MOEA/D and NSGA− II. Since there is no significant difference be-
tween the fourth and fifth ranking algorithm with the MPFE indicator,
we grouped it with CS and GD. Although S achieved the same rank-
ing as MPFE, it is in a separate group because there is a significant
difference between MOEA/D and NSGA− II. The bigger group con-
tains all three compliant indicators: one strictly Pareto-compliant indi-
cator (HV) and two weakly Pareto-compliant indicators (IGD+ and the
unary Iε+). Since compliant indicators are deemed to be more reliable,

The Impact of Quality Indicators on the Rating of MOEAs 127

we conclude that the ranking of the bigger group is also more reliable. It
is also interesting to note that indicators within the same group do not
evaluate the same aspects of quality. This can be interpreted as indicat-
ing that the resulting approximation sets do not dominate only in one
optimization goal. In Table 2, the rating was used to show the absolute
power of the algorithm over other algorithms, however, the rating inter-
val should also be considered. If the confidence intervals do not overlap,
the algorithms have provided significantly different results, whereas the
converse is not necessarily true.

Figure 3: 95% confidence intervals for IGD (top) and GD (bottom) QI in table 2.

128 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Due to space constraints we plotted the confidence intervals for IGD
and GD (e.g., Fig. 3), which are some of the more popular QIs in lit-
erature. The results can be interpreted by observing ratings and rating
interval. As we can see with the IGD indicator, MOEA/D performed
the best, being significantly better than PESAII and IBEA. On the
last place is IBEA, which performed the worst, being significantly out-
performed by all other algorithms. In contrast, with GD IBEA per-
formed the best by significantly outperforming MOEA/D, NSGAII,
SPEA2, and PESAII. On the second place is PESAII, outperform-
ing MOEA/D and NSGAII, which shares the last place with one point
of difference. It is important to observe that the selected QI ranked the
MOEAs almost in reverse order. This result can be explained by the
property of GD indicator that measures only the convergence of the ap-
proximation set regardless of its spread and uniformity. Furthermore,
the experiment was limited by selected set of problems, MOEAs, and
QIs.

5. Conclusion

In this paper, eleven QIs were compared with CRS4EAs on five dif-
ferent MOEAs, solving unconstrained MOP from the CEC 2009 bench-
mark. For the given experiment, it has been shown that individual QIs
differently rank algorithms even if they evaluate the same aspects of qual-
ity. Therefore, picking coherent indicators is very important. Selected
QIs were categorized into three groups that have insignificant differences
in MOEAs ranking. The biggest group with the state-of-the-art indica-
tor contains ∆, Iε+, HV , IGD, IGD+, R2 and MS indicator. The
other two groups containing CS, GD, MPFE and S indicator returned
very different ranking orders and are not recommended. Because of the
disparity in rankings between indicators, a desired ranking of algorithms
can be achieved with a carefully assembled set of indicators [16]. There-
fore, in order to claim that one algorithm is better, a balanced and fair
set of indicators is recommended. For future work, we would like to
integrate this approach into CRS4EAs and test it on additional diverse
problems for more detailed analysis of QIs.

References

[1] P. A. N. Bosman and D. Thierens. The balance between proximity and diversity
in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 7(2):174–188, 2003.

[2] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates. PESAII: Region-
based selection in evolutionary multiobjective optimization. Proceedings of the

The Impact of Quality Indicators on the Rating of MOEAs 129

Genetic and Evolutionary Computation Conference (GECCO), pages 124-130,
2001.

[3] K. Deb, A. Pratab, S. Agrawal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2), 182–197, 2002.

[4] J. J. Durillo, and A. J. Nebro. jMetal: A java framework for multi-objective
optimization. Advances in Engineering Software, 42(10): 760–771, 2011.

[5] Evolutionary Algorithms Rating System (Github). https://github.com/

matejxxx/EARS, 2016.

[6] M.E. Glickman. Example of the Glicko-2 System. Boston University, 2012.

[7] D. Guoqiang, Z. Huang, and M. Tang. Research in the Performance Assessment
of Multi-objective Optimization Evolutionary Algorithms. Proceedings of the
International Conference on Communications, Circuits and Systems (ICCCAS),
pages 915–918, 2007.

[8] M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to
the nondominated set. Technical Report IMM-REP-1998-7, 1998.

[9] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. Difficulties in specify-
ing reference points to calculate the inverted generational distance for many-
objective optimization problems. Proceedings of the IEEE Symposium on Com-
putational Intelligence in Multi-Criteria Decision Making, pages 170–177, 2014.

[10] M. Li, S. Yang, and X. Liu. Diversity comparison of Pareto front approxi-
mations in many-objective optimization. IEEE Transactions on Cybernetics,
44(12): 2568–2584, 2014.

[11] MOEA Framework - A Free and Open Source Java Framework for Multiobjec-
tive Optimization. http://www.moeaframework.org, 2016.

[12] J. R. Schott. Fault Tolerant Design Using Single and Multicriteria Genetic Al-
gorithm Optimization. Master Thesis, MA: Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, 1995.

[13] N. Veček, M. Mernik, and M. Črepinšek. A chess rating system for evolution-
ary algorithms: A new method for the comparison and ranking of evolutionary
algorithms. Information Sciences, 277(1): 656–679, 2014.

[14] D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analysis, and New Innovations. Ph.D. dissertation, Faculty of the Graduate
School of Engineering , Air Force Institute of Technology, 1997.

[15] D. A. Van Veldhuizen and G. B. Lamont. Evolutionary computation and con-
vergence to a Pareto front. Proceedings of the Genetic Programming Conference,
pages 221-228, 1998.

[16] G. G. Yen and Z. He. Performance metric ensemble for multiobjective evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation, 18(1):131–
144, 2014.

[17] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on Evolutionary Computation, 11(6):712–
731, 2007.

[18] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari. Mul-
tiobjective optimization Test Instances for the CEC 2009 Special Session and
Competition. Technical Report CES-487, 2009.

130 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[19] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. Combining model-based
and genetics-based offspring generation for multi-objective optimization using a
convergence criterion. Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC), pages 892-899, 2006.

[20] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[21] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: improving the strength Pareto
evolutionary algorithm. Technical Report TIK-Report 103, 2001.

[22] E. Zitzler and K. Simon. Indicator-based selection in multiobjective search. Pro-
ceedings of International Conference on Parallel Problem Solving form Nature
(PPSN), pages 832–842, 2004.

[23] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength Pareto approach. IEEE Transactions on Evolution-
ary Computation, 3(4):257-271, 1999.

[24] E. Zitzler and L. Thiele. Performance assessment of multiobjective optimizers:
an analysis and review. IEEE Transactions on Evolutionary Computation, 117–
132, 2003.

BUILDING ENSEMBLES OF SURROGATES
BY OPTIMAL CONVEX COMBINATION

Martina Friese, Thomas Bartz-Beielstein
SPOTSeven Lab, TH Köln, Gummersbach, Germany

martina.friese@th-koeln.de, thomas.bartz-beielstein@th-koeln.de

Michael Emmerich
LIACS, Leiden University, The Netherlands

m.t.m.emmerich@liacs.leidenuniv.nl

Abstract When using machine learning techniques for learning a function approx-
imation from given data it can be difficult to select the right modelling
technique. Without preliminary knowledge about the function it might
be beneficial if the algorithm could learn all models by itself and select
the model that suits best to the problem, an approach known as auto-
mated model selection. We propose a generalization of this approach
that also allows to combine the predictions of several surrogate mod-
els into one more accurate ensemble surrogate model. This approach
is studied in a fundamental way, by first evaluating minimalistic en-
sembles of only two surrogate models in detail and then proceeding to
ensembles with more surrogate models. The results show to what ex-
tent combinations of models can perform better than single surrogate
models and provide insights into the scalability and robustness of the
approach. The focus is on multi-modal functions which are important
in surrogate-assisted global optimization.

Keywords: Ensemble Methods, Function Approximation, Global Optimization, Mo-
del Selection, Surrogate Models.

1. Introduction

Surrogate models are mathematical functions that, basing on a sample
of known objective function values, approximate the objective function,
while being cheaper in terms of evaluation. Such surrogate models can
then be used to partially replace expensive objective function evalua-
tions. Expert systems like SPOT [1] come with a large variety of models
that has to be chosen from when initiating an optimization process.

131

132 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The choice of the right model implies the quality of the the optimization
process.

Often expert knowledge is needed to decide which model to select
for a given problem. If there is no preliminary knowledge about the
objective function it might be beneficial if the algorithm could learn all
by itself which model suits best to the problem. This can be done by
evaluating different models on test data a priori and using a statistical
model selection approach to select the most promising model.

Some occurrences imply that there might also be a benefit in linearly
combining predictors from several models into a more accurate predic-
tor. In Fig. 1 such an occurrence is happening. Predictions with two
different (Kriging) models are shown and results obtained by a convex
combination of the predictors of these models. Different errors seem to
be compensated by the combined model’s predictions.

Figure 1: The black line marks the actual objective function value. The dots show
the results obtained in a leave-one-out cross-validation. Blue and red dots mark the
predictions of single models. The green dots shows predictions obtained with an
optimal convex linear combination of the two predictors.

Building Ensembles of Surrogates by Optimal Convex Combination 133

Such occurrences show that a predictor based on a single modeling ap-
proach is not always the best choice. On the other hand, complicated ex-
pressions based on multiple predictors might not be a good choice, either,
due to overfitting and lack of transparency. Using convex combinations
of predictors from available models seems to be a ‘smart’ compromise.
Given s surrogate models ŷi : Rd → R, i = 1, . . . , s and d the dimension
of the search space, by a convex combination of models we understand
a model given by

∑s
i=1 αiŷi with

∑
αi = 1 and αi ≥ 0, i = 1, . . . , s.

Finding an optimal convex combination of models can be viewed as a
generalization of model selection, where selecting only one model is a
special case. Convex combinations of predictors have also the advantage
that they combine only predictions and can be used for heterogeneous
model ensembles. The main research questions are:

(Q-1) Can convex combinations of predictors improve as compared to
(single) model selection?

(Q-2) Given the answer is positive, what are explanations of the ob-
served behavior?

(Q-3) How can a system be build that finds the optimal convex combi-
nation of predictions on training data?

In order to answer these questions, detailed empirical studies are con-
ducted, starting from simple examples and advancing to more complex
ones. This paper follows a structure, where the discussion of experimen-
tal results follows directly the introduction of the modeling extensions.

2. General Approach and Related Work

To base a decision or build a prediction from multiple opinions is
common practice in our everyday live. It happens in a democratic gov-
ernment, or when in TV shows the audience is asked for help. One also
might use it when we try to build an opinion on a topic that is new to us.
Naturally, such tools already found their way into statistical prediction
and machine learning. In statistics and machine learning an ensemble
is a prediction model from several models, aiming for better accuracy.
A comprehensive introduction to ensemble-based approaches in decision
making is given in [5] and [9]. Generally, there are two groups of ensemble
approaches: the first group’s approaches, the so-called single-evaluation
approaches, only choose and build one single model, whereas the second
group’s approaches, the so-called multi-evaluation approaches, build all
models, and use the derived information to decide which output to use.
For each of these two approaches, several model selection strategies can
be implemented. Well-known strategies are:

134 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Round robin and randomized choosing are the most simplistic im-
plementations of ensemble-based strategies. In the former ap-
proach, the models are chosen in a circular order independent of
their previously achieved gain. In the latter approach, the model
to be used in each step is selected randomly from the list of avail-
able models. The previous success of the model is not a decision
factor.

Greedy strategies choose the model that provided the best function
value so far, while the SoftMax strategy uses a probability vector,
where each element represents the probability for a correspond-
ing model to be chosen [13]. The probability vector is updated
depending on the reward received for the chosen models.

Ranking strategies try to combine the responses of all meta models
to one response, where all meta models contributed to, rather than
to choose one response.

Bagging combines results from randomly generated training sets
and can also be used in function approximation, whereas

Boosting combines several weak learners to a strong one in a stochas-
tic setting.

Weighted averaging approaches do not choose a specific model’s
result but rather combine it by averaging. Since bad models should
not deteriorate the overall result, a weighting scheme is introduced.
Every model’s result for a single design point is weighted by its
overall error, the sum over all models yields the final value assigned
to the design point. A similar approach is stacking, where the
weights are chosen by an additional training step.

The convex model combinations in this paper can be viewed as an elegant
stacking approach and as such is similar to ’ensembles of surrogates’
[7], which however used a fixed rule for determining weights. In our
work weights are optimized globally and the approach is analysed in
a controlled and detailed way. Since most of the black-box real-world
problems considered to be difficult are multimodal, the focus for this
work also is on multimodal function approximation (cf. [8, 10, 12, 14]).

3. Preliminaries

By a surrogate model, we understand here a function ŷ : Rd → R that
is an approximation to the objective function y : Rd → R, learned from
a finite set of evaluations of the objective function. Kriging surrogate

Building Ensembles of Surrogates by Optimal Convex Combination 135

models are used in our study. A set of three different kernels is used to
implement the ensemble strategies. Following the definitions from [11],
the correlation models can be described as follows. We consider station-
ary correlations of the form R(θ, w, x) =

∏n
j=1R(θj , wj − xj). The first

model uses the exponential kernel R(θ, w, x) = exp(−θj |wj − xj |) the
second model uses an Gaussian kernel R(θ, w, x) = exp(−θj |wj − xj |2),
whereas the third model is based on the spline correlation function
R(θ, w, x) = ζ(θj |wj − xj]) with

ζ(εj) =

{ 1− 15ε2j + 30ε3j for 0 ≤ εj ≤ 0.2

1.25(1− εj)3 for 0.2 < εj < 1
0 for εj ≥ 1.

Here, ε and θ are hyperparameters estimated by likelihood maximization.
For generating test functions we use the Max-Set of Gaussian Land-

scape Generator (MSG). It computes the upper envelope of m weighted
Gaussian process realizations and can be used to generate continuous,
bound-constrained optimization problems [6].

G(x) = max
i∈1,2,...,m

(wigi(x)),

where g : Rn → R denotes an n-dimensional Gaussian function

g(x) =

(
exp

(
−1

2(x− µ)Σ−1(x− µ)T
)

(2π)n/2|Σ|1/2

)1/n

,

µ is an n-dimensional vector of means, and Σ is an (n × n) covariance
matrix. Implementation details are presented in [2]. For the generation
of the objective function the spotGlgCreate method of the SPOT pack-
age has been used. The options used for our experiments are shown in
Table 1. With the parameter d the dimension of the objective function
is specified. The lower and upper bounds (l and u, respectively) specify
the region where the peaks are generated. The value max specifies the
function value of the global optimum, while the maximum function value
of all other peaks is limited by t, the ratio between the global and the
local optima.

4. Binary Ensembles

This Section analyses models which combine only two models. Convex
combinations of models will be referred to as ensemble models, while the
original models will be referred to as base models. We focus on positive
weights, since we do not want to select models that make predictions
which are anti-correlated with the results.

136 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1: Gaussian landscape generator options

Parameter Description Value
d Dimension 2− 10
m Number of peaks 10− 40
l Lower bounds of the region, where peaks

are generated
{01, . . . , 0d}

u Upper bounds of the region, where peaks
are generated

{51, . . . , 5d}

max Max function value 100
t Ratio between global and local optima 0.8

A sample of points (design) is evaluated on the objective function
(MSG, for parameters see Table 1). For the sampling of the points a
latin hypercube design featuring 40 design points is generated. The two
base models are Kriging with exponential correlation function (referred
to as a) and Gaussian correlation function (referred to as b). Both base
models are fitted to the data and then asked to do a prediction on the
testdata. The predictions ŷ of the ensemble models are calculated as
convex combinations of the predictions of the base models.

Given a weight αi, where αi ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0}, the ensemble
models can be defined as the linear combinations of the models a and b
as follows:

ŷn = αn × ŷa + (1− αn)× ŷb (1)

The models are evaluated by calculating the root mean squared error
(RMSE) of the predictions made during a leave-one-out cross-validation
on the 40 design points.

Since randomness has been induced into the experiment by using the
latin hypercube design, the evaluation process has been repeated 50
times. With each model returning one prediction for each design point
in every repetition this results in a total of 2000 prediction values (40
design points × 50 repetitions) for each model.

To get a first quick insight into the result data, for each repetition the
rankings of the RMSE’s have been calculated. The models with α = 0.6,
α = 0.8 and α = 0.9 dominate this comparison, each performing best 8
out of 50 times. The base models, a and b, performed best only in four
respectively two cases out of 50. Never an ensemble model with positive
weights was performing worst.

In order to achieve some comparability between the RMSE’s of dif-
ferent repetitions all RMSE’s have been repetition-wise scaled to values
between zero and one, so that the scaled RMSE of the best model in
one repetition is always zero and the scaled RMSE of the worst model

Building Ensembles of Surrogates by Optimal Convex Combination 137

for one repetition is always 1.0. Figure 2 shows the boxplot over these

Figure 2: Boxplot over the scaled RMSE’s of all models. The models are defined by
an α-weighted linear combination of the two base models. The results of the base
models depicted on the outer rows and colored red (exponential kernel), respectively
blue (Gaussian kernel). The model combination chosen as best with α = 0.6 is colored
green. The mean value of each result bar is marked by a dot.

scaled RMSE’s. It can be seen that the model a (exponential) in most
of the cases performs worst since its median is 1.0 - only some outliers
come closer to zero.

Model b (Gaussian) shows a larger variation in its performance. It has
been the best- as well as the worst performing model each at least once.
Its median and mean performances are average in comparison with all
models evaluated. A parabolic tendency can be seen in the performance.

Due to the convex combination of the predictor, a prediction by the
ensemble model cannot be worse but it might be better than both base
models. An ensemble can only be better, if one model overestimates
and the other model underestimates the objective function value. In the
experiment this happens in 649 out of 2000 cases.

As a consistent method for evaluating the performance and automati-
cally choosing the best model the following approach is proposed: Model-
wise mean-, median- and 3rd quartile-values are calculated. The result-
ing values are ranked and the rankings summed up to one final ranking.
The model that achieved the lowest value is recommended as best choice.
In Fig. 2 the model recommended as best choice by this method is col-
ored green.

5. Detailed Analysis on Transparent Test Cases

It can clearly be stated that for this first experiment setup the com-
bination of two models is beneficial for the overall prediction. In this
section we’re going to have a closer look at possible explanations for

138 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the successful result. Are there problem features that encourage using
ensembles and is this result generalizable.

We chose a 1D objective function to allow for a better understanding
of the underlying process. This is the only change in the experimental
setup. The Figs. 1 and 2 from Section 4 depict the main results of
this second experiment setup. Figure 2 shows the scaled RMSE’s for
all models. Applying the rule defined in Section 4 names the model
obtained by a linear combination with α = 0.7 as best choice.

Figure 1 shows only the performance of the best choice model and the
base models. Each dot marks a single prediction made during the leave-
one-out cross-validation. As can be seen in the plot, the predictions
of the model a (exponential), marked by red dots, seem to smooth the
objective function - straight segments are well met while curved segments
are smoothed out.

The predictions of the model b (Gaussian), marked by the blue dots
show signs of overfitting. Again straight segments are well met but
when approaching local extrema the predictions start to oscillate. So
the linear combination of both predictions averages positive as well as
negative outliers of base models. This seems to provide some benefit to
the overall experiment outcome.

Since the curves and corners in the objective function seem to make
the game here, two additional experiments are set up. For these exper-
iments two objective functions are specified featuring corners that are
not continuous differentiable. For one experiment a triangle objective
function is used while the other features a piecewise assembled objective
function. Figure 4a shows the results for the piecewise assembled objec-
tive function. Looking at these results, we again find a strong parabolic
tendency in the boxplot. Both base models have a rather large variance
in their performance. The ensemble model marked as best choice has a
smaller variance and performed better than the base models in nearly
all cases.

The results on the triangle objective function happened to show a clear
tendency towards base model b, which clearly outperformed basemodel
a and thus was chosen best.

6. Ternary Ensembles

Next, the experiments are extended to a larger scale: The dimension-
ality of the objective function is increased and three base models are
combined. As before Kriging models with different kernels are used, but
now a third model using the spline correlation function is added.

αn, βn, γn ∈ {0.0, 0.1, 0.2, ..., 0.9, 1.0}, αn + βn + γn = 1 (2)

Building Ensembles of Surrogates by Optimal Convex Combination 139

Figure 3: Results on a piecewise assembled objective function. Left hand side plot
shows the scaled RMSE‘s. The α value defines the weight for the linear combination.
The ensemble obtained by a linear combination with α = 0.5, here colored green, is
suggested best for this experiment setup. On the right hand side all predictions done
during the leave-one-out cross validation for the base models and the best model are
plotted against the objective function.

For the linear combination of three base models three weights are needed,
that sum up to one as specified in (2). With a step size of 0.1 for the
linear combinations this results in 66 models.

Figure 4a shows the results of the first experiment using three base
models. The only change that has been made to the original experiment
setup, besides the number of base models, is the dimension d of the ob-
jective function and the number of peaks m generated in the Gaussian
landscape. As a first step towards objective functions of higher com-
plexity, the dimension of the objective function has been set to 4. But
this change alone is not sufficient to gain a larger complexity, since with-
out adjusting the number of Gaussian components used for generating
the objective function, it rather gets less complex. Thus the number of
Gaussians process trajectories is adjusted to ten times the dimension.

With the points getting smaller when approaching the center of the
triangle, it can be stated, that again it is beneficial to use a convex
combination of the base models.

7. Scaling-up to multiple models

By now, only experiments with up to three models are carried out,
but the underlying goal is to evolve a system that is able to handle
quite a large set of available base models. But at this point quickly

140 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

another approach is needed, since the number of possible discretised
convex combinations between a higher number of base models grows
exponentially. A recursive formula is given below: There is only one
setting where the first model gets all the weight (first factor in sum).
In all other settings the remaining weight must be distributed on the
remaining models.

f(r, s) = 1 +

r−1∑
r∗=1

f(r − r∗, s− 1), f(r, 1) = 1, f(1, s) = s (3)

The relation between number of models, the step size for the discretised
convex combinations and the resulting number of linear combinations
can be expressed as function of r the reciprocal of the step size and s
the number of models as defined in (3). Using three base models and
a step size of 0.1 as defined in (2) this results in f(10, 3) = 66 linear
combinations. Now thinking of combinations of 10 base models already
results in f(10, 10) = 92378 linear combinations.

The complexity of the search space, when increasing the number of
models, quickly gets too large to do a complete evaluation of all possible
convex combinations with a fixed step size of 0.1. Looking at previous
results, the function that describes the performance of the models built
by convex combinations up to this point only showed unimodal char-
acteristics. This seems to be expectable due to the nature of convex
combinations. We expect the function to show this characteristic also
when combining larger number of models.

Thus, instead of a complete evaluation of all linear combinations, an
optimization step is implemented to find the best combination. The
allowed weights are restricted to a precision of two decimal places. Since
the area around the optimum tends to build a plateau. This reduces the
possible search space without loosing the possible best solution.

For the sake of comparability, the experiment setup here is exactly
the same as the one used in Section 6. Only the process itself changed.
Prior to this experiment, all convex combinations have been evaluated.
Now, only the base models are evaluated initially. Other models are only
evaluated during the optimization. We also stuck to the method used
by the (1+1)-ES of comparing the offspring only to the parent rather
than to the whole population as we did it before.

For the mutation of the weights vector v = (α, β, γ)T three random
samples of a normal distribution function with standard deviation of
0.16 have been drawn and added to the weight vector. Since this alone
does not meet the requirements needed for a valid weight vector, the
resulting vector has been adjusted in three steps:

Building Ensembles of Surrogates by Optimal Convex Combination 141

a) The optimal linear combination has been

found by a complete evaluations of all linear

combinations using a fixed step size of 0.1.

b) QQ-plot of BSifeg.

Figure 4: The plots show the results of the experiment set up with three base models.
Each circle depicts the performance results for one model. The three base models are
located on the corners of the triangle, models gained by linear combinations of only
two models are located on the outer border. Circles on the inner area of the area
show the results for models that were gained by linear combinations of all three base
models. The size of the circles denotes the mean RMSE value, the color the standard
deviation. The model proposed as best choice is marked by an additional white circle.

1 If min(α, β, γ) < 0 then v← v− (min(α, β, γ), . . . ,min(α, β, γ))T ,

2 v← v/(α+ β + γ),

3 Round the values α, β, γ to two decimal places so, that α+β+γ =
1.

For this experiment we allowed a maximum of 100 individuals to be
evaluated. Within these bounds already the 35th evaluated individual
has been the best individual found in this run. Figure 4b depicts the
results of this optimization step. As before, the best individual is marked
by a white circle. However, since determination of optimal weights in the
linear model is a non-linear optimization problem, we cannot guarantee
the optimality of the proposed weights. So far, we have achieved similar
results in repeated runs and on different objective functions. Due to
space constraints, statistical validation is however left to future work.

142 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

8. Discussion and Outlook

Reconsidering the research questions from Section 1, it was shown
that convex linear combinations of predictors can generate better re-
sults than model selection (Q-1). A system, which finds optimal linear
combinations, was presented in Section 4. As a possible explanation a
compensation of outliers was found, an effect that occured in particular
in non-smooth objective functions (Q-2). The corresponding experi-
ments were extended to a larger scale, in terms of dimensionality as well
as number of models, in Section 6 with results indicating that the meth-
ods are scalable (Q-3). Finally, in Section 7, we proposed a method to
include even more base models to the system, showing that evolutionary
optimization can be an effective tool for finding optimal convex combi-
nations. With this method the foundation has been created for a larger
system including all available models. Although research questions (Q-
2) and (Q-3) could be partially answered, larger studies are required to
statistically confirm scalability and find in depth explanations.

In summary, convex combination of models are a promising approach
in situtations where several types of models are available. if the user
does not know, which model to choose, a linear combination might be a
promising approach. An interesting aspect about convex combinations
is that they are easy to interpret and that weights in the linear model
can shed some light on the relevance of certain models and illustrate,
which model is active.

Ideas and questions that will be discussed in future work are:

Experiments featuring more base models, also including other types
of models.

Extensive analysis of the influence of objective function attributes
on the experiment outcome. The results of Section 5 suggest, that
particularly piecewise assembled objective functions might be of
special interest.

Studies also allowing other operations than simple convex com-
binations only: Does increasing the model complexity of model
combinations yield much better results?

Comparing to approaches that chose fixed weights [7].

Acknowledgement: This work has been supported by the Bundes-
ministeriums für Wirtschaft und Energie under the grants KF3145101WM3
und KF3145103WM4. This work is part of a project that has received
funding from the European Unions Horizon 2020 research and innova-
tion program under grant agreement No 692286.

Building Ensembles of Surrogates by Optimal Convex Combination 143

References

[1] T. Bartz-Beielstein. Spot: An r package for automatic and interactive tuning of
optimization algorithms by sequential parameter optimization. Technical Report
05/10, Research Center CIOP (Computational Intelligence, Optimization and-
Data Mining), Cologne University of Applied Science, Faculty of Computer Sci-
enceand Engineering Science, 2010. Comments: Related software can be down-
loaded from http://cran.r-project.org/web/packages/SPOT/index.html.

[2] T. Bartz-Beielstein. How to Create Generalizable Results. In J. Kacprzyk and
W. Pedrycz (Eds.) Springer Handbook of Computational Intelligence, pages
1127–1142. Springer, Berlin Heidelberg, 2015.

[3] H. G. Beyer and H. P. Schwefel. Evolution strategies - A comprehensive intro-
duction. Natural Computing, 1(1):3–52, 2002.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[5] M. Friese, M. Zaefferer, T. Bartz-Beielstein, O. Flasch, P. Koch, W. Konen, and
B. Naujoks. Ensemble-Based Optimization and Tuning Algorithms. Proceedings
of the 21st Workshop Computational Intelligence, pages 119–134, 2011.

[6] M. Gallagher and B. Yuan. A general-purpose tunable landscape generator.
IEEE Transaction on Evolutionary Computation, 10(5):590–603, 2006.

[7] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo. Ensemble of surrogates.
Structural and Multidisciplinary Optimization, 33(3):199–216, 2007.

[8] W. Jakob, M. Gorges-Schleuter, I. Sieber, W. Süß, and H. Eggert. Solving a
Highly Multimodal Design Optimization Problem Using the Extended Genetic
Algorithm GLEAM. In: S. Hernandez, A. J. Kassab, and C. A. Brebbia (Eds.)
Computer Aided Design of Structures VI, pages 205–214, WIT Press, South-
hampton, 1999.

[9] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and
Systems Magazine, 6(3):21–45, 2006.

[10] L. Qing, W. Gang, Y. Zaiyue, and W. Qiuping. Crowding clustering genetic al-
gorithm for multimodal function optimization. Applied Soft Computing, 8(1):88–
95, 2008.

[11] J. S. Søren, N. Lophaven, and H. Bruun Nielsen. Dace - a matlab kriging toolbox.
Technical report, Technical University of Denmark, 2002.

[12] C. Stoean, M. Preuss, R. Stoean, and D. Dumitrescu. Multimodal optimization
by means of a topological species conservation algorithm. IEEE Transactions
on Evolutionary Computation, 14(6):842–864, 2010.

[13] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, 1st edition, 1998.

[14] K.-C. Wong, K.-S. Leung, and M.-H. Wong. Protein structure prediction on a
lattice model via multimodal optimization techniques. Proceedings of the Annual
Conference on Genetic and Evolutionary Computation (GECCO), pages 155–
162, 2010.

THE EXPONENTIAL CROSSOVER
IN L-SHADE ALGORITHM

Radka Poláková
Centre of Excellence IT4Innovations, Institute for Research and Applications of Fuzzy

Modeling, University of Ostrava, Czech Republic

radka.polakova@osu.cz

Abstract Differential evolution is popular and efficient algorithm for global opti-
mization. L-SHADE algorithm is one of the most successful adaptive
versions of the algorithm. It uses only binomial crossover. We study
employing the exponential crossover in the algorithm. Our tests are
carried out on CEC2015 benchmark set for learning-based optimization
competition. According to our results, the employing of the exponen-
tial crossover together with binomial one into L-SHADE algorithm is
beneficial.

Keywords: Binomial crossover, Differential evolution, Evolutionary algorithm, Ex-
perimental comparison, Exponential crossover.

1. Introduction

Differential evolution (DE) is one of the most known and used stochas-
tic algorithms for solving of real-parameter optimization tasks. The
algorithm was proposed by Storn and Price in 1997 [10]. There are
many researchers who are interested in the algorithm, its behavior, and
improvement of its performance [3, 8]. Effectiveness of the algorithm
depends on values of its parameters and different values of control pa-
rameters are often more beneficial in different stage of search process.
These facts are the reasons why many adaptive versions of the algo-
rithm were proposed since differential evolution algorithm appeared,
e.g., [1, 2, 7, 14, 18, 21]. The algorithm presented by Tanabe and Fuku-
naga in 2013 called Success-history based adaptive differential evolution
with linear reduction of population size algorithm (L-SHADE) [13] is
one of the most effective versions of DE up to these days. L-SHADE
employs the most common used type of crossover, binomial one. There
are some studies in which types of crossover used in DE are studied

145

146 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

and discussed, e.g., [15, 16, 17, 19]. Mentioned studies and the facts
claimed in the papers inspired us to study the impact of including the
exponential crossover into L-SHADE algorithm.

In the following two sections, the DE algorithm and L-SHADE al-
gorithm are described. In Section 4, two new versions of L-SHADE
algorithm are introduced. Carried out experiments are described and
results of them are specified and discussed in Section 5. Conclusions are
given in the last section.

2. Differential Evolution

Differential evolution algorithm [10] is one of the most known evolu-
tionary algorithms. DE solves global optimization tasks with continuous
search space. Let us have a real function f : S → R, S ⊂ RD, f is ob-
jective function and DE’s aim is to find global minimum point of f in
S, i.e. such point x∗ that f(x∗) ≤ f(x) holds for all x ∈ S, S is search
space, D is problem dimension. DE works with population P of NP-
points from search space S. The points are chosen randomly from S
with uniform distribution at the beginning of the search process. NP is
the size of population P . Population P then evolves generation by gen-
eration. A new generation is created in the following way. A new point
y ∈ S, so called trial point, is created for each member xi of population
P . If f(y) ≤ f(xi) holds, y replaces xi in population P . Otherwise
xi stays to be a member of population P for next generation. A trial
point y is built up by evolutionary operators mutation and crossover
from some points of current generation of population P . A combination
of a mutation and a crossover is called DE-strategy. An abbreviation
DE/a/b/c is commonly used for a DE-strategy, a is mutation, b is the
number of difference vectors used in the mutation, and c is employed
crossover. The search process is interrupted, when a stopping condition
holds, for example when maximal count of objective function evaluations
is reached.

A mutant u is created by operation mutation for a point xi. There
are many types of mutation used in DE. A mutation is abbreviated by
a/b, where a is type of mutation and b is a count of difference vectors
used in the mutation. The most common mutation is rand/1 (1). The
mutant u is developed from three random points xr1, xr2, xr3 of current
generation of P (r1 6= r2 6= r3 6= i). Scaling factor F ∈ (0, 2] is input
parameter usually set as F ∈ (0, 1]. Current-to-pbest/1 mutation (2) was
proposed by Zhang and Sanderson [21]. The point xpbest is randomly
chosen point from p × 100% best points of population P , p is input

The Exponential Crossover in L-SHADE Algorithm 147

parameter, 0 < p < 1.

u = xr1 + F × (xr2 − xr3), (1)

u = xi + F × (xpbest − xi) + F × (xr1 − xr2). (2)

The trial point y is created from xi and mutant u by a crossover.
Binomial crossover combines coordinates of xi with coordinates of

mutant u into trial point y according to formula (3).

yj =

{
uj if Uj ≤ CR or j = l
xij if Uj > CR and j 6= l ,

(3)

where l is a number randomly chosen from set {1, 2, . . . , D}, U1, U2, . . . , UD
are independent random variables uniformly distributed in [0, 1). Input
parameter CR ∈ [0, 1] is crossover parameter.

In exponential crossover, L (1 ≤ L ≤ D) consecutive coordinates are
moved from mutant u into trial point y. A m is randomly chosen with
uniform distribution from set {1, 2, . . . , D}. Probability of moving of k-
coordinate in sequence {um+k}, 0 ≤ k ≤ (L− 1) into trial point is CRk.
Coordinates, which are not copied into trial point y from u, are copied
from xi.

Binomial crossover is more often employed type of crossover than ex-
ponential one in adaptive versions of DE [1, 7, 9, 12]. The CR parameter
influences the number of elements to be put into y from xi and from u
for both mentioned types of crossover. Let pm is a mutation probability
for a coordinate of xi to be replaced by respective coordinate of mutant
u. Zaharie found [20] that the relation between probability pm and CR
is linear for binomial crossover and strongly non-linear (described by
equality (4)) for exponential crossover.

CRD − D pm CR + D pm − 1 = 0. (4)

Figure 1 illustrates the relations between CR and pm for binomial and
exponential crossover and differences amongst them for dimension D =
30. The DE algorithm is described by pseudo-code in Algorithm 1.

3. L-SHADE Algorithm

The success-history based adaptive differential evolution algorithm
with linear reduction of population size (L-SHADE) proposed by Tanabe
and Fukunaga in 2014 [13] is based on SHADE algorithm [11, 12].

SHADE algorithm [11, 12] uses DE/current-to-pbest/1/bin DE-strategy,
archive A, and an adaptation of control parameters F and CR. It is

148 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 1: The dependence of CR on probability of mutation pm for binomial and
exponential crossover, D = 30

Algorithm 1 Differential evolution algorithm

1: generate an initial population P = (x1,x2, . . . ,xNP), distributed
uniformly in search space

2: evaluate f(xi), i = 1, 2, . . . , NP
3: while stopping condition not reached do
4: Q := ∅
5: for i = 1 to NP do
6: generate a mutant point u by mutation
7: create a trial point y from mutant u and xi by crossover
8: evaluate f(y)
9: if f(y) ≤ f(xi) then

10: insert y into new generation Q
11: else
12: insert xi into new generation Q
13: end if
14: end for
15: P := Q
16: end while

based on JADE [21] algorithm. Archive A is initialized as empty set and
each point xi, which is replaced by its better trial point y, is included
into archive A during the search process. The archive A is adjusted
after each generation to have maximal size of NP, where members for

The Exponential Crossover in L-SHADE Algorithm 149

removing from archive are chosen randomly. xr1 is randomly selected
point from P and xr2 is randomly selected point from P ∪A for current-
to-pbest/1 mutation (2). The p for the mutation is chosen new for each
trial point randomly from interval p ∈ (1/NP, 0.2] in SHADE algorithm.
F and CR are generated before each new trial point is created from

Cauchy and normal distribution, respectively. So called historical circle
memories MF and MCR are implemented for storing several values of the
first parameters of F and CR distributions, respectively. Recommended
value of the memories’ size is H = NP for the SHADE algorithm. Each
member of these both memories is set to value 0.5 at the beginning of the
search process. The memories are updated in the way described below.

When F and CR are needed for a point xi for creation of y, an uniform
random number r is chosen from the set {1, 2, . . . ,H} and F is random
number with Cauchy distribution with parameters (MFr , 0.1) and CR is
random number from normal distribution N(MCRr , 0.1). If generated F
is higher than 1 then F is set to F = 1 and if F ≤ 0 then new value of
F is generated. Generated value of CR is trimmed into interval [0, 1],
i.e. if CR > 1 then CR = 1 and if CR < 0 then CR = 0. If f(y) < f(xi)
holds for trial point y made by the pair of parameters (y is successful),
the F and CR are stored into sets SF and SCR, respectively. The sets
SF and SCR are set as empty sets at the beginning of a generation.

New values of MFk and MCRk (k is current position in MF and MCR)
are computed at the end of the generation from values stored in SF
and SCR, respectively. They are created as weighted means and they
are weighted by differences between values of objective function. The
MFk and MCRk are computed only if there is at least one successful
trial point y in the generation. Then SF = {F1, F2, . . . , F|SF |} and
SCR = {CR1, CR2, . . . , CR|SF |}, note that |SF | = |SCR| holds. The
computation of new values MFk and MCRk is done according to equalities
(5)-(7). meanWL is weighted Lehmer mean and meanWA is weighted
arithmetic mean (6). ym in (7) is successful trial point generated by Fm
and CRm and xm is point of population, which was replaced by trial
point ym.

MFk = meanWL(SF), MCRk = meanWA(SCR),

when SF 6= ∅,
(5)

meanWL(SF) =

∑|SF |
m=1wm F 2

m∑|SF |
n=1wn Fn

, meanWA(SCR) =

|SF |∑
m=1

wm CRm, (6)

wm =
∆fm∑|SF |
h=1 ∆fh

, ∆fm = |f(xm)− f(ym)|, (7)

150 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

At the beginning of the search process, parameter k is set to k = 1.
k is increased by 1 after each computation of MFk and MCRk . If k > H
for such increased k, k is set to k = 1.

L-SHADE algorithm [13] is very similar to SHADE algorithm. The
only differences are the use of linear reduction of the population size NP
and the different setting of some input parameters. The parameter p for
current-to-pbest/1 mutation is set on a constant value, p = 0.11. The
population size is linearly decreasing generation by generation with the
increasing number of the objective function evaluations (FES) during
the search process from NP init at the beginning to NPmin at the end
of the search process, i.e. if allowed number of the function evaluations
(MaxFES) is reached. Relatively big value of NP init is very useful, in
order to ensure the most possible exploration of search space. On the
other hand, small value of NPmin is recommended in order to increase
the length of computation (count of created generations) as possible
and to let the algorithm to specify the solution as possible. The size of
population for generation G+1 is computed according to the formula:

NPG+1 = round

[
NP init − FES

MaxFES
(NP init −NPmin)

]
, (8)

where FES is the current number of the objective function evaluations.
Whenever NPG+1 < NPG, the (NPG − NPG+1) worst individuals are
deleted from the population.

Values of the size of archive A, NP init, NPmin, and the size of histor-
ical circle memories H recommended by authors of [13] are 2.6 × NP ,
NP init = 18 × D, NPmin = 4, and H = 6, respectively. L-SHADE
with mentioned parameter setting was the best DE-version in optimiza-
tion competition on CEC2014 [4, 5]. The L-SHADE algorithm proposed
in [13] is described by pseudo-code in Algorithm 2.

4. Exponential Crossover in L-SHADE

In L-SHADE algorithm, each trial point is created from original point
xi and mutant u by binomial crossover, the more often used type of
crossover in DE. There are studies which focus on the comparison of
using of binomial and exponential crossovers in DE in the literature.
The influence of employing the exponential crossover in competitive dif-
ferential evolution adaptive version of DE was studied in [15, 16]. The
author found that applying both types of crossover brings improvement
for standard functions in comparison with applying only the binomial
crossover. For composition functions, the improvement appeared only
for part of problems in the study. Tvrd́ık [17] claimed that the use
of both types of crossover together makes DE algorithm more robust.

The Exponential Crossover in L-SHADE Algorithm 151

Algorithm 2 L-SHADE algorithm

1: initialization: NP init, NPmin, circle memories MF and MCR, archive
A = ∅

2: NP := NP init

3: generate an initial population P = (x1,x2, . . . ,xNP)
4: evaluate f(xi), i = 1, 2, . . . , NP
5: while stopping condition not reached do
6: set SF and SCR empty; Q = ∅
7: for i = 1 to NP do
8: generate F and CR, use circle memories MF and MCR

9: generate a trial vector y
10: evaluate f(y)
11: if f(y) < f(xi) then
12: save F and CR into SF and SCR
13: insert xi into archive A
14: end if
15: if f(y) ≤ f(xi) then
16: insert y into new generation Q
17: else
18: insert xi into new generation Q
19: end if
20: end for
21: P := Q
22: modify circle memories if needed, use SF and SCR
23: NPold := NP , recompute size of population NP , eq. (8)
24: if NP < NPold then
25: remove superfluous points from population
26: end if
27: end while

Weber and Neri [19] designed a new type of crossover called contigu-
ous crossover. The crossover is similar to exponential crossover and it
was shown on a benchmark set that the DE algorithm with the con-
tiguous crossover is either of the same performance or of slightly better
performance than DE with binomial crossover in the paper. Based on
these works we decided to study a possibility to improve the efficiency
of L-SHADE algorithm by employing the other type of crossover, the
exponential one, in this paper.

The binomial crossover in L-SHADE can be replaced by exponential
crossover or both crossovers could be used together in the algorithm.
Proposed versions of L-SHADE algorithm follow:

152 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

L-SHADEexp – the exponential crossover is employed instead of
the binomial one,

L-SHADEcom – both types of crossover compete.

L-SHADEexp version of L-SHADE algorithm employs the exponential
crossover instead of the binomial one. In historical circle memories,
it stores first parameter of distribution of F and not CR but pm, the
probability which was discussed in Section 2. The memories are labeled
MF and Mpm here. So, when a CR is needed in L-SHADEexp algorithm,
it generates pm from normal distribution N(Mk

pm , 0.1) and then CR is
computed from polynomial (4). Each value included in memory Mpm is
computed similarly as a value included into memory MCR in L-SHADE,
based on successful values of pm. The other features are the same as for
the original L-SHADE algorithm.

Binomial and exponential crossovers compete in L-SHADEcom algo-
rithm. Four historical circle memories, MFb , MCR, MFe , and Mpm , and
four sets are used for storing the first parameters of distributions and for
storing successful values of F and CR of binomial crossover and of F and
pm of exponential crossover, respectively. The crossovers are employed
in dependence on probabilities pb and pe during the search process.

A crossover is chosen according to current values of probabilities pb
and pe independently for each point xi before its trial point y is cre-
ated. Both crossovers have the same probability, pb = pe = 0.5, at the
beginning of the search process. Let sbG and seG are counts of successful
trial points generated by DE/current-to-pbest/1/bin and DE/current-
to-pbest/1/exp DE-strategy during the generation G, respectively. They
are set to sbG = seG = 0 at the beginning of each generation. The first
change of the probabilities pb and pe in the search process and after
each resetting of probabilities occurs when a generation, in which the
first successful trial point was generated, ends. In such case, at least
one of sbG , seG are not equal to zero and probabilities pb and pe can
be adopted according to (9), (10). The sb and se in (9) and (10) are
cumulative counts of successful trial points since the beginning of the
search process or since the last reset of probabilities pb and pe gen-
erated by DE/current-to-pbest/1/exp and DE/current-to-pbest/1/bin
DE-strategy, respectively.

sb = sb + sbG , se = se + seG , (9)

pb =
sb

sb + se
, pe = 1− pb. (10)

If pb or pe is less then δ after such re-computation, probabilities pb and
pe are reset to pb = pe = 0.5 (δ is input parameter) and also cumulative

The Exponential Crossover in L-SHADE Algorithm 153

Table 1: Improvement and deterioration of L-SHADE algorithm by including expo-
nential crossover

dimension D=10 D=30 D=50 D=100 all

algorithm exp com exp com exp com exp com exp com

improvement 9 7 5 5 3 4 1 2 18 18
deterioration 2 1 4 1 5 2 11 4

counts are reset to sb = se = 0. We use value of δ = 0.1 in our experi-
ments. The approach of crossovers’ competition used in L-SHADEcom
is undertaken from competition of DE-strategies which was proposed for
competitive-adaptive version of DE [14].

5. Experiments and Results

Two proposed modifications L-SHADEexp and L-SHADEcom were
compared experimentally with L-SHADE algorithm on benchmark set
developed for learning-based real-parameter optimization competition
on CEC2015 according to conditions defined in [6]. This benchmark set
includes 15 different problems of different complexity. Tests were done
in dimensions D = 10, 30, 50, 100. 51 independent runs were curried out
for each function, each dimension, and for each of studied algorithms.
The algorithms were stopped according to conditions defined in [6] when
MaxFES was reached, MaxFES = D × 104. Tested algorithms were
implemented in Matlab 2010a and this environment was used for ex-
periments. All computations were carried out on a standard PC with
Windows 7, Intel(R) Core(TM)i7-4600U CPU, 2.10GHz, 2.70GHz, 8 GB
RAM.

The results of our experiments are summarized in Table 2 for D = 10
and D = 30 and Table 3 for D = 50 and D = 100. In these tables,
best and worst error value, median, mean, and standard deviation of
error value of 51 solutions are shown for each benchmark function. The
L-SHADE algorithm is referred as orig, L-SHADEexp as exp, and L-
SHADEcom as com in the tables. Some results are released from tables.
In each released case, the algorithm found the optimum in all runs.

After experiments, we compared statistically results of each of pro-
posed algorithms, L-SHADEexp and L-SHADEcom, with results of orig-
inal L-SHADE algorithm. Results were compared by Wilcoxon two-
sample test. We did the experiments in that way, because we want to

154 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 2: Results of L-SHADE versions, D=10 and D=30

D=10 D=30
f/Alg. Best Worst Median Mean Std W Best Worst Median Mean Std W

3/orig 1.2410 20.017 20.007 17.599 6.092 20.061 20.147 20.105 20.108 0.0207
exp 0 20.034 20.001 17.330 6.778 + 20 20.233 20.144 20.123 0.0682 −
com 0 20.020 20.003 16.901 7.275 = 20.002 20.209 20.102 20.107 0.0400 =

4/orig 1.9903 5.9714 3.9800 3.4941 1.002 17.050 31.191 25.097 24.945 3.203
exp 0.9950 4.9748 2.9849 3.1409 0.8982 + 18.930 33.997 25.880 25.840 3.216 =
com 0 4.9748 2.9849 2.8873 1.076 + 15.931 31.841 24.878 24.461 3.458 =

5/orig 3.7571 141.20 15.539 29.952 38.81 741.77 1720.1 1242.3 1291.4 224.0
exp 0.24982 229.91 21.825 44.752 54.35 = 1037.8 1899.8 1436.2 1437.0 224.4 −
com 0.18736 137.10 18.597 40.783 45.16 = 911.91 1764.5 1332.7 1345.9 195.6 =

6/orig 0.58746 9.2417 3.2384 3.5703 1.853 36.118 376.13 197.06 205.30 81.01
exp 0 3.1930 0.4163 0.7743 0.7122 + 32.137 504.58 181.66 194.85 94.57 =
com 0 11.381 1.2031 1.2895 1.680 + 40.539 522.78 188.30 195.37 109.3 =

7/orig 0.06386 0.48082 0.23807 0.24376 0.09122 5.7896 7.4667 6.8496 6.8049 0.3729
exp 0.02683 0.35244 0.09512 0.12774 0.08196 + 3.9795 7.0493 5.8237 5.7711 0.8452 +
com 0.03655 0.34547 0.12036 0.14226 0.07815 + 4.1992 7.5321 6.5885 6.4734 0.6624 +

8/orig 0.19264 2.9792 0.7688 0.9609 0.6209 15.473 270.83 52.018 55.845 38.11
exp 5.84E-04 0.8094 0.1052 0.2100 0.2217 + 8.9945 262.85 31.222 42.878 42.21 +
com 4.47E-05 0.6461 0.0348 0.1126 0.1586 + 7.7778 100.43 33.710 38.370 18.72 +

9/orig 100 101.052 100 100.073 0.2523 105.911 108.333 107.076 107.100 0.5177
exp 100 100 100 100 1.05E-06 + 101.552 106.51 105.908 105.722 0.8040 +
com 100 100 100 100 5.27E-06 + 104.969 106.833 106.175 106.162 0.3326 +

10/orig 140.701 179.010 143.109 148.704 10.88 516.284 741.962 616.434 623.758 56.01
exp 140.701 152.292 140.708 141.895 2.364 + 533.549 681.669 612.689 604.962 42.55 =
com 140.701 152.292 140.708 142.302 3.429 + 516.315 761.666 614.993 619.535 53.46 =

11/orig 2.1630 4.2013 3.0709 3.0603 0.4503 316.02 623.18 556.30 527.88 82.78
exp 1.8998 300 2.7454 8.5156 41.63 + 300.39 586.63 418.90 415.99 70.62 +
com 1.5598 301.22 2.8664 8.7553 41.78 = 300.35 613.67 492.17 471.17 93.43 +

12/orig 110.918 112.724 112.166 112.106 0.3543 108.57 110.17 109.36 109.39 0.3637
exp 109.863 112.135 111.766 111.665 0.3870 + 107.55 109.95 108.95 108.94 0.4547 +
com 111.284 112.445 111.890 111.870 0.2944 + 108.40 110.02 109.17 109.21 0.3842 +

13/orig 0.0925 0.1072 0.0927 0.0940 0.0034 0.0104 0.0109 0.0107 0.0107 1.08E-04
exp 0.0927 0.1072 0.0927 0.0938 0.0032 = 0.0104 0.0115 0.0107 0.0107 1.99E-04 =
com 0.0925 0.1028 0.0927 0.0942 0.0033 = 0.0104 0.0115 0.0107 0.0107 1.59E-04 =

14/orig 6662.87 6677.01 6670.66 6667.95 4.606 33760 42628 42559 41524 2863
exp 6662.87 8706.43 6670.66 6707.38 285.6 = 33760 43477 42572 40052 4107 =
com 6662.87 6677.01 6670.66 6668.97 4.616 = 33760 43507 42564 41124 3453 −

15/orig 100 100 100 100 1.04E-13 100 100 100 100 1.54E-13
exp 100 100 100 100 1.11E-13 = 100 100 100 100 1.15E-13 =
com 100 100 100 100 1.16E-13 = 100 100 100 100 1.28E-13 =

match the comparisons and to know which algorithm (L-SHADEexp or
L-SHADEcom) is better compared to original L-SHADE algorithm. The
results of curried out statistical tests are depicted in the last column W
of Tables 2 and 3. The symbol + means the proposed algorithm reached
statistically better results than L-SHADE algorithm. The symbol −
means proposed algorithm reached statistically worse results than orig-
inal algorithm and the symbol = means the null hypothesis of equality
of compared results was not reject, which means the compared results
are statistically the same. The significance level for all these statistical
tests was set to 0.05.

The Exponential Crossover in L-SHADE Algorithm 155

Table 3: Results of L-SHADE versions, D=50 and D=100

D=50 D=100
f/Alg. Best Worst Median Mean Std W Best Worst Median Mean Std W

1/orig 78.652 14738 1219.4 2179.8 2739 71420.7 458246 190437 209140 78742
exp 2.6667 13937 308.18 683.52 1971 + 78354.4 425687 179440 191968 73104 =
com 48.845 6529.6 628.30 1146.0 1371 + 76537.9 446651 180135 196822 73819 =

2/exp 0 0 0 0 0 = 2.07E-08 0.0003 1.75E-06 1.15E-05 3.95E-05 −

3/orig 20.170 20.272 20.228 20.227 0.0253 20.455 20.566 20.507 20.507 0.0248
exp 20.014 20.363 20.291 20.273 0.0855 − 20.33 20.684 20.607 20.594 0.0682 −
com 20.070 20.309 20.235 20.235 0.0473 − 20.44 20.602 20.531 20.527 0.0343 −

4/orig 38.346 59.506 48.637 49.333 4.645 88.206 127.595 108.236 109.062 8.663
exp 37.377 70.059 56.652 55.402 6.650 − 104.374 171.201 143.391 145.008 15.07 −
com 32.170 60.880 50.514 50.250 5.762 = 94.656 551.98 120.002 159.407 124.1 −

5/orig 2224.5 3567.9 3052.0 3003.6 284.0 9186.21 11384.5 10640.7 10620.2 495.6
exp 2579.1 4052.2 3278.0 3296.8 345.3 − 9834.50 13177.3 11706.4 11787.3 794.5 −
com 2212.3 3687.3 2935.1 2995.7 319.1 = 9618.73 11910.4 10728.7 10716.0 496.3 =

6/orig 1108.7 2836.1 1900.9 1936.9 405.9 3421.72 6566.71 5256.00 5153.89 679.0
exp 783.01 2987.6 1896.5 1926.0 420.2 = 3112.02 6514.91 5084.10 5003.51 722.4 =
com 941.08 2808.0 1762.7 1816.9 397.4 = 3538.54 6507.46 4878.57 4937.39 646.9 +

7/orig 39.677 41.762 40.773 40.725 0.4668 94.895 145.193 138.019 129.696 17.73
exp 39.620 43.621 40.532 40.591 0.6663 = 96.743 145.853 136.749 124.063 19.89 =
com 38.893 42.902 40.514 40.542 0.7200 = 96.502 147.274 138.728 128.748 18.64 =

8/orig 15.663 758.21 401.87 398.05 178.4 1197.98 3897.73 2567.07 2515.14 631.2
exp 19.681 916.09 409.65 420.22 210.6 = 1326.36 4183.82 2441.61 2526.49 573.9 =
com 129.57 976.46 395.16 424.10 222.1 = 1215.19 3818.94 2469.14 2427.91 599.0 =

9/orig 102.50 103.09 102.789 102.80 0.1308 110.513 111.694 111.143 111.102 0.3254
exp 102.15 102.85 102.55 102.52 0.1767 + 107.8 110.451 109.122 109.130 0.5063 +
com 102.43 103.02 102.71 102.71 0.1511 + 109.009 110.974 109.808 109.883 0.4875 +

10/orig 642.96 1689.8 1212.0 1185.9 241.0 3376.98 5300.79 3972.90 3987.88 456.5
exp 783.37 1765.7 1209.4 1240.7 254.9 = 2888.30 4936.66 3919.99 3874.98 471.00 =
com 791.32 1916.9 1221.5 1233.8 238.0 = 2704.49 4759.48 4001.3 3948.59 451.8 =

11/orig 400 453.65 421.21 416.31 15.78 433.244 655.634 514.352 514.825 41.00
exp 400 457.41 433.12 424.47 18.62 − 412.963 693.160 560.684 559.924 59.53 −
com 400 473.15 421.21 418.78 19.97 = 447.131 666.403 510.977 526.472 52.46 =

12/orig 115.20 201.54 115.83 127.53 29.81 112.507 200.406 113.395 116.759 17.07
exp 114.97 201.55 115.68 129.15 31.54 = 112.561 200.409 113.373 118.504 20.68 =
com 115.19 201.54 115.59 122.45 23.32 + 112.476 200.406 113.363 116.721 17.08 =

13/orig 0.0248 0.0256 0.0250 0.0251 1.60E-04 0.0613 0.0658 0.0633 0.0632 9.82E-04
exp 0.0245 0.0257 0.0250 0.0250 2.62E-04 = 0.0603 0.0661 0.0635 0.0633 0.0014 =
com 0.0246 0.0255 0.0250 0.0250 1.70E-04 + 0.0610 0.0652 0.0633 0.0633 0.001 =

14/orig 52657 52714 52682 52682 15.55 108833 108955 108875 108874 20.46
exp 52657 52716 52678 52673 15.87 + 108833 108955 108874 108875 19.52 =
com 52657 52727 52681 52680 16.58 = 108855 108910 108871 108873 13.44 =

15/orig 100 100 100 100 1.35E-13 100 100 100 100 1.23E-13
exp 100 100 100 100 1.24E-13 = 100 100.388 100 100.014 0.0721 =
com 100 100 100 100 1.19E-13 = 100 100.388 100 100.008 0.0547 =

Summarization of statistically significant improvement and deterio-
ration of L-SHADE algorithm by including exponential crossover is de-
picted in Table 1. The replacement of binomial crossover in L-SHADE
algorithm by exponential crossover caused significant improvement for
almost two thirds of benchmark functions in dimension D = 10, but the
count is less for higher dimensions. Additionally, the count of bench-
mark functions, for which deterioration of results appeared, increases
with increasing dimension for the L-SHADEexp algorithm. In case of

156 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

including of the crossover competition, L-SHADEcom algorithm, the
count of problems, where solution is significantly better than solution of
original algorithm, is less than in case of mere replacement of binomial
crossover by exponential one in D = 10 and for higher dimensions, the
count is again less than the count for dimension D = 10. However, there
is less count of problems, which results are statistically worse than results
of L-SHADE algorithm for L-SHADEcom algorithm than for algorithm
L-SHADEexp. Thus, we can conclude that including of the exponential
crossover into algorithm L-SHADE in the way of competition with bi-
nomial one brings better results than only the replacement of binomial
crossover by exponential one, which was expected. The algorithm, in
which the competition of strategy is employed, can choose appropriate
crossover type to solved optimization problem or current stage of pro-
cess. L-SHADEcom significantly improved the results of L-SHADE in
18 of 60 problems, significant deterioration of results appeared in 4 of
60 tested problems.

Nevertheless, the employing both type of crossover does not increase
the performance of L-SHADE algorithm too substantially and does not
solve the issue of algorithm’s stagnation. The issue of stagnation relates
not only to L-SHADE algorithm and our version L-SHADEcom of the
algorithm but also to the other adaptive versions of DE. To solve the
phenomenon of optimization algorithms’ stagnation is not easy task.
Discussing adaptive DE-versions, maintenance of population diversity
which would be useful for searching different solutions in the search
space stands against the convergency of algorithm.

6. Conclusion

The L-SHADE algorithm is successful version of differential evolution
algorithm, only the binomial crossover is employed in the algorithm. In
this paper, we studied the including of other type of crossover introduced
by authors of DE algorithm, the exponential one. We proposed two
versions of L-SHADE algorithm in which we used either only exponen-
tial crossover or both crossovers together and tested them on CEC2015
benchmark set. According to our results, the employing of the two types
of crossover into L-SHADE algorithm is beneficial but it does not solve
the issue of DE’s stagnation, which remains for further work.

Acknowledgments This work was supported by the project LQ1602
IT4Innovations excellence in science and partially supported by Univer-
sity of Ostrava from the project SGS08/UVAFM/2016.

The Exponential Crossover in L-SHADE Algorithm 157

References

[1] J. Brest, S. Greiner, B. Boškovič, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: A comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10:646–657, 2006.

[2] S. Das, A. Ghosh, and S. S. Mullick. A switched parameter differential evolution
for large scale global optimization – simpler may be better. Proceedings of the
International Conference on Soft Computing MENDEL, pages 103–125, 2015.

[3] S. Das and P. N. Suganthan. Differential evolution: A survey of the state-of-the-
art. IEEE Transactions on Evolutionary Computation, 15:27–54, 2011.

[4] J. J. Liang, B. Qu, and P. N. Suganthan. Problem definitions and evaluation
criteria for the CEC2014 special session and competition on single objective
real-parameter numerical optimization. [online] http://www.ntu.edu.sg/home/
epnsugan/, 2013.

[5] J. J. Liang, B. Qu, and P. N. Suganthan. Ranking results of CEC2014 special
session and competition on real-parameter single objective optimization, 2014.

[6] J. J. Liang, B. Y. Qu, and P. N. Suganthan. Problem definition and evaluation
criteria for the CEC2015 competition on learning-based real-parameter single
objective optimization, 2014.

[7] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren. Differen-
tial evolution algorithm with ensemble of parameters and mutation strategies.
Applied Soft Computing, 11:1679–1696, 2011.

[8] F. Neri and V. Tirronen. Recent advances in differential evolution: A survey and
experimental analysis. Artificial Intelligence Review, 33:61–106, 2010.

[9] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation, 13:398–417, 2009.

[10] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11:341–359, 1997.

[11] R. Tanabe and A. Fukunaga. Evaluating the performance of SHADE on CEC
2013 benchmark problems. Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pages 1952–1959, 2013.

[12] R. Tanabe and A. Fukunaga. Success-history based parameter adaptation for
differential evolution. Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC), pages 71–78, 2013.

[13] R. Tanabe and A. Fukunaga. Improving the search performance of SHADE
using linear population size reduction. Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), pages 1658–1665, 2014.

[14] J. Tvrd́ık. Competitive differential evolution. In R. Matoušek and P. Ošmera
(Eds.), Proceedings of the International Conference on Soft Computing
MENDEL, pages 7–12, 2006.

[15] J. Tvrd́ık. Adaptive differential evolution and exponential crossover. Proceed-
ings of the International Multiconference on Computer Science and Information
Technology (IMCSIT), pages 927–931, 2008.

158 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[16] J. Tvrd́ık. Adaptation in differential evolution: A numerical comparison. Applied
Soft Computing, 9(3):1149–1155, 2009.

[17] J. Tvrd́ık. Self-adaptive variants of differential evolution with exponen-
tial crossover. Analele of West University Timisoara, Series Mathematics-
Informatics, 47:151–168, 2009.

[18] J. Tvrd́ık and R. Poláková. Competitive differential evolution applied to CEC
2013 problems. Proceedings of the IEEE Congress on Evolutionary Computation
(CEC), pages 1651–1657, 2013.

[19] M. Weber and F. Neri. Contiguous binomial crossover in differential evolution.
Lecture Notes in Computer Science, 7269:145–153, 2012.

[20] D. Zaharie. Influence of crossover on the behavior of differential evolution algo-
rithms. Applied Soft Computing, 9:1126–1138, 2009.

[21] J. Zhang and A. C. Sanderson. JADE: Adaptive differential evolution with
optional external archive. IEEE Transactions on Evolutionary Computation,
13:945–958, 2009.

ENHANCED SHADE AND
REAL-WORLD OPTIMIZATION
PROBLEMS

Petr Bujok, Josef Tvrdik
Department of Computer Science, University of Ostrava, Czech Republic

petr.bujok@osu.cz, josef.tvrdik@osu.cz

Abstract An enhanced adaptive differential evolution algorithm is described and
applied to the CEC 2011 test suite of real-world optimization problems.
The new algorithm combines success-history based adaptation known
from SHADE and the competition of the various strategies in differential
evolution. The comparison of the newly proposed algorithm (called
SHADE4) with the algorithm winning in CEC 2011 competition shows
that the new algorithm performs significantly better in 11 out of 22
test problems and worse only in four problems. The performance of
SHADE4 was also significantly better than the original SHADE. The
new algorithm is almost control-parameter free, which is helpful to its
usage in the solution of the real-world problems.

Keywords: CEC 2011 real-world test problems, Competing strategies, Differential
evolution, Experimental comparison, Success-history adaptation.

1. Introduction

A new adaptive variant of differential evolution (DE) (called SHADE4
hereafter) is applied to the real-world optimization problems collected
in the CEC 2011 test suite [5]. Our experimental results are compared
with the results of the standard DE/randrl/1/bin algorithm, the winner
of CEC 2011 competition of algorithm [7] and the original SHADE algo-
rithm. SHADE4 algorithm combines two adaptive mechanisms, namely
the success-history based parameter adaptation used in SHADE [17] and
the competition of strategies proposed in [18]. The aim of the paper is to
present the performance of SHADE4 algorithm on the real-world opti-
mization test suite and to demonstrate that the research of new adaptive
variants of evolutionary algorithms is beneficial for real-world applica-
tions.

159

160 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

We consider the single-objective global optimization problem with the
bound constraints defined as follows. The cost function to be minimized
is f(x), x = (x1, x2, . . . , xD) ∈ RD. The domain of a feasible solutions
Ω is constrained by bounds, a lower limit (aj) and an upper limit (bj),

Ω =
∏D
j=1[aj , bj], aj < bj , j = 1, 2, . . . , D. The global minimum point

x∗ satisfying condition f(x∗) ≤ f(x), ∀x ∈ Ω, is the solution of the
problem.

The rest of the paper is organized in the following manner. The basic
scheme of DE algorithm is shown in Section 2. An adaptive SHADE,
from which the new algorithm was inspired, is presented in Section 3. A
newly proposed SHADE4 algorithm is described in Section 4. Settings
of experiments and the results are given in Section 5 and 6. Finally, the
conclusions are made in Section 7.

2. Differential Evolution

Differential evolution introduced by Storn and Price in [15] is a popula-
tion-based evolutionary algorithm for problems with a real-valued cost
function. The population P of the size N is developed step-by-step from
a generation to a generation. DE uses evolutionary operators, i.e., mu-
tation, crossover, and selection that are applied in the development of
new generation of P .

The new trial point y is created from a mutant point u generated by
using a kind of the mutation and from the current point of the population
xi by the application of the crossover. A combination of the mutation
and the crossover variant is usually called DE strategy. A better point
from the pair of xi, y, based on the value of the cost function, is selected
for the new generation.

The DE algorithm has only a few parameters whose settings sig-
nificantly influence the ability to solve various optimization problems.
These control parameters and their settings have been studied inten-
sively in recent years. A comprehensive summary of advanced results in
DE research is available in [6, 11], where several kinds of the mutation
and the crossover were listed and some adaptive or self-adaptive DE
variants are described. Adaptive variants of DE, e.g., [1, 2, 8, 13, 23]
enable the change of DE control-parameters during the run of the al-
gorithm to the current problem without trial-and-error tuning of the
control parameters. Some other adaptive DE variants like [10, 14, 21]
use several DE strategies or control-parameter settings and select among
them adaptively with respect to the previous progress of the search.

Enhanced SHADE and Real-World Optimization Problems 161

3. SHADE Variant of Differential Evolution

Success-History Based Parameter Adaptation for Differential Evolu-
tion (SHADE) algorithm was proposed by Tanabe and Fukunaga in
2013 [17] and proved to be the best performing DE variant in CEC 2013
competition. SHADE was derived from the original algorithm Adaptive
Differential Evolution With Optional External Archive (JADE) pro-
posed by Zhang and Sanderson in 2009 [25]. The main extension of
SHADE compared to original JADE is in a history-based adaptation
of the control parameters F and CR. Both JADE and SHADE variants
use an efficient current-to-pbest mutation variant, where the new mutant
vector ui is generated from four mutually different individuals of P – the
current individual xi, randomly chosen individual from the p best points
xpbest, randomly selected point xr1 from P and randomly selected point
xr2 from P

⋃
A, as it is formed in the equation (1). A unification of

the current population P and archive population A of old outperformed
promising solutions aims at preventing DE algorithm to stuck in the
local minimum.

ui = xi + Fi (xpbest − xi) + Fi (xr1 − xr2) (1)

where the point xpbest is randomly selected from the p best points of P
and Fi is a scale factor (0 ≤ F ≤ 1) which value is adapted during the
search as is described in Algorithm 1.

Differently to JADE, the parameter of p for selecting the xpbest in
SHADE is generated randomly for each point of the population from
uniform distribution according to the equation (2):

pi = rand[2/N, 0.2], (2)

and xpbest is a point selected from the pi × 100 % best points of P .
After the mutation, a binomial crossover operation with CR parameter,
(0 ≤ CR ≤ 1) which value is adapted during the search as is described
in Algorithm 1, is used for generating the trial point yi (3).

yi,j =

 ui,j if randj(0, 1) ≤ CR or j = rand(1, D)

xi,j otherwise.
(3)

The changed coordinates are dispersed uniformly over the dimensions
1 , 2, . . . , D. The crossover operator combines selected elements of mu-
tant vector ui and the current individual xi in order to get a trial vector
yi. SHADE algorithm uses only current-to-pbest/bin DE strategy.

If the function value of the newly composed trial point f(yi) is better
than the f(xi), the new point yi replaces the old one and the old solution

162 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

xi is inserted into archive A. The values of the successfully used control
parameters F and CR are also stored into auxiliary memories SF and
SCR.

When the size of the archive exceeds the size of the population P ,
excessive randomly chosen points are deleted from the archive A. The
purpose of the archive is to store old solutions from the previous gener-
ations and use them for the mutation according to (1).

The circle memories MF and MCR for generating new values of the
control parameters F and CR are updated on the current position t,
based on the stored successful values from auxiliary memories SF and
SCR. In particular, the new value of MCR is computed as a weighted
arithmetic mean of the current values in SCR (4) with the weights wk (6)
and the new value of MF is computed as weighted Lehmer mean of the
current values from SF (5).

MF,t =

∑|SF |
k=1 wk S

2
F,k∑|SF |

k=1 wk SF,k
, (4)

MCR,t =

|SCR|∑
k=1

wk SCR,k, (5)

wk =
∆fk∑|SCR|
j=1 ∆fj

. (6)

The values of ∆fk are computed as a difference between the cost function
of the current point xk and the new trial point yk. The values of MF

and MCR remain the same if no successful point was created in the last
generation. Update of values in MF and MCR is carried out at the
position t, t = 1 at the beginning of the search and t is incremented by
one after each updating of an element of MF and MCR. If t > H then t
is reset to t = 1, where H is the size of MF and MCR.

SHADE algorithm was the best performing DE variant in CEC 2013
competition [16]. However, even SHADE fails in some hard problems
defined by composition of several multi-modal functions, especially in
rotated functions of high level of dimension.

4. Competing Strategies in SHADE Algorithm

We studied different types of mutation and crossover. In SHADE, only
one DE strategy, namely the current-to-pbest/bin DE strategy with the
binomial crossover (3) is used. Some results [19, 24] show that the ex-
ponential type of crossover (9) or a different variant of mutation can be
efficient in problems where the standard variant with binomial crossover

Enhanced SHADE and Real-World Optimization Problems 163

performs poorly. It was shown that even only replacement of the bino-
mial crossover with the exponential one can increase performance of the
SHADE algorithm [4]. Based on these results, we propose an enhanced
SHADE algorithm with the competition of DE strategies. We suppose
that the competition of different DE strategies can increase the efficiency
of the search in situations, where variant with only one strategy fails.

The scheme for selecting variant of the DE strategies is taken from
the competitive DE [18, 20]. Let us have K strategies and each DE
strategy has its value of probability qk to be used and the values of
qk are updated according to the success of the corresponding strategy
in previous generations. Thereafter, a more successful strategy is used
more likely than a strategy which is rarely able to generate successful
individuals.

qk =
nk + n0∑K

j=1 (nj + n0)
, (7)

where qk is probability of use of the kth DE strategy, nk is the current
count of the kth DE strategy successes, n0 is an input parameter to
prevent from a dramatic change in qk and all probabilities are reset to
starting uniformly distributed values if any qk decreases below a given
δ, δ > 0.

Beside the current-to-pbest/bin strategy used in SHADE the strategies
using different mutation and different crossover are selected for competi-
tion. The mutation (called randrl/1) which was proposed by Kaelo and
Ali [9] has appeared efficient [3, 12, 19]. This mutation scheme (8) is
based on the popular rand/1 mutation, where three mutually different
points r1, r2, and r3 that are randomly selected from P .

u = rx1 + F (rx2 − rx3), (8)

where in contrast to rand/1 the point rx1 is tournament best among r1,
r2, and r3, i.e., f(rx1) ≤ f(rxj), j = 2, 3.

The exponential crossover in DE is defined by the following rule:

yi,j =

 ui,j for j = 〈n〉D, 〈n+ 1〉D, . . . , 〈n+ L− 1〉D
xi,j otherwise,

(9)

where the brackets 〈〉D represent the modulo function with modulus
D. The starting position of crossover (n) is chosen randomly from
{1, . . . , D}, and L consecutive elements (counted in a circular manner)
are taken from the mutant vector ui. Thus, L adjacent elements are
changed in exponential crossover and the probability of replacing the
kth element in the sequence 1, 2, . . . , L, L ≤ D, decreases exponentially

164 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

with increasing k in dependence on CR, next element is replaced if
randj(0, 1) < CR. The relationship between CR and the mean value
of L was derived by Zaharie [24].

When we combine the aforementioned types of mutation and crossover,
we obtain four different DE strategies to compete. Other components
of SHADE algorithm remain unchanged, i.e., archive A of outperformed
good solutions and way of adaptation of the control parameters F and
CR. All the strategies in the competition use the common MF and MCR

memories.
The advantage of this scheme is ability to adapt the search to the

currently solved problem. A pseudo-code of SHADE variant with com-
petition of four DE strategies is illustrated in Algorithm 1. Operators
randn and randc generate random numbers from normal and Cauchy
distribution, respectively.

At the beginning, a population of N potential solutions is generated
distributed uniformly in the search area. Then all H values of both
historical memories MCR,t and MF,t, t = 1, 2, . . . ,H for generating the
control parameters CR and F are initialized to 0.5, where the learning
rate H is an input parameter. The archive A for storing the old good
solutions is set as empty.

Temporary memories SF and SCR for saving the successful values of
the control parameters F and CR are set empty in each generation. The
values of distribution parameters needed for random updating of F and
CR are chosen randomly from MF and MCR for each point of the pop-
ulation. F is generated from Cauchy distribution with the parameters
(MF,ri , 0.1) and CR is generated from the normal distribution with the
mean value MCR,ri and standard deviation 0.1, where ri is randomly
selected index from {1, 2, . . . ,H}. The unfeasible values of F and CR
are regenerated according to the rules of JADE algorithm [25].

After setting the control parameters of mutation and crossover, a new
trial vector yi is constructed applying the selected DE strategy (one
of the four in the competition) to the current parent vector xi. It is
obvious that only current-to-pbest mutation variant can use archive A.
On the other hand, any of applied the four DE strategies can insert
outperformed old parent vector xi into archive A.

At the beginning of SHADE4, the counters of successes of the DE
strategies are set to zero, which results in equal values qk = 1/K for
k = 1, 2, . . . ,K. K = 4 is the number of the DE strategies. After each
successful generating a trial point yi, the counter of DE strategy cur-
rently used is increased by one. After each generation, the probabilities
are updated based on the counters of the successes (7).

Enhanced SHADE and Real-World Optimization Problems 165

Algorithm 1 SHADE with competition of DE strategies (SHADE4)

initialize population P = (x1,x2, . . . ,xN)
evaluate f(xi), i = 1, 2, . . . , N
set all MCR and MF to 0.5
initialize empty archive A
while FES < MaxFES do

initialize SCR, SF empty
for i = 1, 2, . . . , N do

select ri randomly from {1, 2, . . . ,H}
CRi = randn(MCR,ri , 0.1)
Fi = randc(MF,ri , 0.1)
pi = rand[2/N, 0.2]
generate trial vector yi by selected DE strategy (roulette wheel)
if f(yi) ≤ f(xi) then

insert yi into Q
else

insert xi into Q
end if
if f(yi) < f(xi) then

xi → A
CRi → SCR, Fi → SF
increase counter of the DE strategy success

end if
end for
if size(A) > size(P) then

delete randomly chosen individuals from A
end if
if size(SCR) > 0 and size(SF) > 0 then

update MCR and MF based on SCR and SF
end if
P ← Q

end while

Finally, MF and MCR memories are updated using the stored success-
ful values in SF and SCR as it is described in Section 3. The values of
MF and MCR remain the same if no successful point was created in the
last generation. The main cycle of the SHADE4 algorithm is repeated
until the stopping condition is achieved. Matlab source code of SHADE4
algorithm is available online on web site www1.osu.cz/~bujok/.

166 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1: Function values obtained from 25 runs of standard DE/randrl/1/bin

Problem D Best Worst Median Mean Std

T01 6 0 1.04E-20 0 4.34E-22 2.09E-21
T02 30 -9.63396 -4.61191 -7.17815 -7.18629 0.99431
T03 1 1.15E-05 1.15E-05 1.15E-05 1.15E-05 5.19E-21
T04 1 0 0 0 0 0
T05 30 -22.9184 -17.9343 -19.277 -19.5956 1.30424
T06 30 -18.3201 -11.9093 -14.0873 -14.4051 1.61769
T07 20 1.49985 1.91389 1.72156 1.72729 0.10434
T08 7 220 220 220 220 0
T09 126 288886 525927 392200 403142 52960.3
T10 12 -21.537 -21.0853 -21.3571 -21.351 0.12976

T11.1 120 2.15E+07 7.48E+08 4.62E+07 4.56E+07 1.29E+07
T11.2 240 5.06E+06 6.66E+06 5.62E+06 5.74E+06 4.78E+05
T11.3 6 15444.2 15444.2 15444.2 15444.2 5.57E-12
T11.4 13 18982.1 19691 19211 19221.7 160.566
T11.5 15 32914.3 33108.8 32972.6 32975.4 44.5107
T11.6 40 135262 142690 138479 138718 2296.81
T11.7 140 3.56E+06 3.70E+07 1.15E+07 1.24E+07 7.69E+06
T11.8 96 4.00E+06 7.65E+06 5.84E+06 5.73E+06 959208
T11.9 96 3.13E+06 8.27E+06 5.53E+06 5.82E+06 1.30E+06
T11.10 96 2.68E+06 7.24E+06 4.78E+06 4.73E+06 1.17E+06

T12 26 24.7192 32.1438 28.0203 28.1726 1.80743
T13 22 11.3761 26.1714 13.3083 14.3622 3.12482

5. Experiments

The test suite of 22 real-world problems proposed for CEC 2011 Spe-
cial Session on Real-Parameter Numerical Optimization is used as a
benchmark in the experimental comparison. The test functions are de-
scribed in [5], including the experimental settings required for the com-
petition and the source code of the functions is available on the web site
given in this report.

Four algorithms are compared in this paper. One of them is GA-
MPC [7], which is the winner of CEC 2011 competition, and its results
are taken from the cited paper.

The standard DE (DE/randrl/1/bin), the original SHADE and SHADE4
algorithms are the other algorithms in the comparison. They are imple-
mented in Matlab 2010a and this environment was used for experiments.
All computations were carried out on a standard PC with Windows 7,
Intel(R) Core(TM)2 CPU 6320, 1.86GHz 1.87GHz, 2GB RAM.

The control parameters of the standard DE are set to F = 0.8, CR =
0.8. The control parameters of the original SHADE and SHADE4 are set

Enhanced SHADE and Real-World Optimization Problems 167

Table 2: Function values obtained from 25 runs of GA-MPC [7]

Problem Best Worst Median Mean Std

T01 0 0 0 0 0
T02 -28.4225 -27.113 -27.4797 -27.7007 0.46731
T03 1.15E-05 1.15E-05 1.15E-05 1.15E-05 0
T04 13.77076 14.32911 13.77076 13.8154 0.1546
T05 -36.8454 -34.1076 -35.0098 -35.0388 0.83293
T06 -29.1661 -21.2585 -27.4298 -27.4881 1.78214
T07 0.5 0.93343 0.75806 0.74841 0.12491
T08 220 220 220 220 0
T09 466.763 1818.26 1171.82 1220.59 361.119
T10 -21.8425 -21.4757 -21.6445 -21.7022 0.11635

T11.1 50925.1 52745.0 52002.8 52054.6 449.912
T11.2 1.07E+06 1.08E+06 1.07E+06 1.07E+06 1617.59
T11.3 15444.2 15444.2 15444.2 15444.2 1.75E-07
T11.4 18100.6 18375.8 18278.2 18261.0 69.8163
T11.5 32723.8 32823.0 32770.8 32769.8 26.8249
T11.6 129213 136059 133186 133230 1878.80
T11.7 1.92E+06 1.97E+06 1.96E+06 1.95E+06 14083.6
T11.8 949500 995043 969605 971289 10387.4
T11.9 972102 1.21E+06 1.05E+06 1.06E+06 57041.6
T11.10 946598 995008 975758 975109 11848.9

T12 7.09556 16.9249 13.7260 12.8182 3.24134
T13 8.39869 10.8102 8.62031 9.35934 0.94543

to the values given in Section 3 and 4 including the learning rate the same
as the population size, H = N . The population size is set to N = 90
(SHADE4) and N = 100 (the original SHADE) for all the test problems
without respect to the problem dimension. The parameters controlling
the competition of DE strategies in SHADE4 are set as follows: n0 = 2
and δ = 1/(4 ∗ 5) = 0.05.

The tests were carried out with 25 independent runs per each test
function. The run of the algorithm stops if the prescribed amount of
function evaluation MaxFES = 150000 is reached. The point in the
terminal population with the smallest function value is the solution of
the problem found in the run.

6. Results

The basic characteristics of the function values found by the compared
algorithms are presented in Table 1, 2, 3 and 4. The dimensions of
the test problems are shown in Table 1. The function values, where
an algorithm achieved less value of the characteristic than remaining

168 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 3: Function values obtained from 25 runs of SHADE4

Problem Best Worst Median Mean Std Sign.

T01 0 1.97E-15 0 7.98E-17 3.93E-16 ≈
T02 -28.4225 -22.4173 -24.1182 -24.7689 1.52554 −
T03 1.15E-05 1.15E-05 1.15E-05 1.15E-05 5.19E-21 ≈
T04 0 0 0 0 0 +
T05 -36.8955 -35.5469 -36.5439 -36.5116 0.37292 +
T06 -29.1661 -29.1388 -29.1661 -29.165 5.46E-03 +
T07 0.5 0.85883 0.61107 0.62462 0.10125 +
T08 220 220 220 220 0 ≈
T09 1393.46 3207 1979.9 2104.18 571.735 −
T10 -21.8425 -21.4421 -21.8424 -21.7321 0.12753 ≈

T11.1 51003.9 53613.4 52513.6 52374.8 687.639 ≈
T11.2 1.07E+06 1.08E+06 1.07E+06 1.07E+06 2071.30 ≈
T11.3 15444.2 15444.2 15444.2 15444.2 5.57E-12 ≈
T11.4 18056.1 18260.4 18114.9 18128.9 46.6809 +
T11.5 32694.6 32798.7 32746 32740.8 27.8249 +
T11.6 127718 131474 129911 129722 1095.99 +
T11.7 1.89E+06 1.94E+06 1.90E+06 1.91E+06 12769.8 +
T11.8 936218 946720 939786 940219 2540.09 +
T11.9 941254 1.15E+06 977446 987332 47146.4 +
T11.10 933823 944030 939680 939613 2610.84 +

T12 13.185 22.8099 18.5719 18.2831 2.30866 −
T13 8.62086 21.6398 14.9047 15.6816 3.88541 −

two others, are emphasized by bold print. Notice that the standard
DE/randrl/1/bin never outperforms the GA-MPC, the original SHADE
and SHADE4 simultaneously. The differences in the mean performance
of GA-MPC and SHADE4 were assessed statistically by two-sample t-
test at the significance level of 0.01. The t-test was used due to the fact
that only summary results from [7] were available for GA-MPC. The
results are depicted in the last column of Table 3. The symbol of “+”
denotes that SHADE4 outperforms GA-MPC significantly, the symbol
of “−” marks better performance of GA-MPC, and “≈” is used when
there is no significant difference between the two algorithms.

The performance of SHADE4 and the original SHADE were compared
by Wilcoxon two-sample test. The results are shown in the last column of
Table 4. The symbol of “+” denotes that SHADE outperforms SHADE4
significantly, the symbol of “−” marks better performance of SHADE4.
SHADE4 outperformed significantly the original SHADE in 7 out of 22
test problems, while the original SHADE was better only in one prob-
lem. In the rest of the problems, the performance was not significantly
different.

Enhanced SHADE and Real-World Optimization Problems 169

Table 4: Function values obtained from 25 runs of SHADE

Problem Best Worst Median Mean Std Sign.

T01 0.02737 11.5882 0.13659 0.75903 2.29845 −
T02 -24.4943 -21.6473 -22.9994 -23.0316 0.74605 −
T03 1.15E-05 1.15E-05 1.15E-05 1.15E-05 5.19E-21 ≈
T04 0 0 0 0 0 ≈
T05 -36.6566 -34.1495 -36.3187 -36.0052 0.63807 −
T06 -29.142 -28.609 -29.092 -29.0486 0.12389 −
T07 0.90641 1.23144 1.13808 1.12130 0.08344 −
T08 220 220 220 220 0 ≈
T09 1141.14 4169.19 2132.08 2228.75 714.195 ≈
T010 -21.8425 -21.216 -21.6444 -21.6289 0.14074 −
T11.1 51559.6 71320.6 52580.5 53225.2 3803.80 ≈
T11.2 1.07E+06 1.30E+06 1.08E+06 1.10E+06 53420.6 ≈
T11.3 15444.2 15444.2 15444.2 15444.2 5.57E-12 ≈
T11.4 18028.6 18224.9 18139.9 18130.7 51.7471 ≈
T11.5 32742.9 32867.6 32749.6 32760 28.0246 ≈
T11.6 126951 132462 129061 129231 1585.63 ≈
T11.7 188E+06 1.94E+06 1.90E+06 1.91E+06 14075.4 ≈
T11.8 937267 944437 939593 940475 2161.43 ≈
T11.9 939771 987681 948911 952462 12130.8 +
T11.10 934264 945774 941238 940667 2991.61 ≈

T12 14.1104 20.9105 17.5435 17.5903 1.42842 ≈
T13 13.1146 23.6202 20.1044 19.9439 2.87591 −

7. Conclusion

The newly proposed SHADE4 algorithm outperformed the winner of
CEC 2011 competition in 11 out of 22 problems significantly and the
performance was the same in 7 problems. SHADE4 was outperformed
only in four test problems. Compared to the original SHADE, SHADE4
performed better in 7 problems and it was defeated only in one prob-
lem. The results demonstrate that the development of new adaptive
algorithms is beneficial to the utilization in solving the real-world opti-
mization problems.

Moreover, SHADE4 has much less control parameters to set compared
to GA-MPC when solving an optimization problem. The application of
such almost control-parameter free algorithms is more convenient to the
real-world users.

Acknowledgment: This work was supported by University of Os-
trava from the project SGS08/UVAFM/2016.

170 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

References

[1] J. Brest, S. Greiner, B. Bosković, M. Mernik and V. Žumer. Self-adapting Con-
trol Parameters in Differential Evolution: A Comparative Study on Numeri-
cal Benchmark Problems. In IEEE Transactions on Evolutionary Computation,
10:646–657, 2006.

[2] J. Brest, A. Zamuda, B. Bosković, M. Maučec and V. Žumer. Dynamic optimiza-
tion using self-adaptive differential evolution. Proceedings of the IEEE Congress
on Evolutionary Computation (CEC), pages 415–422, 2009.

[3] P. Bujok and J. Tvrd́ık. A Comparison of Various Strategies in Differen-
tial Evolution. Proceedings of the International Conference on Soft Computing
MENDEL, pages 48–55, 2011.

[4] P. Bujok and J. Tvrd́ık. Adaptive differential evolution: SHADE with competing
crossover strategies. Lecture Notes in Computer Science, 9119:329–339, 2015.

[5] S. Das and P. N. Suganthan. Problem definitions and evaluation criteria for
CEC 2011 competition on testing evolutionary algorithms on real world opti-
mization problems. Technical report, Jadavpur University, India and Nanyang
Technological University, Singapore, 2010.

[6] S. Das and P. N. Suganthan. Differential evolution: A survey of the state-of-the-
art. IEEE Transactions on Evolutionary Computation, 15:27–54, 2011.

[7] S. Elsayed, R. Sarker and D. Essam. GA with a New Multi-Parent Crossover
for Solving IEEE-CEC2011 Competition Problems. Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pages 1034–1040, 2011.

[8] S. M. Islam, S. Das, S. Ghosh, S. Roy and P. N. Suganthan. An adaptive differen-
tial evolution algorithm with novel mutation and crossover strategies for global
numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: (Cybernetics), 42(2):482–500, 2012.

[9] P. Kaelo and M. M. Ali. A numerical study of some modified differential evo-
lution algorithms. European Journal of Operational Research, 169:1176–1184,
2006.

[10] R. Mallipeddi, P. N. Suganthan, Q. K. Pan and M. F. Tasgetiren. Differen-
tial evolution algorithm with ensemble of parameters and mutation strategies.
Applied Soft Computing, 11:1679–1696, 2011.

[11] F. Neri and V. Tirronen. Recent advances in differential evolution: a survey and
experimental analysis. Artificial Intelligence Review, 33:61–106, 2010.

[12] R. Poláková. A Comparison of Two Similar Mutation Operators in Differen-
tial Evolution. Proceedings of the International Conference on Soft Computing
MENDEL, pages 1–6, 2015.

[13] W. Qian and A. Li. Adaptive differential evolution algorithm for multiobjective
optimization problems. Applied Mathematics and Computation, 201(12):431–
440, 2008.

[14] A. K. Qin, V. L. Huang and P. N. Suganthan. Differential Evolution Algorithm
With Strategy Adaptation for Global Numerical Optimization. IEEE Transac-
tions on Evolutionary Computation, 13(2):398–417, 2009.

[15] R. Storn and K. V. Price. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11:341–359, 1997.

Enhanced SHADE and Real-World Optimization Problems 171

[16] R. Tanabe and A. Fukunaga. Evaluating the performance of SHADE on CEC
2013 benchmark problems. Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), pages 1952–1959, 2013.

[17] R. Tanabe and A. Fukunaga. Success-history based parameter adaptation for
differential evolution. Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC), pages 71–78, 2013.

[18] J. Tvrd́ık. Competitive differential evolution. Proceedings of the International
Conference on Soft Computing MENDEL, pages 7–12, 2006.

[19] J. Tvrd́ık. Exponential crossover in competitive differential evolution. Proceed-
ings of the International Conference on Soft Computing MENDEL, pages 44–49,
2008.

[20] J. Tvrd́ık. Adaptation in differential evolution: A numerical comparison. Applied
Soft Computing, 9(3):1149–1155, 2009.

[21] Y. Wang, Z. Cai and Q. Zhang. Differential Evolution with Composite Trial
Vector Generation Strategies and Control Parameters. IEEE Transactions on
Evolutionary Computation, 15:55–66, 2011.

[22] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1:67–82, 1997.

[23] Z. Yang, K. Tang and X. Yao. Self-adaptive differential evolution with neighbor-
hood search. Proceedings of the IEEE Congress on Evolutionary Computation
(CEC), pages 1110–1116, 2008.

[24] D. Zaharie. Influence of crossover on the behavior of differential evolution algo-
rithms. Applied Soft Computing, 9:1126–1138, 2009.

[25] J. Zhang and A. C. Sanderson. JADE: Adaptive differential evolution with
optional external archive. IEEE Transactions on Evolutionary Computation,
13:945–958, 2009.

WORST CASE OPTIMIZATION USING
CHEBYSHEV INEQUALITY

Kiyoharu Tagawa
School of Science and Engineering, Kindai University, Japan

tagawa@info.kindai.ac.jp

Abstract In real-world optimization problems, a wide range of uncertainties have
to be taken into account. The presence of uncertainty leads to different
results for repeated evaluations of the same solution. Therefore, users
may not always be interested in the so-called best solutions. In order
to find the robust solutions which are evaluated based on the predicted
worst case, Worst Case Optimization Problem (WCOP) is formulated by
using Chebyshev inequality from samples. Besides, a new evolutionary
algorithm based on Differential Evolution is proposed to solve WCOP
efficiently. The difference between the nominal solutions and the robust
solutions is demonstrated through engineering design problems.

Keywords: Differential evolution, Prediction interval, Robust optimization.

1. Introduction

Considering the worst case is important, in particular, if the decision
maker is very risk averse, or if the stakes are high. Therefore, we formu-
late Worst Case Optimization Problem (WCOP) to obtain the robust
solution evaluated based on the predicted worst case. In order to pre-
dict the worst case from samples, we employ the upper bounds of the
uncertain function values in the objective and constraints. In WCOP,
we can specify the probability of risk with a significance level. We also
show the minimum sample size necessary for the significance level.

We propose an Evolutionary Algorithm (EA) based on Differential
Evolution (DE) [13] to solve WCOP efficiently. In order to save the
number of samplings, or the number of repeated evaluations of the same
solution, for calculating the upper bounds, the accumulative sampling
[12] and the U-cut [21] are introduced into DE. Finally, we apply the
proposed methodology to practical engineering design problems.

173

174 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2. Related Work

Optimization in uncertain environments is an active research area in
EAs [9]. A number of EAs have been reported to solve single- and multi-
objective optimization problems under uncertainties [2, 3]. However, in
most of the methods, the average performance has been considered.

Generally speaking, approaches for the worst case optimization can
be categorized into two classes. Let x ∈ <D be the vector of design
variables xj , j = 1, · · · , D. In non-statistical approaches for the worst
case optimization [17, 24], the uncertainty is given by the upper and
lower bounds of each design variable xj . Then the worst case of the
function included in an objective or a constraint is evaluated based on
vertex analysis. On the other hand, in statistical approaches for the
worst case optimization, the design variable xj is given by a random
variable. WCOP described in this paper is a statistical approach.

In our previous papers [20, 21], we considered another WCOP in which
the objective function f(x) was subject to noise: F(x) = f(x) + ε.
Supposing that noise ε was distributed normally, we predicted the upper
bound of the objective function value F(x) with the quantile of the
normal distribution. The new methodology proposed in this paper can
handle two types of uncertainties: F(x) = f(x+ δ) + ε, where δ ∈ <D
denotes the vector of perturbations, or random variables. Besides, it
doesn’t presume particular distribution for random variables.

DE [5, 13] is a recently developed EA. DE is arguably one of the most
powerful stochastic real-parameter optimization algorithms in current
use. Due to its simple but powerful searching capability, DE has been
used successfully in many scientific and engineering applications [19, 25].
Some variants of DE have also been reported for optimization problems
under uncertainties [11, 14, 15]. However, most of them don’t evaluate
solutions with the worst case, but with the average performance.

3. Prediction Interval from Samples

Chebyshev inequality [23] in (1) is well known to statisticians. If F is
a random variable with mean µ and variance σ2, then for λ > 1,

Pr(|F − µ| ≥ λσ) ≤ 1

λ2
. (1)

Chebyshev inequality has great utility because it can be applied to
completely arbitrary distributions. Let α = 1/λ2 be a significance level.
Then, from (1), we can derive a prediction interval as

Pr([µ− λσ, µ+ λσ] 3 F) ≥ 1− α. (2)

Worst Case Optimization Using Chebyshev Inequality 175

Since the mean µ and variance σ2 in (1) are usually unknown, they
have to be estimated from samples. Let F1, F2, · · · , FN and FN+1

be weakly exchangeable samples from some unknown distribution such
that Pr(F1 = F2 · · · = FN = FN+1) = 0. From a set of observed N
samples, the sample mean F and variance s2 are obtained as

F =
1

N

N∑
n=1

Fn, (3)

s2 =
1

N − 1

N∑
n=1

(Fn − F)2. (4)

By using the sample mean F and variance s2, Saw et al. [18] have
presented Chebyshev inequality estimated from N samples as

Pr

(
|F − F | ≥ λ

√
N + 1

N
s

)
≤ 1

N + 1

⌊(N + 1) (N − 1 + λ2)

N λ2

⌋
, (5)

where b·c denotes the floor function. By using the upper bound of the
floor function, or its argument, we simplify the right-hand side as

Pr

(
|F − F | ≥ λ

√
N + 1

N
s

)
≤ N − 1 + λ2

N λ2
. (6)

Now, we will derive a prediction interval from (6). We set κ as

κ = λ

√
N + 1

N
. (7)

By using κ in (7), Chebyshev inequality in (6) is rewritten as

Pr(|F − F | ≥ κ s) ≤
N2 − 1 +N κ2

N2 κ2
. (8)

Let us suppose that a significance level α is given as

α =
N2 − 1 +N κ2

N2 κ2
. (9)

From (8) and (9), we can derive the prediction interval as

Pr([F − κ s, F + κ s] 3 F) = Pr([FL, FU] 3 F) ≥ 1− α. (10)

From (9), κ can be specified by the significance level α as

κ =

√
N2 − 1

N (αN − 1)
. (11)

176 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Since κ > 1 holds from (7), the minimum sample size Nmin is

Nmin =
⌊ 1

α
+ 1
⌋
. (12)

Incidentally, from (11), the lower bound of κ can be estimated as

lim
N→∞

κ = lim
N→∞

√
N2 − 1

N (αN − 1)
=

√
1

α
. (13)

In this paper, we call FU in (10) the upper bound of F . If we have
enough number of samples F1, F2, · · · , Fn, · · · , FN that satisfies the
condition N ≥ Nmin for a given significance level α, then we can calculate
the upper bound FU = F + κ s of F from (3), (4), and (11).

4. Worst Case Optimization Problem (WCOP)

The traditional constrained optimization problem can be stated as minimize f(x) = f(x1, x2, · · · , xD)

subject to gm(x) ≤ 0, m ∈ IM = {1, · · · , M}
xLj ≤ xj ≤ xUj , j = 1, · · · , D

(14)

with the vector x = (x1, · · · , xD) ∈ <D of D design variables.
When uncertainties are introduced in the above optimization problem,

functions f(x) and gm(x) included in (14) are modified as[F(x) = f(x+ δ) + ε = f(x1 + δ1, · · · , xD + δD) + ε,

Gm(x) = gm(x+ δ) + ε, m ∈ IM = {1, · · · , M}.
(15)

where δj ∈ <, j = 1, · · · , D denotes the disturbance to each xj ∈ <,
and ε ∈ < denotes a noise. Both δ and ε are random variables.

The objective function value F(x) depends on a solution x ∈ <D.
However, every time the solution is evaluated, different function values
may be returned. Therefore, we predict the worst case of the solution
x ∈ <D by using the upper bound in (10). We evaluate the solution
N (N ≥ Nmin) times and make a sample set {Fn(x) | n = 1, · · · , N}.
Then, from the sample set, we calculate the upper bound FU (x) of the
objective function value F(x) for a given significance level α. In the same
way, we calculate the upper bounds GUm(x), m ∈ IM of the uncertain
function values Gm(x) included in the inequality constraints.

The Worst Case Optimization Problem (WCOP) is formulated as minimize FU (x) = FU (x1, x2, · · · , xD)

subject to GUm(x) ≤ 0, m ∈ IM = {1, · · · , M}
xLj ≤ xj ≤ xUj , j = 1, · · · , D

(16)

Worst Case Optimization Using Chebyshev Inequality 177

with an arbitrary significance level α (0 < α < 1).

5. Differential Evolution for WCOP

5.1 Conventional Differential Evolution

Conventional DE can be applied to WCOP in (16). DE works by
building a population P of vectors which is a set of possible solutions
to WCOP. The initial population xi ∈ P , i = 1, · · · , NP is generated
randomly. Evaluating each vector xi ∈ P N times, the upper bounds in
(16), namely FU (x) and GUm(x), m ∈ IM , are calculated. Classical DE
[13] uses three control parameters: population size NP , scale factor SF ,
and crossover rate CR. However, we employ a self-adapting mechanism
of SF and CR [1]. Therefore, every vector xi ∈ P has its own parameter
values SF,i and CR,i initialized as SF,i = 0.5 and CR,i = 0.9.

Within a generation of a population, each vector xi ∈ P is assigned
to the target vector in turn. According to the following strategy of DE,
the trial vector u ∈ <D is generated from the target vector xi ∈ P .

Through the recommendation [1], SF and CR are decided respectively
from the parameters SF,i and CR,i of the target vector xi ∈ P as

SF =

{
0.1 + rand1 0.9, if rand2 < 0.1

SF,i, otherwise,
(17)

CR =

{
rand3, if rand4 < 0.1

CR,i, otherwise,
(18)

where randn ∈ [0, 1] is a uniformly distributed random number.
Except for the target vector xi ∈ P , three other distinct vectors xr1,

xr2, and xr3 (i 6= r1 6= r2 6= r3) are selected randomly from P . From
the four vectors, the j-th element uj ∈ < of u ∈ <D is generated as

uj =

{
xr1,j + SF (xr2,j − xr3,j), if (randj < CR) ∨ (j = jr)

xi,j , otherwise,
(19)

where the index of design variable jr ∈ [1, D] is selected randomly.
According to the direct constraint handling [13], the trial vector u is

compared with the target vector xi ∈ P . Exactly, if at least one of the
following criteria is satisfied, u is judged to be better than xi ∈ P .

u is feasible (∀m ∈ IM ; GUm(u) ≤ 0) and FU (u) ≤ FU (xi).

u is feasible (∀m ∈ IM ; GUm(u) ≤ 0) and ∃m ∈ IM ; GUm(xi) > 0.

u is infeasible (∃m ∈ IM ; GUm(u) > 0), but
∀m ∈ IM ; max {GUm(u), 0} ≤ max {GUm(xi), 0}.

178 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

As a result, if u is better than xi ∈ P , u takes the place of xi ∈ P .
Besides, SF in (17) and CR in (18) are substituted for SF,i and CR,i. If u
is not better than xi ∈ P , u is discarded. According to the asynchronous
generation alternation model [7, 22], we use only one population P .

5.2 Proposed Differential Evolution

Even though DE is applicable to WCOP, the multiple samplings of
each vector to calculate the upper bounds are still expensive. Therefore,
in order to examine a lot of vectors within a limited number of samplings,
we introduce two techniques into the above DE, namely the accumulative
sampling [12] and U-cut [21]. Both of the techniques have been contrived
to solve multi-objective optimization problems. In this paper, we modify
those techniques to solve WCOP efficiently. The proposed DE is called
DEAU (DE with Accumulative sampling and U-cut), which can allocate
the computing budget only to the promising solutions of WCOP.

Firstly, the accumulative sampling evaluates each xi ∈ P Nmin times
for calculating the upper bounds (FU (xi) and GUm(xi), m ∈ IM), where
Nmin is the minimum sample size in (12). Thereafter, it re-evaluates
xi ∈ P Nmin times for taking additional samples and updates the upper
bounds at regular generation intervals Gint. Let NG be the sum total of
evaluations of xi ∈ P depending on the current generation.

Secondly, the U-cut can judge hopeless trial vectors u only by few
samplings and discard them. When a newborn u is compared with the
target vector xi ∈ P at a generation, U-cut evaluates u NG times for
taking samples: Fn(u) and Gnm(u), m ∈ IM , n = 1 · · · , NG. However,
U-cut takes and examines those samples one by one. If at least one of the
following criteria is satisfied along the way, u is judged to be worse than
xi ∈ P and discarded immediately. That is because Fn(u) < FU (u)
and Gnm(u) < GUm(u) are expected with a high probability (1− α).

xi is feasible (∀m ∈ IM ; GUm(xi) ≤ 0) and FU (xi) ≤ Fn(u).

xi is feasible (∀m ∈ IM ; GUm(xi) ≤ 0) and ∃m ∈ IM ; Gnm(u) > 0.

xi is infeasible (∃m ∈ IM ; GUm(xi) > 0), but
∀m ∈ IM ; max {GUm(xi), 0} ≤ max {Gnm(u), 0}.

If u survives, FU (u) and GUm(u), m ∈ IM are calculated. Then u is
compared with xi ∈ P again in the same way with conventional DE.

6. Numerical Experiments

We demonstrated the proposed methodology using one test problem
and two engineering design problems. Those were originally stated as

Worst Case Optimization Using Chebyshev Inequality 179

Figure 1: Change of κ for N and α.
Figure 2: Feasible region of (20).

constrained optimization problems as shown in (14). We extended each
of them into WCOP in which the normally distributed disturbances
δj ∼ N (0, 0.012), j = 1, · · · , D were added to design variables xj on
the assumption that the machining error of tool was inevitable.

The conventional DE and the proposed DEAU were coded by the
Java language. The population size was chosen as NP = 10D. As
the termination condition, the total number of samplings was limited to
D × 105. The generation interval Gint = 10 was used for DEAU.

6.1 Test Problem

The following test problem has a nominal solution x? = (2, 2) that
realizes function values f(x?) = 4, g1(x?) = 0, and g2(x?) = 0.

minimize f(x) = f(x1, x2) = x2
1 + (x2 − 2)2

subject to g1(x) = g1(x1, x2) = (x1 − 4)2 − 2x2 ≤ 0

g2(x) = g2(x1, x2) = −x1 + 2x2 − 2 ≤ 0

−5 ≤ x1, x2 ≤ 10

(20)

The test problem in (20) was extended to WCOP with α = 0.05, 0.07,
and 0.09. Figure 1 shows the value of κ in (11) that depends both on
N (N ≥ Nmin) and α. In order to obtain a robust solution x◦ ∈ <2

of each WCOP, the proposed DEAU was used. Table 1 compares the
robust solution x◦ of each WCOP with the nominal solution x?. From
Table 1, FU (x?) is smaller than FU (x◦) in all WCOPs. However, the
nominal solution is infeasible, while the robust ones are feasible.

Figure 2 illustrates the feasible region in the design variable space of
the test problem. The nominal solution x? denoted by “•” exists on
the boundary of the feasible region. On the other hand, every robust
solution denoted by “◦” exists on the inside of the feasible region.

180 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

From Table 1 and Fig. 2, the robust solution x◦ parts from the bound-
ary of the feasible region as the significance level α becomes small.

Table 1: Nominal solution and robust solutions of test problem.

α solution x1 x2 FU (x) GU1 (x) GU2 (x)

nominal: x? 2.000 2.000 4.188 0.188 0.104
0.05

robust: x◦ 2.061 1.979 4.444 −0.016 −0.001

nominal: x? 2.000 2.000 4.157 0.154 0.086
0.07

robust: x◦ 2.048 1.980 4.359 −0.002 −0.001

nominal: x? 2.000 2.000 4.138 0.133 0.075
0.09

robust: x◦ 2.045 1.981 4.323 −0.009 −0.006

From the value of κ in Fig. 1, the sample size of every function was set to N = 150.

Table 2: Nominal solution and robust solution of pressure vessel design problem.

solution FU (x) GU1 (x) GU2 (x) GU3 (x) GU4 (x)

nominal: x? 6259.854 0.049 0.047 2998.767 −39.974
robust: x◦ 6775.558 −0.004 −0.006 −1996.695 −40.421

6.2 Pressure Vessel Design Problem

The following problem is taken from [10]. A cylindrical vessel is
capped at both ends by hemispherical heads as shown in Fig. 3. There
are four design variables: thickness of the vessel x1, thickness of the
head x2, inner radius x3, and length of the vessel without heads x4. The
objective is to minimize the total cost f(x) including the cost of the
material, forming, and welding. The problem is stated as follows:

minimize f(x) = 0.6224x1 x3 x4 + 1.7781x2 x
2
3

+3.1661x2
1 x4 + 19.84x2

1 x3

subject to g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −π x2
3 x4 −

4

3
π x3

3 + 1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0

0.0625 ≤ x1, x2 ≤ 6.1875, 10 ≤ x3, x4 ≤ 200

(21)

Worst Case Optimization Using Chebyshev Inequality 181

Among the results of many optimization algorithms applied to the
engineering design problem in (21) [4, 8], Garg [8] found the best nominal
solution x? ∈ <4 with f(x?) ≈ 5885.403, g1(x?) ≈ −1.399 × 10−6,
g2(x?) ≈ −2.837× 10−6, g3(x?) ≈ −1.141, and g4(x?) ≈ −40.019.

The engineering design problem in (21) was extended to WCOP with
α = 0.05. By solving WCOP with DEAU, a robust solution x◦ ∈ <4

could be obtained. Table 2 compares the robust solution x◦ with the
nominal solution x?. From Table 2, the nominal solution is infeasible.
Furthermore, since the value of GU3 (x?) is very large, the constraint
g3(x) ≤ 0 in (21) is sensitive to the disturbances of design variables.

6.3 Welded Beam Design Problem

The following problem is taken from [16]. The welded beam structure
is shown in Fig. 4. There are four design variables: thickness of the weld
x1, length of the welded joint x2, width of the beam x3, and thickness of
the beam x4. The length of beam is a constant L = 14. The objective
is to minimize the fabricating cost of the welded beam subject to six
constraints on shear stress τ(x), bending stress in the beam h(x), end
deflection on the beam q(x), buckling load on the bar ρc(x), and side
constraints. The engineering design problem is stated as follows:

minimize f(x) = 1.10471x2
1 x2 + 0.04811x3 x4 (L+ x2)

subject to g1(x) = τ(x)− 13600 ≤ 0

g2(x) = h(x)− 3× 104 ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.125− x1 ≤ 0

g5(x) = q(x)− 0.25 ≤ 0

g6(x) = ρ− ρc(x) ≤ 0

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2, x3 ≤ 10, 0.1 ≤ x4 ≤ 2

(22)

J(x) =
√

2x1 x2

(
x2

2

12
+

(
x1 + x3

2

)2
)
, R(x) =

√
x2

2

4
+

(
x1 + x3

2

)2

ρ = 6000, τ1(x) =
ρ√

2x1 x2

, τ2(x) = ρ
(
L+

x2

2

) R(x)

J(x)

τ(x) =

√
τ1(x)2 +

τ1(x) τ2(x)x2

R(x)
+ τ2(x)2, q(x) =

ρL3

(75× 105)x3
3 x4

h(x) =
6 ρL

x2
3 x4

, ρc(x) =
4013000

√
10x3 x

3
4

L2

(
1−
√

0.625x3

2L

)

182 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 3: Pressure vessel.

Figure 4: Welded beam.

Table 3: Nominal solution and robust solution of welded beam design problem.

FU (x) GU1 (x) GU2 (x) GU3 (x) GU4 (x) GU5 (x) GU6 (x)

x? 2.784 2701.887 5669.847 0.064 −0.072 −0.231 3292.867
x◦ 3.573 −85.129 −25.285 −0.007 −0.063 −0.233 −260.091

Garg [8] found the nominal solution x? of the problem in (22) with
f(x?) ≈ 2.380, g1(x?) ≈ −0.100, g2(x?) ≈ −1.170, g3(x?) ≈ −6.84 ×
10−6, g4(x?) ≈ −0.119, g5(x?) ≈ −0.234, and g6(x?) ≈ −0.071.

The engineering design problem in (22) was extended to WCOP with
α = 0.05. Besides disturbances δj ∼ N (0, 0.012) to design variables
xj , we assumed that the length of beam L was also a random value
such as L ∼ N (14, 0.012). By solving WCOP with DEAU, a robust
solution x◦ ∈ <4 could be obtain. Table 3 compares the robust solution
x◦ with the nominal solution x?. From Table 3, the nominal solution
is infeasible. Furthermore, the constraints g1(x) ≤ 0, g2(x) ≤ 0, and
g6(x) ≤ 0 in (22) seem to be very sensitive to the disturbances.

6.4 Comparison of DEAU with DE

The performance of DEAU was compared with the conventional DE.
DEAU and DE were applied 50 times to each of the above three WCOPs
with different initial populations. DE evaluated every solution xi ∈ P
N = 200 times. The results of numerical experiments were summarized
in Table 4 and Table 5. Table 4 shows the objective function value
FU (x) averaged over 50 runs. Similarly, Table 5 shows the number of
solutions examined through the process of optimization.

From Table 4, we can confirm that DEAU outperforms conventional
DE. As you can see in Table 5, by using the accumulative sampling and

Worst Case Optimization Using Chebyshev Inequality 183

Table 4: Objective function value FU (x) of WCOP.

α method WCOP1 WCOP2 WCOP3

DEAU 4.434 6759.823 3.642
0.05

DE 4.458 7320.667 3.796

DEAU 4.353 6615.113 3.411
0.07

DE 4.388 7192.097 3.552

DEAU 4.306 6514.112 3.269
0.09

DE 4.339 7003.265 3.432

WCOP1: Test problem in (20) extended to WCOP

WCOP2: Pressure vessel design problem in (21) extended to WCOP

WCOP3: Welded beam design problem in (22) extended to WCOP

Table 5: Number of examined solutions.

α method WCOP1 WCOP2 WCOP3

DEAU 1932.0 5746.4 5224.0
0.05

DE 1000.0 2000.0 2000.0

DEAU 2312.8 6886.4 6312.8
0.07

DE 1000.0 2000.0 2000.0

DEAU 2683.6 8088.0 7424.0
0.09

DE 1000.0 2000.0 2000.0

U-cut, DEAU has examined more solutions than DE in all WCOPs. As
a result, DEAU could find better robust solutions than DE.

7. Conclusion

We formulated WCOP in which the worst case was estimated by using
the upper bound of distributed function values. The upper bound was
derived from Chebyshev inequality. Therefore, the upper bound could
guarantee the worst case of unknown distributions with a significance
level. For solving WCOP efficiently, we proposed a new algorithm called
DEAU. We demonstrated the usefulness of the proposed methodology
through one test problem and two engineering design problems.

184 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Future work will include in-depth assessments of the methodology on
a broad range of optimization problems under uncertainties. Besides, we
would like to transform WCOP based on prediction intervals into various
formulations including multi-objective optimization problems [6].

References

[1] J. Brest, S. Greiner, B. Bošković, M. Merink, and V. Žumer. Self-adapting
control parameters in differential evolution: a comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[2] R. R. Chan and S. D. Sudhoff. An evolutionary computing approach to ro-
bust design in the presence of uncertainties. IEEE Transactions on Evolutionary
Computation, 14(6):900–912, 2010.

[3] R. F. Coelho. Probabilistic dominance in multiobjective reliability-based opti-
mization: theory and implementation. IEEE Transactions on Evolutionary Com-
putation, 19(2):214–224, 2015.

[4] C. A. C. Coello and E. M. Montes. Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection. Advanced Engineer-
ing Informatics, 16(3):193–203, 2002.

[5] S. Das and P. N. Suganthan. Differential evolution: a survey of the state-of-the
art. IEEE Transactions on Evolutionary Computation, 15(1):4–31, 2011.

[6] K. Deb and H. Gupta. Introducing robustness in multi-objective optimization.
Evolutionary Computation, 14(4):463–494, 2006.

[7] V. Feoktistov. Differential Evolution in Search of Solutions, Springer, 2006.

[8] H. Garg. Solving structural engineering design optimization problems using an
artificial bee colony algorithm. Journal of Industrial and Management Optimiza-
tion, 10(3):777–794, 2014.

[9] Y. Jin and J. Branke. Evolutionary optimization in uncertain environments - a
survey. IEEE Transactions on Evolutionary Computation, 9(3):303–317, 2005.

[10] B. K. Kannan and S. N. Kramer. An augmented Lagrange multiple based
method for mixed integer discrete continuous optimization and its applications
to mechanical design. Journal of Mechanical Design. Transactions of the ASME,
116:318–320, 1994.

[11] B. Liu, X. Zhang, and H. Ma. Hybrid differential evolution for noisy optimiza-
tion. Proceedings of the IEEE Congress on Evolutionary Computation (CEC),
pages 587–592, 2008.

[12] T. Park and K. R. Ryu. Accumulative sampling for noisy evolutionary multi-
objective optimization. Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO), pages 793–800, 2011.

[13] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential Evolution - A Prac-
tical Approach to Global Optimization, Springer, 2005.

[14] S. Rahanamayan, H. R. Tizhoosh, and M. M. A. Salama. Opposition-based
differential evolution for optimization of noisy problems. Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pages 6756–6763, 2006.

Worst Case Optimization Using Chebyshev Inequality 185

[15] P. Rakshit, A. Konar, S. Das, L. C. Jain, and A. K. Nagar. Uncertainty manage-
ment in differential evolution induced multiobjective optimization in presence
of measurement noise. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 44(7):922–937, 2013.

[16] S. S. Rao. Engineering Optimization. John Wiley and Sons, 3rd ed., 1996.

[17] Z. Ren, M.-T. Pham, and C. S. Koh. Robust global optimization of electromag-
netic devices with uncertain design parameters: comparison of the worst case
optimization methods and multiobjective optimization approach using gradient
index. IEEE Transactions on Magnetics, 48(2):851–859, 2013.

[18] J. G. Saw, M. C. K. Yang, and T. C. Mo. Chebyshev inequality with estimated
mean and variance. The American Statistician, 38(2):130–132, 1984.

[19] K. Tagawa, Y. Sasaki, and H. Nakamura. Optimum design of balanced SAW
filters using multi-objective differential evolution. Lecture Notes in Computer
Science, 6457:466–475, 2010.

[20] K. Tagawa and T. Suenaga. Extended differential evolution algorithm for worst-
case value minimization problems. International Journal of Mathematical Mod-
els and Methods in Applied Sciences, 8:262–272, 2014.

[21] K. Tagawa and S. Harada. Multi-noisy-objective optimization based on predic-
tion of worst-case performance. Lecture Notes in Computer Science, 8890:23–34,
2014.

[22] K. Tagawa, H. Takeuchi, and A. Kodama. Memetic differential evolutions using
adaptive golden section search and their concurrent implementation techniques.
Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pages
2532–2539, 2015.

[23] P. Tchébychef. Des valeurs moyennes. Journal de Mathématiques Pures et Ap-
pliquées, 2(12):177–184, 1867.

[24] J.-T. Tsai. An evolutionary approach for worst-case tolerance design. Engineer-
ing Applications of Artificial Intelligence, 25:917–925, 2012.

[25] A. Zamuda, J. Brest, B. Bošković, and V. Žumer. Woody plants model recog-
nition by differential evolution. Proceedings of the 4th International Conference
on Bioinspired Optimization Methods and their Applications (BIOMA), pages
205–215, 2010.

A HEURISTIC FOR THE JOB SHOP
SCHEDULING PROBLEM

Hugo Zupan, Niko Herakovič
Faculty of Mechanical Engineering, University of Ljubljana, Slovenia

hugo.zupan@fs.uni-lj.si, niko.herakovic@fs.uni-lj.si

Janez Žerovnik
Faculty of Mechanical Engineering, University of Ljubljana, Slovenia

Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

janez.zerovnik@fs.uni-lj.si

Abstract Multistart local search heuristics Remove and Reinsert that is based on
a simple schedule constructing heuristics is tested on several benchmark
instances of the job shop scheduling problem. The heuristics provides
very good near optimal solutions within reasonably short computation
time. The implementation within a plant simulation software is com-
pared to the build-in genetic algorithm.

Keywords: Digital factory, Discrete event simulation, Genetic algorithm, Job shop
scheduling problem, Remove and reinsert heuristics.

1. Introduction

Optimization of assembly and handling systems and processes (AHSS)
is important in terms of reducing costs, shortening lead times, delivery
terms, etc., thus ensuring the competitiveness of enterprises. It has been
clearly shown [25] that it can cause disturbances to reduce the overall
effectiveness of equipment (OEE), which can represent up to 50% of
the costs. For this reason, it is essential to optimize AHSS. Different
approaches and methods have been used to optimize AHSS in order
to effectively achieve the optimum, respectively nearly optimal solution
[2, 9, 20].

One of the most famous optimization problems of AHSS is the Job-
Shop Scheduling Problem (JSSP). Over the past few decades, a great
number of studies have been made on the job-shop scheduling problem

187

188 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(JSSP). JSSP can be regarded as a scheduling problem and it is one
of the most challenging combinatorial optimization problems [20]. It is
of both theoretical and practical interest, c.f. it is highly popular in
production industry [8].

The JSSP is known to be an NP-hard optimization problem [17].
Therefore, application of metaheuristics for the JSSP is justified when
looking for optimal or near optimal solutions in reasonable amount of
time. This paper proposes such an algorithm, based on Remove and
Reinsert algorithm (RaR) [1, 19].

The rest of the paper is organized as follows. In the next section we
briefly explain the practical motivation for this research. In Section 3
the JSSP is defined, in Section 4 the metaheuristic RaR is outlined and
its operation is illustrated with an example. Results of the preliminary
experiments are given in Section 5. The paper ends with a summary of
conclusions and ideas for future work.

2. Motivation

For conventional JSSP, it is usually assumed that all time parameters
are known exactly and in deterministic values. An instance of JSSP can
be described as follows: we have a set of n jobs that need to be operated
on a set of m machines [22]. Each job has its own processing route;
that is, jobs visit machines in different orders. Each job may need to
be performed only on a fraction of m machines, not all of them. The
task is to determine a processing order of all jobs on each machine that
minimizes the total flow time.

Another usual assumption is that each job can be processed by at
most one machine at a time and each machine can process at most one
job at a time. When the process of an operation starts, it cannot be
interrupted before the completion; that is, the jobs are non-preemptive.
The jobs are independent; that is, there are no precedence constraints
among the jobs and they can be operated in any sequence. All the jobs
are available for their process at time 0. We assume that there is a buffer
of unlimited size between machines for semi-finished jobs; meaning that
if a job needs a machine that is occupied, the job must and can wait
until the machine becomes available. There is no machine breakdown
(i.e., machines are continuously available).

Besides the conventional JSSP, there is a number of variants in the
literature. We mention here briefly the JSSP with setup times [15] as this
was the problem on which we tested the RaR heuristic originally [27].
Setup times of machines are typically sequence dependent (or SDST),
that is, the magnitude of setup strongly depends on both current and

A Heuristic for the Job Shop Scheduling Problem 189

immediately processed jobs on a given machine. For example, this may
occur in a painting operation, where different initial paint colours require
different levels of cleaning when being followed by other paint colours.
We also assume that setup is non-anticipatory, meaning that the setup
can only begin when the job and the machine are both available.

A lot of different methods and metaheuristics were used for solving
the JSSP, from very simple heuristics based on priority rules to more
complex methods. For example, we only mention here applications of
Tabu-search (TS) [18, 21] and Simulated Annealing [3], which are among
the most popular local search based metaheuristics used in combinatorial
optimization. In the literature, there are also reports on applications of
more advanced metaheuristics such as Genetic algorithms [10, 16], and
recently popular heuristics based on Swarm intelligence including the
Firefly algorithm [6], particle swarm optimization [6], Cuckoo search
[13], the artificial bee colony algorithm [12, 26], ant colony optimization
[6], and others.

In contrast to above metaheuristics that appear to be rather complex,
in the sense that some very specific knowledge is needed for implementa-
tion and in particular for parameter tuning, our attempt was to design a
conceptually simple heuristic. Therefore we started with a simple solu-
tion construction heuristic and used the same idea to define procedures
for generating a new feasible solution with a perturbation of a previously
given feasible solution. This naturally leads to a local search heuristic,
or, more precisely, multi-start iterative improvement heuristic. As al-
ready mentioned, we initially tested the ideas on JSSP with setup times,
and, as the heuristic has proven to be surprisingly competitive on JSSP
with start-up times, at least on our dataset, we decided to study the
same type of heuristic on the conventional JSSP, which is much more
extensively studied. Consequently, there are many benchmark instances
available. Below we first formally define the problem, and then intro-
duce the RaR algorithm. In particular we define several procedures that
slightly differ in the neighbourhood structure they imply on the set of
feasible solutions. Finally, experimental comparison of our heuristic with
genetic algorithms that are built-in as an object in Siemens Tecnomatix
Plant Simulation is provided on several benchmark instances.

3. Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is formally defined as fol-
lows. Given is a set of jobs J = {j1, j2, . . . , jn} and a set of machines
M = {m − 1,m2, . . . ,mn}. Every job is assigned a set of operations
Oi = {Oi1, Oi2, . . . , Oim} with processing times pab = p(Oab). The op-

190 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

erations are ordered, i.e., there is a binary relation A that induces a
linear order on the set of operations Oi. No precedence exists between
operations of different jobs. At any time, only one operation can be
performed on a machine, and it may not be interrupted.

A schedule is a function S : O → IN ∪ {0} that for each operation v
defines a start time S(v). A schedule S is feasible if:

∀v ∈ O : S(v) ≥ 0

∀v, w ∈ O, (v, w) ∈ A : S(v) + p(v) ≤ S(w)

∀v, w ∈ O, v 6= w,M(v) = M(w) : S(v)+p(v) ≤ S(w)∨S(w)+p(w) ≤ S(v)

The length of a schedule S is len(S) = maxv∈O(S(v)+p(v)). The goal
is to find an optimal schedule, that is a feasible schedule of minimum
length, min(len(S)).

Figure 1: A disjunctive graph of a 3 × 3 problem [24].

An instance of the JSSP can be represented by means of a disjunctive
graph G = (V,C ∪D) where: V is a set of nodes representing operations
of the jobs together with two special nodes, a source(0) and a sink(*),
representing the beginning and the end of the schedule, respectively. C
is a set of conjunctive arcs representing partial order of the operations.
D is a set of disjunctive arcs (edges) representing pairs of operations
that must be performed on the same machines. The processing time for
each operation is the value attached to the corresponding node. Figure 1
shows the disjunctive graph for a simple example of JSSP with three jobs
consisting of three operations each [24].

Often, the buffers (waiting queues) at machines are some standard
queues, cf. First-In-First-Out (FIFO). Note that in this case, the sched-
ule at a particular machine is fully determined by the arrival times of

A Heuristic for the Job Shop Scheduling Problem 191

the jobs. Consequently, assuming that the order of processing jobs at a
machine is determined by the arrival times, it is sufficient to consider the
order of jobs entering the virtual machine at the source. In this paper
we study this variant of the problem.

4. Remove and Reinsert (RaR) Algorithm

Our algorithm is inspired by some applications of several similar heuris-
tics that appeared under various names. These heuristics were success-
fully applied to the probabilistic traveling salesman problem (PTSP)
[28], the asymmetric traveling salesman problem (ATSP) [1] and to the
classical resource-constrained project scheduling problem (RCPSP) [19].
It may be rather surprising that such a simple heuristic outperforms
much more complicated metaheuristics such as (in this study) a com-
mercial implementation of a genetic algorithm. On the other hand, we
think that this phenomena is not that unexpected, see [29] and the ref-
erences there. In other words, as the basic idea of the heuristic is very
simple and somehow natural for the particular problem, the present au-
thors speculate that this may in fact be a reason for good results.

RaR can be regarded as a local search based on RaR neighbourhood
or as a constructive heuristic. For example, on the traveling salesman
problems (TSP, ATSP, PTSP) a new neighbour of a given solution is
obtained by first removing a number of cities from the tour, and then
reinserting them one by one into the best position that does not change
the relative order of the other cities. The tour constructing heuristic
on TSP (ATSP, PTSP) starts with a small subset of cities, computes
their optimal permutation, and then inserts the other cities in arbitrary
order. An iteration of iterative improvement consists of first removing
some of the cities and then reinserting them in arbitrary order. The
results on PTSP were encouraging [28], and extremely good on ATSP
[1], where they were competitive with the best known heuristics of the
same type. At the time, this was rather surprising as TSP is one of the
most extensively studied problems in combinatorial optimization and
operational research. On the resource-constrained project scheduling
problem (RCPSP), the same idea with some obvious adaptations proved
to be competitive with the best heuristics for the problem [19].

On the JobShop Scheduling Problem (JSSP) that is studied here, we
apply the basic ideas above as follows. Below we first explain the basic
neighbourhood which corresponds to a perturbation of a feasible solution
into a new feasible solution. Given a parameter k and a feasible solution,
k jobs are removed and reinserted, or, in this case we better say, the rel-
ative positions in the sequence of the selected k jobs may change. In

192 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

contrast to RaR on the traveling salesman problems, we do not remove
all the jobs at the same time, but remove and reinsert the selected jobs
one at a time. In a pseudo programming language, it could be written as

Procedure GenerateNeighbourBasic(S0, k) Returns(S1)
1. S1 = S0
2. Choose k jobs J k
3. For i = 1 to k do

a. Select a job j i from J k (J k = J k - j i)
b. Insert j i into S1 on the best position

4. Return(S1)

Based on the basic neighbourhood given by procedure Generate-
NeighbourBasic, several other neighbourhoods can be naturally de-
fined. Here we first define a neighbourhood called large neighbourhood
defined by procedure GenerateNeighbourLarge that can change the
given solution substantially. The GenerateNeighbourLarge proce-
dure first removes a subset of jobs, but, before reinserting them, it solves
the subproblem to optimality. This implies that large k have to be used
as otherwise the procedure would be very time consuming.

Procedure GenerateNeighbourLarge(S0, k) Returns(S1)
1. S1 = S0
2. Choose k jobs J k
3. Remove jobs J k from S1
4. Find optimal order of jobs J – J k within S1
5. For i = 1 to k do

a. Select a job j i from J k (J k = J k – j i)
b. Insert j i into S1 on the best position

6. Return(S1)

Local search using different neighbourhoods is not a new idea. For
example, it is extensively studied under name variable neighbourhood
search [7, 14].

Note that GenerateNeighbourLarge can also be seen as proce-
dure for generating an initial solution. Given any S0, GenerateNeigh-
bourLarge(S0,k) is a heuristic that provides a good solution. (Note
that there is some clear analogy to the well-known Arbitrary Insertion
tour constructing heuristic for TSP.)

A version of GenerateNeighbourLarge that we use below allows
selection of the k jobs to be perturbed outside the procedure. For this
aim we define the jobs to be selected by their positions, therefore a dif-

A Heuristic for the Job Shop Scheduling Problem 193

ferent name for this variant:

Procedure GenerateNeighbourLargePos(S0,P k) Returns(S1)
1. S1 = S0
2. Let J k be k jobs at positions P k
3. Find optimal order of jobs J – J k within S1
4. For i = 1 to k do

a. Select a job j i at the next position among P k
b. Insert j i into S1 on the first best position

5. Return(S1)

In our implementation of RaR, we run a multistart RaR based local
search heuristic. However, as we avoid randomization after the initial
solution is given, the sequence of selected neighbours is predefined. In
more details, the heuristic used in the experiment is

1. Generate a Random initial solution S
2. While (there is time left) do
3. Repeat
4. S0 = S
5. Run a sequence of moves:
6. For w = 1 to n – m
7. P = positions w + m,. . . , n
8. S1 = GenerateNeighbourLargePos(S, P)
9. S = better between S and S1
10. Until S not better than S0

We conclude the Section with a list of remarks emphasizing some basic
facts regarding our implementation of the heuristic.

1 We run a multistart of iterative improvements of the large neigh-
bourhood GenerateNeighbourLargePos.

2 We speed up the implementation by avoiding randomization in
the first experiments. In particular, the choices of the jobs that
generate a subproblem are always a sequence of (n−k) jobs starting
at some position, say w. Again, this seemingly counterintuitive
decision is based on the speculation that such subproblems may
provide relatively good starting solution before reinsertion.

3 Removing from the set of jobs from solution is performed one at
a time, thus all the jobs contribute to the cost of intermediate so-
lutions. This decision was taken because we have observed that

194 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

completely removing many jobs may cause that the properties of
the subproblems differ too much from the full problem and, con-
sequently, even very good solutions of a subproblem may provide
poor starting solution before reinsertion.

4 The testing environment is software program Siemens Tecnomatix
Plant Simulation, which is used for evaluations of our scenarios
and for comparison of our RaR algorithm with built-in genetic
algorithms [8]. Therefore the most natural measure of time here is
the number of scenarios. We also measure wall clock time, but note
that this information is not very useful, as the software provides
a user friendly front end with lots of graphics etc. that we do not
control but tends to be very time consuming.

5. Results

For computational results the RaR algorithm was combined with dis-
crete event simulation. It is well known [26] that using discrete event
simulation or virtual factory is very effective tool for “what–if” scenarios,
for every type of production system. In our case we have transformed
JSSP with all the features and limitations into virtual factory. The idea
is that the metaheuristic proposes initial and iteratively improved sched-
ules of orders while the discrete event simulation performs “what–if”
scenario for each proposed schedule thus providing the quality measure
of the schedule. This process is repeated until the metaheuristic can no
longer provide better schedule.

Recall that we assume that all queues are FIFO. Hence the algorithm
optimizes only the schedule on the source (see Fig. 1).

The algorithm was tested on some well-known and one of the most
used benchmark instances for the JSSP – LA01 to LA05 problems from
Lawrence [11] and MT06, MT10 and MT20 problems from Fisher and
Thompson [5]. We compared the RaR algorithm with the built-in ”Sie-
mens” genetic algorithm (SGA), which is already installed in the Siemens
programming environment Plant Simulation [7]. The results are pre-
sented in Table 1. Note that both algorithms always started with the
same initial scheduling O1, O2, . . . , On.

From the results we see that RaR algorithm finds a very good solution
in a relatively short time compared to SGA. The great advantage of RaR
algorithm is that it is not necessary to store large amounts of data, since
the algorithm works sequentially, and in almost every step takes only
the best solution and while discarding the others.

We made also a test to see effect of different initial schedules on our
RaR algorithm, to see how they effect on end results. The results showed

A Heuristic for the Job Shop Scheduling Problem 195

Table 1: Comparison of results between SGA and RaR.

SGA RaR
Problem best solution time best solution time

LA01 705 13 s 705 3 s
LA02 758 17 s 778 3 s
LA03 679 21 s 681 2 s
LA04 660 10 s 660 2 s
LA05 593 6 s 593 2 s
MT06 59 5 s 59 1 s
MT10 1092 24 s 1092 4 s
MT20 1496 114 s 1496 9 s

that with different initial scheduling different best solutions are possible.
The results were tested on benchmark LA02 and are presented in Table 2.
Note that in 7 runs, the quality of the best solution by RaR has improved.
In one of the runs it was even better than solution given by SGA.

Table 2: Effect of different initial scheduling on best solution found by RaR algorithm.

Initial scheduling RaR best solution

O1, O2, O3, O4, O5, O6, O7, O8, O9, O10 778
O9, O8, O7, O10, O5, O3, O6, O1, O4, O2 758
O5, O8, O6, O3, O1, O7, O2, O4, O10, O9 766
O5, O8, O6, O3, O1, O9, O2, O4, O7, O10 754
O5, O9, O7, O10, O8, O3, O6, O1, O4, O2 758
O8, O6, O5, O9, O10, O7, O2, O1, O3, O4 778
O10, O9, O8, O7, O6, O5, O4, O3, O2, O1 778

As mentioned in Section 2, in real production there are setup times of
machines which are sequence dependent - this problem is called Sequence
Depended Setup Times JSSP (SDST JSSP) [15]. RaR algorithm was also
tested for two SDST JSSP; with 10 jobs and with 100 jobs. In both cases
we compared the algorithm with the genetic algorithm. The results are
as presented in Table 3.

Characteristics of the genetic algorithm (GA):

instance with 10 jobs: 50 generations: size of generation: 100;

instance with 100 jobs: 500 generations; size of generation: 100.

According to the results of the first tests that have been carried out
(reported above and some those that are not described in here), we can

196 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 3: The results of GA and RaR algorithm on SDST JSSP.

Algorithm Total time . . . for finding Quality of the
best solution best solution

Instance with 10 orders
GA 1 min 33 sec 2468
RaR 20 sec 8 sec 2468

Instance with 100 orders
GA 4h 5 min 22 sec 4h 5 min 22 sec 14385
RaR 29 min 30 sec 22 min 41 sec 13768

say that RaR algorithm works very well and in quick time gives good
solutions.

6. Conclusion

This paper proposes Remove and Reinsert (RaR) heuristic for the
job-shop scheduling problem. Preliminary results show that it provides
very good solutions thus nearly minimizing the expected average flow
time within a reasonable amount of calculation time.

For executions of “what–if” scenarios of the initial schedules, the dis-
crete event simulation software Technomatix Plant Simulation was used.
A comparison of RaR algorithm with the Genetic Algorithm which is
built-in module in Technomatix Plant Simulation software showed that
RaR algorithm finds good solution in shorter time compared to Genetic
Algorithm. We have to mention that we did not change any parame-
ters of the built-in GA. Maybe some better tuning of parameters for GA
would improve its performance, but this was not possible as the software
we use does not allow such user intervention.

Motivated by the promising results outlined here, we have also exe-
cuted “what–if” scenarios for different priority rules inside the produc-
tion processes. The results showed that by changing priority rules of
processing the orders on the machines, we get even shorter flow time of
all orders. Details will be given in the full paper.

In our future work, further experiments will be conducted to shorten
the calculation time of getting the optimal solutions from the RaR al-
gorithm.

Finally, as the RaR heuristic performs remarkably well on the JSSP,
it may be worth considering the same idea on the other versions of the
JSSP and some other NP-hard problems.

A Heuristic for the Job Shop Scheduling Problem 197

Acknowledgment: This research was supported in part by the Slove-
nian Research Agency.

References

[1] J. Brest and J. Žerovnik. An approximation algorithm for the asymmetric trav-
eling salesman problem. Ricerca Operativa, 28:59–67, 1999.

[2] M. Debevec, M. Šimic, and N. Herakovič. Virtual factory as an advanced ap-
proach for production process optimization. International Journal of Simulation
Modelling, 13(1):66–78, 2014.

[3] A. Elmi, M. Solimanpur, S. Topaloglu, and A. Elmi. A simulated annealing
algorithm for the job shop cell scheduling problem with intercellular moves and
reentrant parts. Computers & Industrial Engineering, 61(1):171–178, 2011.

[4] H. Eskandari, M. A. Rahaee, M. Memarpour, E. Hasannayebi, and S. A. Malek.
Evaluation of different berthing scenarios in Shahid Rajaee container termi-
nal using discrete-event simulation. Proceedings of the Simulation Conference
(WSC), 2013.

[5] H. Fisher and G. L. Thompson. Probabilistic learning combinations of local
job-shop scheduling rules. In J. F. Muth and G. L. Thompson (Eds.) Industrial
Scheduling, pages 225–251. Prentice Hall, Englewood Cliffs, New Jersey, 1963.

[6] I. Fister Jr., X. S. Yang, I. Fister, J. Brest, and D. Fister. A Brief Re-
view of Nature-Inspired Algorithms for Optimization. Elektrotehnǐski vestnik,
80(3):116–122, 2013.

[7] P. Hansen and N. Mladenovi. Variable Neighborhood Search Methods. In En-
cyclopedia of Optimization, pages 3975–3989, 2009.

[8] X. Hao, L. Lin, M. Gen, and K. Ohno. Effective Estimation of Distribution Algo-
rithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science,
20:102–107, 2013.

[9] N. Herakovič, P. Metlikovič, and M. Debevec. Motivational lean game to support
decision between push and pull production strategy. International Journal of
Simulation Modelling, 13(4):433–446, 2014.

[10] X. W. Huang, X. Y. Zhao, and X. L. Ma. An improved genetic algorithm for job-
shop scheduling problem with process sequence flexibility. International Journal
of Simulation Modelling, 13(4):510–522, 2014.

[11] S. Lawrence. Resource constrained project scheduling: an experimental inves-
tigation of heuristic scheduling techniques (Supplement). Graduate School of
Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylva-
nia, 1984.

[12] J. Q. Li, Q. K. Pan, and M. F. Tasgetiren. A discrete artificial bee colony algo-
rithm for the multi-objective flexible job-shop scheduling problem with mainte-
nance activities. Applied Mathematical Modelling, 38(3):1111–1132, 2014

[13] M. K. Marichelvam, T. Prabaharan, and X. S. Yang. Improved cuckoo search
algorithm for hybrid flow shop scheduling problems to minimize makespan. Ap-
plied Soft Computing, 19:93–101, 2014.

[14] N. Mladenović, P. Hansen, and J. Brimberg. Sequential clustering with ra-
dius and split criteria. Central European Journal of Operations Research,
21(Supplement-1):95–115, 2013.

198 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[15] B. Naderi, S. M. T. Fatemi Ghomi, and M. Aminnayeri. A high performing
metaheuristic for job shop scheduling with sequence-dependent setup times.
Applied Soft Computing, 10:703–710, 2010.

[16] N. M. Nidhiry and R. Saravanan. Scheduling optimization of a flexible manu-
facturing system using a modified NSGA-II algorithm. Advances in Production
Engineering & Management, 9(3):139–151, 2014.

[17] B. Ombuki and M. Ventresca. Local search genetic algorithms for the job shop
scheduling problem. Applied Intelligence, 21:99–109, 2004.

[18] B. Peng, Z. Lü, and T. C. E. Cheng. A tabu search/path relinking algorithm
to solve the job shop scheduling problem. Computers & Operations Research,
53(1):154–164, 2015.

[19] I. Pesek, A. Schaerf, and J. Žerovnik. Hybrid local search techniques for the
resource-constrained project scheduling problem. Lecture Notes in Computer
Science, 4771:57–68, 2007.

[20] M. L. Pindeo. Scheduling: Theory, Algorithms, and Systems. Springer, New York
Dordrecht, Heidelberg, London, 2012.

[21] A. Ponsich and C. A. Coello Coleo. A hybrid Differential EvolutionTabu Search
algorithm for The solution of Job-Shop Scheduling Problems. Applied Soft Com-
puting, 13(1):462–474, 2013.

[22] D. R. Sule. Industrial Scheduling. PWS Publishing Company, 1997.

[23] Tecnomatix Plant Simulation, Siemens PLM Software. http://www.emplant.

de/english/fact [accessed on 29/02/2016].

[24] T. Yamada and R. Nakano. Job-shop scheduling. In: A. M. S. Zalzala and P. J.
Fleming (Eds.) Genetic algorithms in engineering systems. IEE Control Engi-
neering Series 55, pages 134–160, 1997.

[25] T. Ylipää. Correction, prevention and elimination of production disturbances.
PROPER project description, Department of Product and Production Devel-
opment (PPD), Chalmers University of Technology, Gothenhurg, 2002.

[26] R. Zhang, S. Song, and C. Wu. A hybrid artificial bee colony algorithm for the
job shop scheduling problem. International Journal of Production Economics,
141(1):167–178, 2013.

[27] H. Zupan, N. Herakovič, and J. Žerovnik. A hybrid metaheuristic for job-shop
scheduling with machine and sequence-dependent setup times. Proceedings of
the International Symposium on Operational Research in Slovenia (SOR), pages
129–134, 2015.

[28] J. Žerovnik. A Heuristics for the Probabilistic Traveling Salesman Problem.
Proceedings of the International Symposium on Operational Research in Slovenia
(SOR), pages 165–172, 1995.

[29] J. Žerovnik. Heuristics for NP-hard optimization problems : simpler is better!?
Pre-conference proceedings of the 11th International Conference on Logistics &
Sustainable Transport, 2014.

III

APPLICATIONS

ON THE APPLICATION OF COMPLEX
NETWORK ANALYSIS FOR
METAHEURISTICS

Roman Šenkeř́ık, Michal Pluháček, Adam Viktorin, Jakub Janošt́ık
Department of Informatics and Artificial Intelligence, Faculty of Applied Informatics,

Tomas Bata University in Zlin, Czech Republic

senkerik@fai.utb.cz

Abstract This contribution deals with the hybridisation of complex network frame-
works and metaheuristic algorithms. The population is visualised as an
evolving complex network that exhibits non-trivial features. It briefly
investigates the time and structure development of a complex network
within a run of selected metaheuristic algorithms – i.e., PSO and Dif-
ferential Evolution (DE). Two different approaches for the construction
of complex networks are presented herein. It also briefly discusses the
possible utilisation of complex network attributes. These attributes in-
clude an adjacency graph that depicts interconnectivity, while centrali-
ties provide an overview of convergence and stagnation, and clustering
encapsulates the diversity of the population, whereas other attributes
show the efficiency of the network. The experiments were performed for
one selected DE/PSO strategy and one simple test function.

Keywords: Complex Networks, Differential evolution, Population Dynamics, Parti-
cle swarm optimization.

1. Introduction

Currently, the utilisation of complex networks as a visualisation tool
for the analysis of population dynamics for evolutionary and swarm-
based algorithms is becoming an interesting open research task. The
population is visualised as an evolving complex network that exhibits
non-trivial features – e.g., degree distribution, clustering, centralities and
in between. These features offer a clear description of the population
under evaluation and can be utilised for adaptive population as well
as parameter control during the metaheuristic run. The initial studies
[1, 2, 13] describing the possibilities of transforming population dynamics
into complex networks, were followed by the successful adaptation and

201

202 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

control of the metaheuristic algorithm during the run through the given
complex networks frameworks [4, 9, 12].

This research represents the hybridisation of complex network frame-
works using the Differential Evolution (DE) [10] and Particle Swarm
Optimization (PSO) algorithms [7].

Currently, both aforementioned algorithms are known as powerful
metaheuristic tools for many difficult and complex optimisation prob-
lems. A number of modern DE [8, 11] and PSO [3, 5] variants have also
recently been developed.

The organisation of this paper is as follows: Firstly, the motivation
and the concept of DE and PSO algorithms with a complex network are
briefly described; followed by the experiments design. This is followed
by graphical visualisations and the conclusions afterwards.

2. Motivation

This research is an extension and continuation of the previous suc-
cessful initial experiment with the transfer of the population dynamics
of the several DE variants being applied – e.g., to the flowshop schedul-
ing problem [1] and the permutative flowshop scheduling problem [3].
This paper also extends the preliminary research [6] focused on captur-
ing the inner dynamics of swarm algorithms in sufficient detail and in a
network of appropriate size for further processing. The motivation for
the research presented herein can be summarised as follows:

To show the different approaches in building complex networks
in order to capture the dynamics of evolutionary or swarm based
algorithms.

To investigate the time development of the influence of either in-
dividual selections inside a DE or communication inside a swarm
transferred into the complex network.

To briefly discuss the possible utilisation of complex network at-
tributes – e.g., adjacency graphs, centralities, clustering, etc for
adaptive population and parameter control during the metaheuris-
tic run.

3. Complex Networks

A complex network is a graph which has unique properties - usually
in the real-world graph domain. A complex network contains features
which are unique to the assigned problem. These features are important
markers for population used in Evolutionary/Swarm based algorithms

On the Application of Complex Network Analysis for Metaheuristics 203

[2]. The following features are important for a quick analysis of the
network thus created.

3.1 Degree Centrality

Degree Centrality is defined as the number of edges connected to a
specific node. Degree Centrality is an important distribution hub in the
network since it connects - and thereby, distributes most of the infor-
mation flowing through the network. Together with the hybridisation
of metaheuristic and complex network analysis, this is one of the most
important features under consideration. Using Degree Centrality, one
can actually analyse if stagnation or premature convergence is occurring
within the population. By analysing the graphs, it can be seen that
the multiple nodes are increasing (distinguished by their size), thereby
emphasising their prominence in the population - and, their effect in
generating better individuals.

3.2 The Clustering Coefficient

The average Clustering Coefficient for the entire network is calculated
from every single local clustering coefficient for each node. The Cluster-
ing Coefficient of a node shows how concentrated the neighbourhood of
that node is. Mathematically, it is defined as the ratio of the number of
actual edges between neighbours to the number of potential edges be-
tween neighbours. For their utilisation in Computational Intelligence, it
is also very important to analyse the distribution of a clustering coeffi-
cient within an entire network, since we can assume that it can show the
population diversity, its compactness or tendency to form heterogeneous
subgroups (subpopulations).

4. Metaheuristic Methods

This section contains the background of the metaheuristic algorithms
PSO and DE that were used, as well as the main principles of capturing
their dynamics in an evolving complex network.

4.1 Differential Evolution

DE is a population-based optimisation method that works on real-
number-coded individuals [4]. DE is quite robust, fast – and effective,
with global optimisation ability. There are essentially five inputs to the
heuristic problem. D is the size of the problem, Gmax is the maximum
number of generations, NP is the total number of solutions, F is the

204 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

solution scaling factor and CR is the crossover factor. F and CR – taken
together, form the internal tuning parameters for the heuristic.

The initialisation of the heuristic is as follows: Each solution xj,i,G=0

is created randomly between the two bounds x(lo) and x(hi). The pa-
rameter j represents the index to the values within the solution, and
parameter i indexes the solutions within the population. So, to illus-
trate: x4,2,0 represents the fourth value of the second solution at the
initial generation. After initialisation, the population is subjected to
repeated iterations.

Within each iteration – and for a particular individual (solution),
three random numbers r1, r2, r3 are selected – unique to each other, and
to the current indexed solution i in the population. Two solutions, xr1,G
and xr2,G are selected through the r1 and r2 index and their values are
subtracted. This value is then multiplied by F – the predefined scaling
factor. This is then added to the value indexed by r3.

However, this solution is not arbitrarily accepted. A new random
number is generated – and if this random number is less than the value
of CR, then the new value replaces the old value in the current solution.
The fitness of the resulting solution, referred to as a “perturbed” (or
trial) vector ui,G, is then compared with the fitness of xi,G. If the
fitness of ui,G is better than the fitness of xi,G, then xi,G is replaced
with ui,G; otherwise, xi,G remains in the population as xi,G+1. Hence,
the competition is only between the new child solution and its parent
solution. This strategy is denoted as DE/Rand/1/bin. The trial vector
for this strategy is given in (1).

ui,G+1 = xr1,G + F · (xr2,G − xr3,G) (1)

4.2 The PSO Algorithm

Original PSO algorithms take their inspiration from behaviour of fish
and birds [7]. The knowledge of the global best-found solution (typically
denoted as gBest) is shared among the particles in the swarm. Further-
more, each particle has the knowledge of its own (personal) best-found
solution (designated pBest). The last important part of the algorithm
is the velocity of each particle, which is taken into account during the
calculation of the particle’s movement. The new position of each particle
is then given by (2), where xt+1

i is the new particle position; xti refers to

the current particle position and vt+1
i is the new velocity of the particle.

xt+1
i = xti + vt+1

i (2)

On the Application of Complex Network Analysis for Metaheuristics 205

To calculate the new velocity, the distance from pBest and gBest is
taken into account along with its current velocity (3).

vt+1
ij = vtij + c1 ·Rand · (pBestij − xtij) +C2 ·Rand · (gBestj − xtij), (3)

where:
vt+1
ij – New velocity of the ith particle in iteration t + 1; (component j

of the dimension D).
vtij – Current velocity of the ith particle in iteration t; (component j of
the dimension D).
c1, c2 = 2 – Acceleration constants.
pBestij – Local (personal) best solution found by the ith particle; (com-
ponent j of the dimension D).
gBestj – Best solution found in a population; (component j of the di-
mension D).
xtij – Current position of the ith particle; (component j of the dimension
D) in iteration t.
Rand – Pseudo-random number, interval (0, 1).

4.3 DE and PSO with a Complex Network
Framework

In this research, the complex network approach is utilised to show the
linkage between different individuals in the population. Each individual
in the population can be taken as a node in the complex network graph,
where its links specify the successful exchange of information in the
population.

Since the internal dynamics and principles are different for evolution-
ary (DE) and swarm based (PSO) algorithms, two different approaches
for capturing the population dynamics have been developed and tested.

In the case of the DE algorithm, an Adjacency Graph was used. In
each generation, the node is only active for the successful transfer of
information, i.e., if the individual is successful in generating a new bet-
ter individual which is accepted for the next generation of the popula-
tion. If the trial vector created from three randomly selected individ-
uals (DE/Rand/1/Bin) is better than the active individual, one estab-
lishes the connections between the new created individual and the three
sources; otherwise, no connections are recorded in the Adjacency Matrix.

For the PSO algorithm, the main interest is in the communications
that lead to population quality improvement. Therefore, only commu-
nication leading to improvement of the particles personal best (pBest)
was tracked. The link was created between the particle that was im-
proved and the particle that triggered the current gBest ’s update. This

206 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

approach creates a complex network with clusters – and can be used for
particle performance evaluations. Of course, it is also possible to build
an Adjacency Graph (see Section 7).

5. Experimental Design

A simple Schwefel’s Test function (4) was used in this experimental
research for the purpose of the generation of a complex network. Due
to the limited space and focus of this paper, only one test function is
used. The influences of different test functions for complex network
frameworks are discussed in the Conclusion.

f(x) = −
D∑
i=1

xi sin(
√
|xi|) (4)

Experiments were also performed in the C language environment, the
data from the DE algorithm was analysed and visualised using Cytoscape
software, while data from the PSO algorithm was analysed in the Wol-
fram Mathematica SW suite.

Within the ambits of this research, only one type of experiment was
performed. It utilises the maximum number of generations fixed at 100
with a population size of NP = 50. Two DE control parameters for
mutation and crossover were set as F = 0.5 and CR = 0.8. Two accel-
eration constants for PSO were set as c1, c2 = 2.

Since only one run of DE or PSO algorithms were executed for this
particular case-study, no statistical results related to the cost function
values and no comparisons are given here, since it is not possible to
compare metaheuristic algorithms only from one run.

6. Vizualisations for DE

The visualisations of complex networks are depicted in Figs 1–2 con-
taining Adjacency Graphs for this particular case-study. The last, Fig. 3,
shows the complete Complex Network Adjacency Graph for all 100 gen-
erations.

The Degree Centrality value is highlighted by the size of the node,
and the colouring of the node is related to the Clustering Coefficient
distribution (light coloured-lower values ranging up to the red colours
– higher values). Simple analyses of the networks are given in Table 1;
furthermore, it also contains the values of the total number of edges
in the graph; the success rate of the evolution process in percentage,
showing the ratio between the maximum possible edges in the graphs
and the actual one. The theoretical maximum number of edges in the
graph is given by 3 ·NP ·10 = 1500, i.e., the situation where every active

On the Application of Complex Network Analysis for Metaheuristics 207

Figure 1: Complex Network Representation for DE Dynamics – Case 1: the first 10
generations.

Figure 2: Complex Network Representation for DE Dynamics – Case 2: the last 10
generations.

208 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

individual in the population is replaced by a newly created one from
three another individuals across the limited number of 10 generations as
observed.

Figure 3: Complex Network Representation for DE Dynamics – Complete graph, all
100 generations.

Table 1: Shows a simple analysis of the networks for two case studies – the first and
the last 10 generations.

Case. No. of Success Clustering Network Av. no. of Network
edges Rate (%) Coefficient Centralization Neighbours Density

First 10 558 37.20 0.390 0.117 18.48 0.377
Last 10 435 29.00 0.334 0.216 14.84 0.303

7. Vizualisations for PSO

The complex network for all iterations of the PSO algorithm that
was created is depicted in Fig. 4. Nodes of a similar colour represent
particles with the same ID, and throughout different iterations. All links
are from a particle that triggered the gBest update to a particle that has
improved - based on that gBest. Due to the complexity of the Figure,
it is not possible to clearly see the density of the network and links of
various lengths.

On the Application of Complex Network Analysis for Metaheuristics 209

A closer look at a single cluster in the network is presented in Fig. 5.
The nodes’ code numbers represent a particle ID and its current itera-
tion. This way, it is possible to precisely track the development of the
network and the communication that occurs within the swarm. To be
more precise, from this illustrative cluster, it can be observed that a sin-
gle gBest update led to the improvement of multiple particles in different
iterations.

Alternatively, it is possible to construct an Adjacency Graph and to
benefit from its statistical features – as with the DE case. The link is
created between the particle that triggered the last gBest update and
the particle that triggers a new gBest update. The self-loops (when a
new gBest is found by exactly the same particle as the previous gBest),
are omitted. The simplified example is depicted in Fig. 6. Here, for a
lower level of complexity and illustration purposes, the population size
was limited to 20.

Figure 4: PSO Dynamic as a Complex Network – Complete view.

210 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 5: PSO Dynamic as a Complex Network – Close view.

Figure 6: PSO Dynamic as an Adjacency Graph.

On the Application of Complex Network Analysis for Metaheuristics 211

8. Conclusion

This work was aimed at the experimental investigation of the hybridi-
sation of a complex network framework using DE and PSO algorithms.
The population was visualised as an evolving complex network, which
exhibits non-trivial features. These features provided a clear descrip-
tion of the population during evaluation and can be used for adaptive
population and parameter control during the metaheuristic run.

The graphical and numerical data presented herein has fully mani-
fested the influence of either time frame selection, or type of construction
to the features of the complex network. These features can be used in
various adaptive or learning processes. The findings can be summarised
as follows:

a) Building of the Network: Since there is a direct link between parent
solutions and offspring in the evolutionary algorithms, this infor-
mation is used to build a complex network. In the case of swarm
algorithms, the situation is a bit more difficult. It depends on
the inner swarm mechanisms, but mostly, it is possible to cap-
ture the communications within the swarm during the updating of
the information - based on the points of attraction. Two possible
approaches are described herein, resulting in different graph visu-
alisations and possible analyses (see Figs. 5 and 6 and Section 7).

b) Complex Network Features: A complex network created for evolu-
tionary algorithms contains direct information about the selection
of individuals and their success; therefore, many network features
can be used for controlling a population during an EA run. At the
beginning of the optimisation process, intensive communication
occurs (Fig. 1). Later, hubs (centralities) and clusters are created
(Fig. 2), and it is possible to use such information either for the
injection or replacement of individuals or to modify/alternate the
evolutionary strategy (see Sections 3.1 and 3.2). In the case of
swarm algorithms, the communication dynamics are captured –
thus the level of particle performance (usefulness) can be calcu-
lated; or alternatively, some sub-clusters and centralities of such a
communication can also be identified - depending on the technique
used for the transformation of swarm dynamics into the network.

c) Other Features – Randomisation, Fitness Landscape: Numerous pre-
vious experiments showed that there are no significant changes in
complex network features for different test functions in the case
of evolutionary algorithms. Nevertheless, the different randomiza-
tion (distribution) used directly influences the network develop-

212 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ment through the selection of individuals. Thus, through the pref-
erences of some clusters of individuals, it is possible to temporarily
simulate the different randomisation inside a metaheuristic for an
entire/sub-population. Complex network construction for swarm
algorithms is not distinctively sensitive to randomisation, but the
capturing of communications (swarm dynamics) is sensitive to the
fitness landscape. Thus, network features can be used for the raw
estimation of a fitness landscape (i.e., multimodal/uni-modal, or
the identification of particular benchmark function) directly.

This novel topic has brought up many new open tasks, which will
be resolved in future research. Another advantage is that this complex
network framework can be used almost on any metaheuristic. Moreover,
especially for swarm algorithms there exist many possible ways regarding
how to build a complex network.

Acknowledgment: This work was supported by the Grant Agency of
the Czech Republic – GACR P103/15/06700S; and by the Internal Grant
Agency of Tomas Bata University, Project No. IGA/CebiaTech/2016/007.

References

[1] D. Davendra, I. Zelinka, M. Metlicka, R. Šenkeř́ık, and M. Pluháček. Complex
network analysis of differential evolution algorithm applied to flowshop with
no-wait problem. Proceedings of the IEEE Symposium on Differential Evolution
(SDE), pages 1–8, 2014.

[2] D. Davendra, I. Zelinka, R. Šenkeř́ık, and M. Pluháček. Complex Network Analy-
sis of Evolutionary Algorithms Applied to Combinatorial Optimisation Problem.
Proceedings of the Fifth International Conference on Innovations in Bio-Inspired
Computing and Applications (IBICA), pages 141–150, 2014.

[3] A. Engelbrecht. Heterogeneous particle swarm optimization. Proceedings of the
7th International Conference on Swarm Intelligence, pages 191–202, 2010.

[4] P. Gajdos, P. Kromer, and I. Zelinka. Network Visualization of Population Dy-
namics in the Differential Evolution. Proceedings of the IEEE Symposium Series
on Computational Intelligence, pages 1522–1528, 2015.

[5] M. Imran, H. Jabeen, M. Ahmad, Q. Abbas, and W. Bangyal. Opposition based
PSO and mutation operators. Proceedings of the 2nd International Conference
on Education Technology and Computer (ICETC), pages V4-506–508, 2010.

[6] J. Janostik, M. Pluháček, R. Šenkeř́ık, I. Zelinka. Particle Swarm Optimizer
with Diversity Measure Based on Swarm Representation in Complex Network.
Proceedings of the Second International Afro-European Conference for Industrial
Advancement (AECIA 2015), pages 561–569, 2016.

[7] J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings of the
IEEE International Conference on Neural Networks, pages 1942–1948, 1995.

On the Application of Complex Network Analysis for Metaheuristics 213

[8] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren. Differen-
tial evolution algorithm with ensemble of parameters and mutation strategies.
Applied Soft Computing, 11(2):1679–1696, 2011.

[9] M. Metlicka and D. Davendra. Ensemble centralities based adaptive Artificial
Bee algorithm. Proceedings of the IEEE Congress on Evolutionary Computation
(CEC), pages 3370–3376, 2015.

[10] K. V. Price. An Introduction to Differential Evolution. In D. Corne, M. Dorigo,
and F. Glover (Eds.) New Ideas in Optimization, pages 79–108. McGraw-Hill
1999.

[11] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential Evolution Algorithm
With Strategy Adaptation for Global Numerical Optimization. IEEE Transac-
tions on Evolutionary Computation, 13(2):398–417, 2009.

[12] L. Skanderova and T. Fabian. Differential evolution dynamics analysis by com-
plex networks. Soft Computing, 1–15, 2015.

[13] I. Zelinka, D. Davendra, J. Lampinen, R. Šenkeř́ık, and M. Pluháček. Evolution-
ary algorithms dynamics and its hidden complex network structures. Proceedings
of the IEEE Congress on Evolutionary Computation (CEC), pages 3246–3251,
2014.

A PARTICLE SWARM OPTIMIZATION
HYPER-HEURISTIC FOR THE DYNAMIC
VEHICLE ROUTING PROBLEM

Micha l Okulewicz, Jacek Mańdziuk
Faculty of Mathematics and Information Science, Warsaw University of Technology,

Poland

M.Okulewicz@mini.pw.edu.pl, J.Mandziuk@mini.pw.edu.pl

Abstract This paper presents a method for choosing a Particle Swarm Optimiza-
tion based optimizer for the Dynamic Vehicle Routing Problem on the
basis of the initially available data of a given problem instance. The op-
timization algorithm is chosen on the basis of a prediction made by a
linear model trained on that data and the relative results obtained by
the optimization algorithms. The achieved results suggest that such
a model can be used in a hyper-heuristic approach as it improved the
average results, obtained on the set of benchmark instances, by choos-
ing the appropriate algorithm in 82% of significant cases. Two leading
multi-swarm Particle Swarm Optimization based algorithms for solving
the Dynamic Vehicle Routing Problem are used as the basic optimiza-
tion algorithms: Khouadjia’s et al. Multi–Environmental Multi–Swarm
Optimizer and authors’ 2–Phase Multiswarm Particle Swarm Optimiza-
tion.

Keywords: Dynamic vehicle routing problem, Hyper-heuristic, Particle swarm op-
timization.

1. Introduction

Dynamic transportation problems have been considered in the liter-
ature by Psaraftis [20, 21] since 1980. After the introduction of a set
benchmarks by Kilby [14] and Montemanni [15], several meta-heuristic
based algorithms have been developed in order to solve the problem,
including Ant Colony Optimization (ACS) [6, 15], Genetic Algorithm
(GA) [9, 7], Tabu Search (TS) [9], and Particle Swarm Optimization
(PSO) [13, 17].

Although some of the works [7, 9, 12, 16] mention the features of a spa-
tial distribution of the requests of a given DVRP instance (describing it

215

216 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

as spatially uniform or clustered), none of those methods directly use the
information about the known requests location and volume. An initial
non-parametric approach for using the information about the available
requests volumes in order to generate artificial requests (to account for
the unknown ones) has been presented by the authors [18].

This paper proposes a hyper-heuristic method based on Multi–Envi-
ronmental Multi–Swarm Optimizer (MEMSO) [11, 12, 13] and 2–Phase
Multiswarm Particle Swarm Optimization (2MPSO) [16, 17, 18] algo-
rithms. The hyper-heuristic uses the statistical data about the initially
known set of requests in the given Dynamic Vehicle Routing Problem
(DVRP).

The rest of the paper is organized as follows. Section 2 defines the DVRP
solved in this paper. Section 3 introduces PSO and algorithms MEMSO
and 2MPSO (both based on the PSO) used for optimizing DVRP. Section
4 presents the hyper-heuristic approach for solving the DVRP. Section
5 gives experimental setup and results obtained by the method. Finally,
Section 6 concludes the paper.

2. Dynamic Vehicle Routing Problem

DVRP is a dynamic version of the generalization of a Traveling Sales-
man Problem (TSP), called Vehicle Routing Problem (VRP). In the
VRP the goal is to optimize a total route for a fleet of vehicles with
a limited capacity. VRP has been introduced as a Truck dispatching
problem in 1959 by Dantzig and Ramser [5]. After the technological
advancement of the vehicle tracking devices and development of the Ge-
ographical Information Systems a notion of a DVRP has been reintro-
duced by Psaraftis [21]. The problem has attracted more attention after
a set of static VRP benchmarks of Christofides [2], Fisher [8] and Tail-
lard [23] has been customized for the DVRP by Kilby et al. in 1998 [14]
and Montemanni et al. in 2005 [15].

In this paper a most common variant of the DVRP is solved [19],
sometimes referred to as a VRP with Dynamic Requests (VRPwDR)
[12]. In this variant a homogeneous fleet of vehicles (identical capacity
c ∈ R and speed sp ∈ R) is considered. There is also an additional con-
straint, that the vehicle may operate only during a working day defined
by the opening hours of its depot. During that working day a fleet of m
vehicles must serve (visit) a set of n requests. Each request is defined by
a location li ∈ R2, an amount of cargo si (0 ≤ si ≤ c) to be delivered and
an amount of time ui ∈ R it takes to provide a service at that location
(unload that cargo). The dynamic nature of that optimization problem
comes from the fact that new request may arrive during the working day.

A PSO Hyper-Heuristic for the Dynamic Vehicle Routing Problem 217

The period of time during which new requests are accepted is limited by
a cut–off time parameter Tco. In all the benchmarks considered in this
paper there is one depot for all the vehicles and Tco is equal to a half of
the working day.

In the mathematical sense, the DVRP is a problem of finding a set of
location permutations resulting in a shortest total path length under the
time and capacity constrains for each of the permutations in which all the
locations are visited exactly once. The exact mathematical formulation
of the problem can be found in [7, 17, 18].

3. MEMSO and 2MPSO Algorithms

In this section two most successful approaches to solving DVRP:
Khouadjia’s et al. MEMSO and authors’ 2MPSO are presented. Those
two methods are the base algorithms for the hyper–heuristic approach
proposed in this paper.

Both, the MEMSO and the 2MPSO, use PSO as their base meta-
heuristic and 2-OPT [4] as a route optimization heuristic. In both
methods the working day is divided into discrete number of time slices,
with the instance of the DVRP problem “frozen” within each time slice.
Therefore, each method solves a series of dependent static VRP instances
during the optimization process. The difference between PSO applica-
tions, encoding of the problem and knowledge transfer in the MEMSO
and the 2MPSO methods, together with a brief description of the PSO
and 2-OPT algorithms, are presented and discussed in this section.

3.1 Particle Swarm Optimization

PSO algorithm is an iterative population based continuous optimiza-
tion meta-heuristic approach utilizing the concept of Swarm Intelligence.
The algorithm has been introduced by Kennedy and Eberhart in 1995
[10] and has been further developed and studied by other researchers
[22, 24, 3].

During the optimization process PSO maintains a set of fitness func-
tion solutions (called particles). Each particle has its own location
x ∈ Rn (an n−dimensional fitness function solution proposal), velocity
v (a solution change vector), a set of neighbors N (particles which solu-

tions it can observe), a memory of the best observed solution x
(BEST)
N

and a memory of the best visited solution x
(BEST)
i .

In each iteration t the location vector x and velocity vector v of ith
particle are changed in the following way:

xi,t = xi,t−1 + vi,t−1 (1)

218 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

vi,t = ωvi,t−1 + u1c1(x
(BEST)
i − xi,t) + u2c2(x

(BEST)
N − xi,t) (2)

Where ω denotes an inertia factor, c1 and c2 are personal and global
attraction factors, u1 and u2 follow the uniform n−dimensional distri-
bution on [0, 1]n.

3.2 2–OPT Algorithm

2–OPT has been introduced as a heuristic algorithm for solving the
TSP in 1958 [4]. Its most distinctive feature is the ability to remove the
entanglement of routes. The algorithm operates by iterating over all the
pairs of edges of a given route and checking the possibility of optimizing
the length of route by swapping the ends of those edges. An example
of a single step of the algorithm on a sample directed cycle is presented
in Fig. 1.

Figure 1: Depiction of a 2–OPT algorithm optimization process over a sample directed
cycle. While considering edges BE and CF the algorithm observed that changing them
to BC and EF results in a shorter route. After swapping the ends of the considered
edges a final step of reversing the direction of the E-D-C path is performed.

2–OPT may be used directly in the VRP variants for optimizing the
length of route of a single vehicle.

3.3 Multi–Environmental Multi–Swarm Optimizer

MEMSO [13] algorithm uses PSO to optimize division of the requests
among the vehicles. The vehicles’ routes within those divided sets are
created by a greedy insertion and optimized by the 2-OPT algorithm.
The fitness function value is the total length of those routes.

MEMSO uses a discrete encoding of the requests division. The so-
lution is an integer vector representing the requests and the values in
the vector are the vehicles’ identifiers. Therefore, the PSO algorithm is
changed in such a way that a velocity is a vector in {1, 2, . . . ,m}n and

A PSO Hyper-Heuristic for the Dynamic Vehicle Routing Problem 219

addition in eq. (1) is performed in Zmn space (where m is a number of
vehicles and n a number of requests).

The knowledge about the current solution is transferred between sub-
sequent time slices by adapting the whole population. For each of the
particles the already served and decisively assigned requests are blocked
from being changed and new requests are inserted in a greedy way into
the solution vectors.

3.4 2-Phase Multi-Swarm Particle Swarm
Optimization

2MPSO [17] algorithm uses separate PSO instances to optimize both
the division of the requests and their order (in two subsequent optimiza-
tion phases, hence the name of the method). In the division optimization
phase an approach similar to the MEMSO’s is used in order to evaluate
the total length of routes achieved from the optimized division. The
routes are optimized with 2-OPT algorithm from the initially random
ordering. In the route optimization phase each of the vehicles is opti-
mized separately and the length of route of the given vehicle is used as
a fitness function value.

Instead of customizing the PSO for a discrete problem, 2MPSO follows
a continuous optimization approach to applying the PSO algorithm, in
contrast with MEMSO. The division of requests among the vehicles is
solved as a clustering task, with a number of clusters per vehicle k being
the parameter of the method. Therefore, the PSO particle for the first
phase optimizer is a sequence of requests clusters centers flattened into
a vector in R2km̂ space (where m̂ is the estimated number of vehicles
necessary to serve the requests). Particle in the PSO instance optimizing
the route of the vehicle is a sequence of requests ranks. Therefore, it
is a vector in Rni (where ni is the number of requests assigned to ith
vehicle).

The knowledge is transferred between subsequent time slices in a form
of cluster centers vector generating a division of requests and a set of
requests rank vectors for the routes imposed by requests division. The
transferred solution is expanded by a new random cluster center if more
vehicles seem to be necessary and the initial ranks of the new requests
are also initialized at random.

4. Hyper-Heuristic Approach

Although 2MPSO outperforms MEMSO by 2.22% on average on the
Kilby’s [14] and Montemanni’s [15] sets of benchmarks (see Table 2),

220 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 2: The activity diagram presenting a single run of a 2MPSO and MEMSO
based hyper-heuristic.

it might be limited by its clustering approach (or needs an excessively
large k) for some particular DVRP tasks.

For that reason, the authors propose a hyper-heuristic approach [1] in
which a statistical model might be incrementally trained for choosing the
algorithm, which seems to be most suitable for a given DVRP instance.
A single run of such hyper-heuristic (solving a single DVRP task) is
depicted in Fig. 2. Please observe in the activity diagram, that only the
chosen algorithm is used to provide an actual output to some external
decision support system. The other algorithm is run only to gather the
data and its result is used to tune the prediction model. Please also
note, that the choice of the optimization algorithm is done only at the
beginning of the optimization process. The prediction model is trained

A PSO Hyper-Heuristic for the Dynamic Vehicle Routing Problem 221

on the results gathered through a subsequent runs on different DVRP
tasks.

The economic cost of running such a hyper-heuristic, in comparison
with a single algorithm optimization, would be slightly more than dou-
bled. The doubling comes from the fact, that it is necessary to make
a similar amount of computations by two algorithms in order to get com-
parable results for the performance prediction model. The additional
overhead is a result of computations needed for getting statistics from
the set of requests and creating a prediction model over the already com-
puted cases. Although the economic cost of proposed approach would
definitely be larger than that of a single algorithm, the overhead for the
computations necessary for getting solutions during daytime operations
would be negligible. The additional operations during the daytime would
consist of computing the statistics from the initial state of requests set
and providing them to the prediction model. The run of the second al-
gorithm and the training of the prediction model might be done during
the nighttime.

This section presents the statistics computed from the benchmark
problems and authors’ approach to creating a linear model, based on
those statistics, predicting the relative MEMSO and 2MPSO algorithms
performance.

4.1 Benchmark Characteristics

In order to create a set of features, allowing to discriminate between
different benchmark problems, the authors have computed a set of statis-
tics for each of the benchmarks. Those statistics may be divided into 2
groups:

requests set spatial features,

requests set volume features.

Within those groups, the following statistics have been computed:

Spatial features:

– µx, µy - mean locations along coordinate system axes,

– sdx, sdy - standard deviation of locations along coordinate
system axes,

– skewx, skewy - standardized skewness of locations along co-
ordinate system axes,

– kgap - gap statistic (estimated optimal number of clusters) for
requests locations,

222 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1: Values of the input features computed for the initially known sets of requests
from Kilby’s and Montemanni’s benchmarks

Name µx sdx skewx µy sdy skewy µs sds skews nc

c50 0.53 0.32 -0.18 0.51 0.33 0.08 0.09 0.04 0.58 2.00
c75 0.51 0.30 -0.08 0.41 0.29 0.27 0.12 0.06 0.34 4.00
c100 0.48 0.27 0.35 0.46 0.27 0.53 0.08 0.05 0.71 1.00
c100b 0.68 0.17 0.48 0.56 0.26 0.31 0.09 0.05 1.39 0.00
c120 0.38 0.32 0.84 0.67 0.24 0.20 0.06 0.03 1.46 0.67
c150 0.49 0.27 0.06 0.45 0.24 0.28 0.08 0.04 0.78 6.00
c199 0.52 0.26 -0.04 0.47 0.24 0.19 0.09 0.04 0.52 9.00

f71 0.44 0.23 -0.02 0.72 0.18 -0.17 0.04 0.05 1.87 0.00
f134 0.61 0.29 -0.47 0.42 0.22 0.70 0.07 0.11 2.35 1.50

tai75a 0.27 0.18 1.39 0.47 0.20 1.22 0.11 0.16 2.27 3.00
tai75b 0.69 0.25 -1.14 0.42 0.22 -0.69 0.11 0.16 1.24 1.00
tai75c 0.43 0.16 -0.93 0.49 0.25 -0.02 0.11 0.15 2.30 3.00
tai75d 0.43 0.30 0.55 0.49 0.29 -0.23 0.09 0.13 1.55 0.25
tai100a 0.39 0.30 0.61 0.57 0.25 -0.27 0.11 0.18 2.04 1.00
tai100b 0.46 0.29 0.46 0.46 0.22 0.56 0.12 0.16 1.64 1.00
tai100c 0.63 0.27 -0.91 0.50 0.20 -1.10 0.10 0.14 1.34 5.00
tai100d 0.44 0.23 -0.39 0.46 0.21 0.06 0.10 0.17 2.37 2.00
tai150a 0.47 0.29 0.17 0.55 0.31 -0.36 0.09 0.14 2.32 1.67
tai150b 0.61 0.23 0.13 0.52 0.24 0.81 0.09 0.14 2.30 6.00
tai150c 0.47 0.23 0.46 0.61 0.14 -0.06 0.09 0.13 1.80 6.00
tai150d 0.47 0.34 -0.05 0.67 0.23 -0.88 0.12 0.16 1.41 0.14

Volume features:

– µs - mean volume,

– sds - standard deviation of volume,

– skews - skewness of volume,

– mv - minimum number of vehicles necessary to load all the
requests.

In order to make the features comparable between different bench-
marks, the spatial locations have been mapped to the [0, 1]× [0, 1] plain,
requests volume has been divided by vehicles capacity and kgap has been
combined with the mv in the following way:

nc = |1− mv

kgap
|

The larger values of nc suggest that the requests might not be easily
divided among the vehicles.

The results of computing those features on the Kilby’s and Monte-
manni’s benchmark set for the a priori available requests are presented
in Table 1.

A PSO Hyper-Heuristic for the Dynamic Vehicle Routing Problem 223

4.2 Prediction Model

In order to chose a proper optimization algorithm, the authors propose
a simple linear regression model.

To train such a model, for predicting the proper optimization algo-
rithm for a given benchmark, the statistics presented in Table 1 has been
selected as an input variables and a ratio between the average MEMSO
and the average 2MPSO result has been chosen as an output variable.
Such approach is justified by the fact that it is more important to choose
a proper algorithm when the difference between different algorithms per-
formance is significant.

Fitted linear model is used in a following way. The subset of the
statistics to be computed, described in Section 4.1, is identified with
the usage of a variable selection method (cf. Fig. 3). When a new
DVRP instance is considered, that subset of statistics, forming the input
variables for the model, is computed over the requests of that instance.
If the model predicts the relative result of MEMSO to 2MPSO to be
less than 1, MEMSO is chosen as the optimization algorithm, otherwise
2MPSO is chosen (see Fig. 2).

5. Results

To test the proposed approach a leave-one-out cross-validation exper-
iment with a linear model predicting the relative performance of the
MEMSO to 2MPSO has been performed. In each fold a linear model
has been built on information from initial sets of requests from 20 out of
21 benchmark problems. The relative algorithm performance has been
computed as a ratio of the average results obtained by the MEMSO and
2MPSO algorithms. Such approach simulated a performance of hyper-
heuristic optimizing and training the model on some number of sub-
sequently computed DVRP tasks. The average results were computed
over 30 runs of MEMSO per benchmark and 20 runs of 2MPSO per
benchmark. The order of the total fitness function evaluations budget
for each of the algorithms run has been equal to 106. The details about
parameter setting for MEMSO and 2MPSO experiments can be found
in [13] and [17], respectively.

Additionally, in the model training phase some of the input variables
have been removed from the model in a step-wise mode, with the usage of
Akaike Information Criterion, in order to create a more general predictor.
As an example, results of applying such procedure, to the model trained
on all 21 of the benchmarks, are presented as a listing of R output
in Fig. 3. It can be observed (from the corresponding p-values) that

224 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 2: Results of predicting the optimization algorithm from a leave-one-out cross-
validation experiment. The table presents the minimum and the average values
achieved by MEMSO and 2MPSO algorithms, marking the significantly better av-
erage results with a gray background. The Hyper-heuristic column presents which
algorithm has been chosen by a linear model, whether the choice has been appropri-
ate and how much has been gained (or lost) with that choice of algorithm. For the
benchmark instances with significant difference between average results of MEMSO
and 2MPSO the gain has been marked with a gray background and a loss with a
light-gray background.

2MPSO MEMSO Hyper-heuristic
Name min avg min avg Chosen T/F Gain

c50 583.09 618.59 577.60 592.95 MEMSO T 4.15%
c75 904.83 946.85 928.53 962.54 2MPSO T 1.63%
c100 926.10 966.27 949.83 968.92 MEMSO F -0.27%
c100b 830.58 875.47 864.19 878.81 MEMSO F -0.38%
c120 1061.84 1176.38 1164.63 1284.62 2MPSO T 8.43%
c150 1132.12 1208.60 1274.33 1327.24 2MPSO T 8.94%
c199 1371.61 1458.01 1600.57 1649.17 2MPSO T 11.59%

f71 302.50 319.01 283.43 294.85 2MPSO F -7.57%
f134 11944.86 12416.65 14814.10 16083.82 2MPSO T 22.80%

tai75a 1721.81 1846.03 1785.11 1837.00 2MPSO F -0.49%
tai75b 1418.82 1451.92 1398.68 1425.80 MEMSO T 1.80%
tai75c 1456.90 1560.68 1490.32 1532.45 MEMSO T 1.81%
tai75d 1445.58 1481.25 1342.26 1448.19 MEMSO T 2.23%
tai100a 2211.30 2327.20 2170.54 2213.75 MEMSO T 4.87%
tai100b 2052.54 2131.91 2093.54 2190.01 2MPSO T 2.65%
tai100c 1465.06 1519.44 1491.13 1553.55 2MPSO T 2.20%
tai100d 1722.16 1808.67 1732.38 1895.42 2MPSO T 4.58%
tai150a 3367.55 3537.81 3253.77 3369.48 2MPSO F -4.76%
tai150b 2911.22 3033.83 2865.17 2959.15 2MPSO F -2.46%
tai150c 2510.51 2579.72 2510.13 2644.69 2MPSO T 2.46%
tai150d 2893.54 2992.53 2872.80 3006.88 MEMSO F -0.48%

both the spatial and the volume related features have been selected as
informative ones.

The results from the cross-validation experiment are given in Table 2.
The correct algorithm (the one with a better average result) has been
chosen in 14 out of 21 cases (all of them with statistically significant dif-
ference between average algorithms results, verified by a t-test). Wrong
predictions, that have been made for the other 7 cases, have resulted in
a significant loss of results quality only for 3 of them (f71, tai150a, and
tai150b). Therefore, the linear model achieved 82% accuracy for the
subset of 17 benchmarks with significant differences in the algorithms
average results (with 67% accuracy over the whole set of benchmarks).

A PSO Hyper-Heuristic for the Dynamic Vehicle Routing Problem 225

Figure 3: Model trained on the full data set, with the variable selection using Akaike
Information Criterion, presented as an R output.

6. Conclusion

Choosing an optimization algorithm for the DVRP on the basis of
the characteristics of initial requests sets leads to the improvement of
the results. Choosing between MEMSO and 2MPSO algorithms resulted
in a 0.6% improvement in comparison with the 2MPSO average perfor-
mance (with a maximum of 1.5% improvement if all the predictions were
accurate) and 2.8% in comparison with the MEMSO performance. The
best performance has been improved by 0.2% on average in comparison
with 2MPSO and by 2.8% in comparison with MEMSO.

The obtained results suggest that the proper benchmark features has
been selected and choosing an optimization algorithm for a given bench-
mark problem is possible and may lead to results improvement. Both the
spatial and the volume related features have been marked as significant
in predicting relative performance.

The future work should include an algorithm choice possibility during
the optimization and not only at the beginning of the working day. It
might be also beneficial to search for another set of characteristics al-
lowing for a proper choice of the algorithm, in order to try eliminating
the DVRP tasks for which the significantly worse algorithm has been
selected.

226 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Acknowledgment: The research was financed by the National Sci-
ence Centre in Poland grant number DEC-2012/07/B/ST6/01527.
Project website: http://www.mini.pw.edu.pl/~mandziuk/dynamic.

References

[1] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-
heuristics: An emerging direction in modern search technology. In Handbook
of Metaheuristics. International Series in Operations Research & Management
Science 57, pages 457–474. Springer, 2003.

[2] N. Christofides and J. E. Beasley. The period routing problem. Networks,
14(2):237–256, 1984.

[3] C. W. Cleghorn and A. P. Engelbrecht. Particle swarm variants: standardized
convergence analysis. Swarm Intelligence, 9(2-3):177–203, 2015.

[4] G. A. Croes. A method for solving traveling salesman problems. Operations
Research, 6:791–812, 1958.

[5] G. B. Dantzig and R. H. Ramser. The Truck Dispatching Problem. Management
Science, 6:80–91, 1959.

[6] M. J. Elhassania, B. Jaouad, and E. A. Ahmed. A new hybrid algorithm to solve
the vehicle routing problem in the dynamic environment. International Journal
of Soft Computing, 8(5):327–334, 2013.

[7] M. J. Elhassania, B. Jaouad, and E. A. Ahmed. Solving the dynamic Vehi-
cle Routing Problem using genetic algorithms. Proceedings of the International
Conference on Logistics and Operations Management (GOL), pages 62–69, 2014.

[8] M. L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109–124, 1981.

[9] F. T. Hanshar and B. M. Ombuki-Berman. Dynamic vehicle routing using ge-
netic algorithms. Applied Intelligence, 27(1):89–99, 2007.

[10] J. Kennedy and R. Eberhart. Particle Swarm Optimization. Proceedings of IEEE
International Conference on Neural Networks, vol. IV, pages 1942–1948, 1995.

[11] M. R. Khouadjia, E. Alba, L. Jourdan, and E.-G. Talbi. Multi-Swarm Optimiza-
tion for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle
Routing Problem. Lecture Notes in Computer Science, 6234:227–238, 2010.

[12] M. R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E.-G. Talbi. A com-
parative study between dynamic adapted PSO and VNS for the vehicle routing
problem with dynamic requests. Applied Soft Computing, 12(4):1426–1439, 2012.

[13] M. R. Khouadjia, E.-G. Talbi, L. Jourdan, B. Sarasola, and E. Alba. Multi-
environmental cooperative parallel metaheuristics for solving dynamic optimiza-
tion problems. Journal of Supercomputing, 63(3):836–853, 2013.

[14] P. Kilby, P. Prosser, and P. Shaw. Dynamic VRPs: A Study of Scenarios. 1998
http://www.cs.strath.ac.uk/~apes/apereports.html.

[15] R. Montemanni, L. Gambardella, A. Rizzoli, and A. Donati. A new algorithm
for a dynamic vehicle routing problem based on ant colony system. Journal of
Combinatorial Optimization, 10:327–343, 2005.

A PSO Hyper-Heuristic for the Dynamic Vehicle Routing Problem 227

[16] M. Okulewicz and J. Mańdziuk. Application of Particle Swarm Optimization
Algorithm to Dynamic Vehicle Routing Problem. Lecture Notes in Computer
Science, 7895:547–558, 2013.

[17] M. Okulewicz and J. Mańdziuk. Two-Phase Multi-Swarm PSO and the Dy-
namic Vehicle Routing Problem. Proceedings of the 2nd IEEE Symposium on
Computational Intelligence for Human-like Intelligence, pages 86–93, 2014.

[18] M. Okulewicz and J. Mańdziuk. Dynamic Vehicle Routing Problem: A Monte
Carlo approach. In Information Technologies: Research and Their Interdis-
ciplinary Applications, pages 119–138, Pu ltusk, Poland, 2015. http://phd.

ipipan.waw.pl/pliki/mat_konferencyjne/12_ITRIA_2015_01.pdf#page=120

[19] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of dynamic
vehicle routing problems. European Journal of Operational Research, 225(1):1–
11, 2013.

[20] H. N. Psaraftis. Dynamic programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem. Transportation Science, 14(2):130–
154, 1980.

[21] H. N. Psaraftis. Dynamic vehicle routing: Status and prospects. Annals of Op-
erations Research, 61(1):143–164, 1995.

[22] Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. Proceedings
of IEEE International Conference on Evolutionary Computation (CEC), pages
69–73, 1998.

[23] É. D. Taillard. Parallel iterative search methods for vehicle routing problems.
Networks, 23(8):661–673, 1993.

[24] I. C. Trelea. The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information Processing Letters, 85(6):317–325, 2003.

EXTREMAL OPTIMIZATION AND
NETWORK COMMUNITY STRUCTURE

Noémi Gaskó
Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

gaskonomi@cs.ubbcluj.ro

Rodica Ioana Lung
Department of Statistics, Forecasts, Mathematics

Babeş-Bolyai University, Cluj-Napoca, Romania

rodica.lung@econ.ubbcluj.ro

Mihai Alexandru Suciu
Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

mihai-suciu@cs.ubbcluj.ro

Abstract The network community structure detection problem has been recently
approached with several variants of an extremal optimization algorithm.
An extremal optimization algorithm is a stochastic local search method
that evolves pairs of individuals that can be represented as having sev-
eral components by randomly replacing components having worst fit-
nesses. The number of components to be replaced in one iteration influ-
ences both the exploitation and exploration capabilities of the method;
an efficient method of adjusting this number during the search may sig-
nificantly influence the quality of results. In this paper we explore the
use of several updating mechanisms for this number. Numerical experi-
ments are used evaluate them and also to compare results obtained with
those provided by other state-of-art methods.

Keywords: Community structure detection, Extremal optimization.

1. Introduction

The network community structure detection problem has recently at-
tracted a lot of attention from the heuristic community because both its
large applicability and challenging nature. A particular challenge associ-

229

230 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ated with this problem arises from the lack of a formal definition for the
concept of community, and subsequently that of community structure
[6]. Apart from classical definitions that attempt to characterize com-
munities by using various network measures, a relatively recent class of
approaches define the community structure as the optimum value of a
certain fitness function that is supposed to illustrate the modularity of
the network. Alas, it is also accepted that such an ideal function has not
yet been proposed; existing attempts can only be validated by means of
numerical experiments and, while some functions prove suitable for syn-
thetic benchmarks, most of them fail when tested on real-world networks
for which the community structure is not so well-defined. Moreover, the
effectiveness of using a certain fitness function depends also on the un-
derlying method used to compute the optimum value.

In this paper we investigate the behavior of an extremal optimization
algorithm designed to optimize the modularity function [13], combined
with the community fitness [8], when using four different manners of
updating the number of nodes to be changed in one iteration: the classic
variant of changing only one node [3, 4], the improved τEO [2], and the
more recent variants in which this number decreases exponentially [18],
or linearly [11].

2. Network Community Structure

The fact that the community structure detection problem can be refor-
mulated as an optimization problem, makes it approachable by stochas-
tic search methods, benefiting from their scalability and adaptability.
Given an undirected, unweighted graph G = (N,E), where N is the
set of nodes, or vertices, and E is the set of edges/links, a community
structure is described intuitively as a partition over the set of nodes such
that nodes within each set are more connected to each other than to the
other sets in the partition.

While this intuitive definition appears to be easily formalized, by con-
sidering either that a community is a group of nodes such that for each
one the number of links within the community is greater than the num-
ber of links connecting it to the outside (the strong community concept
[15]) or even that the total number of links connecting nodes inside the
community is greater than the number of links to the outside (the weak
community concept [15]), there are many counterexamples of networks
with known community structure that do not satisfy either definition.
In fact, there does not exist a definition that formalizes the intuitive
description above and be accepted as valid for most situations.

Extremal Optimization and Network Community Structure 231

Figure 1: An example of a solution detected by an heuristic on a network with 124
nodes and 4 communities.

In spite of this, or maybe because of it, alternate methods to define
the community structure have been proposed. One of the most popu-
lar one, from a computational point of view, is to use a function that
has as an optimum value the real community structure of the network.
Again, while such a function that may be used for all possible networks
does not exist, there are some that are more effective and that became
popular in approaching this problem in the last years. Examples are
the modularity Q [13], the modularity density [10], the community score
[14], and the community fitness [8]. These functions, and most of all
the modularity and the modularity density, have been widely used and
studied in conjunction with various heuristics designed for their direct
or indirect optimization, i.e., directly finding their optimum and con-
sider it as the community structure, or only including them in one or
more search phases. An example of what is expected from a community
structure detection algorithm is depicted in Fig. 1.

The modularity Q of a community structure is defined as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj), (1)

where the sum runs over all pairs of vertices i and j, A is the adjacency
matrix, m the total number of links in the network, ki the degree of node
i, Ci the community of node i and δ(Ci, Cj) equals 1 if nodes i and j
belong to the same community and 0 otherwise. When two community
structures are compared, a higher modularity value presumably indicates
a better solution.

3. Extremal Optimization

Recently, a new heuristic approach that combines the modularity and
community fitness and uses extremal optimization algorithm (EO) [2]

232 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

as an underlying method has been proposed. Validated by means of
numerical experiments, this approach has proven more efficient than
other state-of-art methods when tested on usual benchmarks. With the
purpose of improving the extremal optimization method, several other
EO variants have been proposed, each one of them apparently leading
to better results. This article compares these methods, in the context
of the community structure detection problem, in the attempt to assess
if there are significant differences among them and if so, if one of them
may prove more efficient than the others.

The baseline method used here is the NoisyEO algorithm [11] which is
described in Algorithms 1 and 2. A typical EO algorithm evolves a pair
of individuals (s, sbest): s explores the search space and sbest preserves
the best solution found by s. NoisyEO evolves a population of such
pairs of individuals representing possible structures and evaluated with
the modularity function. Also typical to EO is the fact that one individ-
ual is represented as a set of components with different fitnesses; during
one iteration the component having the worst fitness value is randomly
replaced. A more efficient variant, called τ−EO, uses a probability dis-
tribution to decide which nodes are changed [2].

NoisyEO considers nodes as the components, and computes for each
node a fitness function as the node’s contribution to its community, i.e.:

f
(node)
i (C1, . . . , Cn) = f(Ci)− f(Ci\{i}), (2)

where Ci represents the community of player i, s ∈ S, and Ci\{i} is the
same community without node i; f is the community score:

f(C) =
kin(C)

(kin(C) + kout(C))α
, (3)

kin(C) is the double of the number of internal links in community C;
kout(C) the number of external links of C; and α - a parameter that
controls the community size (in experiments presented in this paper
α = 1). Thus, a NoisyEO individual is a vector of length equal to the
number of nodes, of the form s = (C1, . . . Cn), where Ci is the community
of node i.

Within NoisyEO several components are replaced simultaneously: their
number starts from approximatively 10% of the number of nodes, lin-
early decreases until the middle of the search and after that it remains
constant, equal to 1. But there are also other several ways this number
can be changed, based on the intuition that larger values induce diver-
sity and intensifies exploration of the space, while smaller values permit
better exploitation. In this paper we explore the possibility of using

Extremal Optimization and Network Community Structure 233

no generations

k

NoisyEO(E)
NoisyEO(L)
NoisyEO(L2)
NoisyEO(1)

Figure 2: Different variants of updating the number of nodes κ that are changed each
iteration during the search in order to maintain the equilibrium between exploration
- at the beginning of the search - and exploitation - towards the end of the search.

other methods of adapting this number in an attempt to find the best
version of EO suitable for the community structure detection problem.
The following variants, all based on NoisyEO, are proposed:

NoisyEO(L2) - κ decreases linearly to 1 until the middle of the
search and remains 1 to the end [11];

NoisyEO(L) - κ decreases linearly to 1;

NoisyEO(E) - κ decreases exponentially from approx 10% of the
number of nodes, to 1 at the end of the search:

κNrGgen = max

{
1,

[
1

10
·N · (N − 2)−

NrGen
MaxGen

]}
, (4)

where [·] represents the integer part, N the number of network
nodes, andMaxGen the maximum number of generations/iterations
allowed.

NoisyEO(1) κ = 1, constant;

τ−EO, that uses the framework of NoisyEO with a τ−EO itera-
tion, in which nodes are ranked by fitness and the probability of
choosing node r is P (r) ∝ r−τ [5].

A graphical representation of the four different variants of setting κ
is illustrated in Fig. 2.

234 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Algorithm 1 NoisyEO algorithm

Parameters:
Population size - popsize;
Probability of shift - pshift;
Number of generations between switching networks - G;
Total number of shifts - NrShifts;
Expected minimum and maximum number of communities.

1: Randomly initialize popsize pairs of configurations (s, sbest).
2: noise=false;
3: repeat
4: if noise then
5: Induce noise with probability p

(∗)
shift;

6: Randomly reinitialize each sbest in population;
7: else
8: perform search on the original network;
9: end if

10: noise=not noise;
11: Update k depending on the tested EO variant(∗∗);
12: for G generations do
13: Apply κEO (s, sbest) for all pairs (s, sbest) - Alg. 2;
14: end for
15: until G ∗NrShifts > Maximum number of generations;
16: Return sbest with highest fitness.
(∗) Modify network by randomly deleting/adding nodes with probability pshift which
decreases linearly from an initial value to 0 during the search.
(∗∗) One of the following variants are considered:

NoisyEO(E) - κ decreases exponentially, eq. (4);
NoisyEO(L) - κ decreases linearly to 1;
NoisyEO(L2) - κ decreases linearly to 1 until the middle of the search and
remains 1 to the end;
NoisyEO(1) κ = 1, constant;

Algorithm 2 κEO(s, sbest) iteration

1: For current configuration s evaluate ui(s), the fitness function cor-
responding of node i ∈ {1, . . . , n}.

2: find the κ worst components and replace them with a random value;
3: if (s is better (∗∗∗) than sbest) then
4: set sbest := s.
5: end if

(∗∗∗) better modularity value (1)

Extremal Optimization and Network Community Structure 235

4. Numerical Experiments

Numerical experiments, performed on several benchmarks, are used
to compare the results offered by the five NoisyEO variants with those
offered by other state-of-art algorithms.

Experimental set-up. Numerical experiments were performed on
synthetic benchmarks and real-world networks with the five variants of
NoisyEO : NoisyEO(L2), NoisyEO(L),NoisyEO(E), NoisyEO(1), τ−EO.
Results were compared with four state-of-art methods: Louvain [1],
OSLOM [9], Infomap [16], and ModOpt [17] - run by using the source
code from sites.google.com/site/andrealancichinetti/software,
last accessed May, 2015. Louvain and ModOpt optimize the modularity,
OSLOM uses a probability of a node to belong to a community and
Infomap is based on a random walk.

Parameter settings. The algorithm parameters are the same for
all variants of NoisyEO : population size 50, initial value of pshift = 1,
G = 45, NrShifts = 150; the interval for the number of communities
for each network is estimated such that the correct number is included
and assigned to approx. 25% of the population.

Benchmarks. Four sets of synthetic networks were generated:

GN: 128 nodes, 4 equal sized communities, node degree 16, zout
indicates the number of links a node has outside its community;
30 networks for each zout ∈ {1, . . . 8};

LFR 128 nodes: average vertex degree 20, maximum vertex degree
50, community size [10, 50];

LFR 1000 nodes, S - small: average vertex degree 20, maximum
vertex degree 50, community size [10, 50];

LFR 1000 nodes, B - big: average vertex degree 20, maximum
vertex degree 50, community size [20, 100]

The LFR sets are characterized by the mixing parameter µ value - com-
puted as the ratio between the number of links a node has outside its
community and its degree. For each set and each µ value, we generated
30 networks. The most challenging sets are those where µ ∈ {0.5, 0.6}
and zout = 8, because they have a less well-defined community structure.
Even among these networks (128 nodes, 1000 nodes small and big), the
most difficult ones are the small ones (128 nodes), because if we increase

236 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the network size and the number of communities, a better-defined struc-
ture is created.

The real-world networks used for experiments are: the bottle-nose
dolphin network [12], the football network [7], the Zachary karate club
network [19], and the books about US politics network – www.org\net.

com, last accessed 9/3/2015.

Performance evaluation. We use the normalized mutual informa-
tion (NMI) proposed in [8] to evaluate and to compare results. A NMI
value of 1 indicates, that two communities are identical. We compared
obtained results for each method to the real community structure of the
network.

For each benchmark set, results are further compared by using the
Wilcoxon sign-rank nonparametric test (for 30 independent runs for each
real network and on the 30 networks for each GN and LFR sets). The
Wilcoxon sign rank specifies if the difference between two sample medi-
ans may be considered significant: the null hypothesis that two samples
come from the same population can be rejected with a level of signifi-
cance α = 0.05 if the computed p-value is smaller than 0.05.

Results and discussion. Results are presented in the form of box-
plots of NMI values obtained for the 30 runs by each method, in Fig-
ures 3–5. Next to each box-plot, a black-white matrix corresponding to
Wilcoxon h values indicates the results of the pairwise comparisons of
the tested methods: a black square shows a statistical difference between
the two methods.

Regarding the difference between NoisyEO variants, the Wilcoxon h
matrices show very few differences between the three adaptive variants:
E, L, and L2. The exponential variant, E, shows worst results for the GN
zout = 8 set, but this result is still better than all the results obtained by
the other methods. Setting k = 1 and τ−EO do not yield good results
compared to the other EO variants for the synthetic benchmarks. For the
real-world networks, results are much closer, but still the three variants
outperform the others.

5. Conclusion

A comparative analysis of four variants of extremal optimization up-
dating procedures for the community structure detection problem is pre-
sented. The results show that the use of an adaptive method of setting
the number of nodes to be randomly reassigned each iteration is ben-
eficial; however, differences between tested variants are not significant
enough to enable us to draw a conclusion regarding the best variant for

Extremal Optimization and Network Community Structure 237

0

0.5

1

Wilcoxon h values
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

N
oi

sy
E

O
(E

)

N
oi

sy
E

O
(L

)

N
oi

sy
E

O
(L

2)

N
oi

sy
E

O
(1

)

τ−
E

O

Lo
uv

ai
n

M
od

O
pt

O
sl

om

In
fo

m
ap

z ou
t=

8
z ou

t=
7

z ou
t=

6
z ou

t=
5

GN benchmark

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

Wilcoxon h values
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

N
oi

sy
E

O
(E

)

N
oi

sy
E

O
(L

)

N
oi

sy
E

O
(L

2)

N
oi

sy
E

O
(1

)

τ−
E

O

Lo
uv

ai
n

M
od

O
pt

O
sl

om

In
fo

m
ap

µ=
0.

6
µ=

0.
5

µ=
0.

4
µ=

0.
3

LFR benchmark, 128 nodes

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

Figure 3: GN and LFR benchmarks, 128 nodes. Comparisons with other methods.
Boxplots of NMI values obtained for the 30 networks in each set by each considered
method. Wilcoxon h values matrices illustrate the statistical significance of the dif-
ferences in results for the nine methods: a black box corresponds to p < 0.05 and
rejection of the null hypothesis that the two samples have the same median.

0

0.5

1

Wilcoxon h values
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

N
oi

sy
E

O
(E

)

N
oi

sy
E

O
(L

)

N
oi

sy
E

O
(L

2)

N
oi

sy
E

O
(1

)

τ−
E

O

Lo
uv

ai
n

M
od

O
pt

O
sl

om

In
fo

m
ap

µ=
0.

6
µ=

0.
5

µ=
0.

4
µ=

0.
3

LFR benchmark, 1000 nodes, small

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

Wilcoxon h values
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

N
oi

sy
E

O
(E

)

N
oi

sy
E

O
(L

)

N
oi

sy
E

O
(L

2)

N
oi

sy
E

O
(1

)

τ−
E

O

Lo
uv

ai
n

M
od

O
pt

O
sl

om

In
fo

m
ap

µ=
0.

6
µ=

0.
5

µ=
0.

4
µ=

0.
3

LFR benchmark, 1000 nodes, big

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

Figure 4: LFR benchmark, 1000 nodes, Small and Big. Results are represented in
the same manner as in Fig. 3

238 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

0

0.5

1

Wilcoxon h values
1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

0

0.5

1

N
oi

sy
E

O
(E

)

N
oi

sy
E

O
(L

)

N
oi

sy
E

O
(L

2)

N
oi

sy
E

O
(1

)

τ−
E

O

Lo
uv

ai
n

M
od

O
pt

O
sl

om

In
fo

m
ap

ka
ra

te

fo
ot

ba
ll

do
lp

hi
ns

bo

ok
s

Real−world networks

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9

Figure 5: Real-world networks. Results are represented in the same manner as in
Fig. 3.

nr shifts

N
M

I

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GN benchmark, 128 nodes, z
out

=8

NoisyEO(E)
NoisyEO(L)
NoisyEO(L2)
NoisyEO(1)

nr shifts

N
M

I

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LFR benchmark, 1000 nodes, small, µ=0.5

NoisyEO(E)
NoisyEO(L)
NoisyEO(L2)
NoisyEO(1)

Figure 6: Evolution of NMI values in time for two of the most difficult sets: GN
zout = 8 and LFR 1000 nodes with µ = 0.5. It is obvious that adapting the values of
k leads to better results. The differences in means represented here have no statistical
significance for the LFR benchmark.

Extremal Optimization and Network Community Structure 239

the tested problems. Only when using an exponential rule, results are
worse than the other EO variants, but even in those situations, they are
very good.

Numerical results also show that extremal optimization may be very
powerful in addressing the problem of community structure detection.
Its main drawback, however, arises from the fact that random the com-
putational time required by the iterative random changes makes this
approach less efficient for large networks. On the other hand, this
method proved very efficient for small networks with less visible commu-
nity structures. Further work consists in finding the means to improve
its scalability while maintaining its efficiency in dealing with ambiguous
community structures.

Acknowledgment: This work was supported by a grant of the Roma-
nian National Authority for Scientific Research and Innovation, CNCS
- UEFISCDI, project number PN-II-RU-TE-2014-4-2332.

References

[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[2] S. Boettcher and A. Percus. Nature’s way of optimizing. Artificial Intelligence,
119:275–286, 2000.

[3] S. Boettcher and A. G. Percus. Optimization with Extremal Dynamics. Physical
Review Letters, 86:5211–5214, 2001.

[4] S. Boettcher and A. G. Percus. Extremal optimization: an evolutionary local-
search algorithm. In Computational Modeling and Problem Solving in the Net-
worked World. Operations Research/Computer Science Interfaces Series 21,
pages 61–77, Kluwer Academic Publishers, 2002.

[5] J. Duch and A. Arenas. Community detection in complex networks using ex-
tremal optimization. Physical Review E, 72:027104, Aug 2005.

[6] S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174,
2010.

[7] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[8] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the overlapping and
hierarchical community structure in complex networks. New Journal of Physics,
11(3):033015, 2009.

[9] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. Finding statis-
tically significant communities in networks. PloS One, 6(4):e18961, 2011.

[10] Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang, and L. Chen. Quantitative function
for community detection. Physical Review E, 77:036109, 2008.

240 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[11] R. I. Lung, M. Suciu, and N. Gaskó. Noisy extremal optimization. Soft Com-
puting, pages 1–18, 2015.

[12] D. Lusseau, K. Schneider, O. Boisseau, P. Haase, E. Slooten, and S. Dawson.
The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4):396–405,
2003.

[13] M. E. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113, 2004.

[14] C. Pizzuti. Ga-net: A genetic algorithm for community detection in social net-
works. Lecture Notes in Computer Science, 5199:1081–1090, 2008.

[15] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and
identifying communities in networks. Proceedings of the National Academy of
Sciences, 101(9):2658–2663, 2004.

[16] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Sciences,
105(4):1118–1123, 2008.

[17] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral. Extracting
the hierarchical organization of complex systems. Proceedings of the National
Academy of Sciences, 104(39):15224–15229, Sept. 2007.

[18] M. Suciu, R. I. Lung, and N. Gaskó. Mixing Network Extremal Optimization for
Community Structure Detection. Lecture Notes in Computer Science, 9026:126–
137, 2015.

[19] W. W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):452–473, 1977.

THE PITFALLS OF OVERFITTING IN
OPTIMIZATION OF A MANUFACTURING
QUALITY CONTROL PROCEDURE

Tea Tušar
DOLPHIN Team, INRIA Lille – Nord Europe, France

Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia

tea.tusar@ijs.si

Klemen Gantar
Faculty of Computer and Information Science, University of Ljubljana, Slovenia

kg6983@student.uni-lj.si

Bogdan Filipič
Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia

Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

bogdan.filipic@ijs.si

Abstract We are concerned with the estimation of copper-graphite joints quality
in commutator manufacturing—a classification problem in which we
wish to detect whether the joints are soldered well or have any of the
four known defects. This quality control procedure can be automated by
means of an on-line classifier that can assess the quality of commutators
as they are being manufactured. A classifier suitable for this task can
be constructed by combining computer vision, machine learning and
evolutionary optimization techniques. While previous work has shown
the validity of this approach, this paper demonstrates that the search
for an accurate classifier can lead to overfitting despite cross-validation
being used for assessing the classifier performance. We inspect several
aspects of this phenomenon and propose to use repeated cross-validation
in order to amend it.

Keywords: Computer vision, Differential evolution, Machine learning, parameter
tuning, Manufacturing, Quality control.

241

242 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

1. Introduction

In automotive industry, only one part per million of supplied products
is allowed be defective, which yields strict requirements for the involved
manufacturing processes as well as their quality control procedures. We
are interested in the manufacturing of graphite commutators (i.e., com-
ponents of electric motors used, for example, in automotive fuel pumps)
produced at an industrial production plant. More specifically, we wish
to automatically assess the quality of copper-graphite joints in commu-
tators after the soldering phase of this manufacturing process, which is
one of the most critical phases of commutator production.

At present, the soldering quality control at the plant is done manually.
Automated on-line quality control would bring several advantages over
manual inspection. For example, it can promptly detect irregularities
making error resolution faster and consequently saving a considerable
amount of resources. Moreover, it does not slow down the production
line and is cheaper than manual inspection. Finally, it does not suffer
from fatigue and other human factors that can result in errors. This is
why we aim for an automated on-line quality control procedure capable
of determining whether the joints are soldered well or have any of the
four known defects.

Such automation can be implemented on the production line with a
classifier previously constructed on a database of commutator segment
images with known defects (or absence of defects). Three previous stud-
ies [3, 4, 5] have already tackled this problem and in all cases 10-fold
cross-validation (CV) was used as a measure of classifier accuracy. This
work questions 10-fold CV as the measure of choice for such tasks and
proposes actions to deal with the inevitable overfitting issue.

The rest of the paper is structured as follows. Section 2 presents de-
tails of the problem in question, summarizes previous work and outlines
the design of the quality control procedure used in this study. Section
3 is devoted to cross-validation and the overfitting issue. Performed ex-
periments and their results are discussed in Section 4. Finally, Section
5 summarizes the paper and gives ideas for future work.

2. Background

2.1 Soldering in Commutator Manufacturing

The soldering phase in the commutator manufacturing process con-
sists of soldering the metalized graphite to the commutator copper base.
The quality of the resulting copper-graphite joints is crucial since the
reliability of end user applications directly depends on the strength of

The Pitfalls of Overfitting in Optimization of a Manufacturing . . . 243

(a) (b) (c)

(d) (e) (f)

Figure 1: Images of: (a) a graphite commutator, (b) a commutator segment, (c) a
ROI for metalization defect, (d) a ROI for excess of solder, (e) a ROI for deficit of
solder, and (f) a ROI for disorientation.

these joints. After the soldering phase, the commutators are manually
inspected for presence of any defects. Known defects comprise metaliza-
tion defect (presence of visible defects on the metalization layer), excess
of solder (presence of solder spots on the copper pad), deficit of solder
(lack of solder in the graphite-copper joint) and disorientation (disori-
entation between the copper body and the graphite disc). Commutators
are made up of a number of segments, depending on the model (the con-
sidered commutator model from Fig. 1 (a) consists of eight segments).
If a single segment has any of the listed defects, the whole commutator
is labeled as defective and removed from the production process.

Various defects occur in different regions of the commutator segment.
For example, the region where the excess of solder is usually detected is
different from the region where disorientation can be observed. There-
fore, images of commutator segments can be divided into four regions of
interest (ROIs), one for each defect (see Fig. 1).

Because five different outcomes are possible (rare cases where two or
more defects appear on a single commutator segment are labeled with
just one defect and are not differentiated further), we treat this as a
classification problem with five classes. While the manufacturers are
indeed interested in keeping statistics of the detected defects, their main
concern is that no false positives are found. This means that cases when

244 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

a defective commutator is labeled as without defects are to be avoided
as much as possible. This is, of course, very hard to achieve.

2.2 Previous Work

Three previous studies investigated different aspects of this challeng-
ing real-world problem. The initial experiment [4] explored whether
computer vision, machine learning and evolutionary optimization tech-
niques could be employed to find small and accurate classifiers for this
problem. First, images of the copper-graphite joints were captured by
a camera. Next, a fixed set of features were extracted from these im-
ages using digital image processing methods. This data were then used
to train decision trees capable of predicting if a commutator segment
has any of the four defects or is soldered well. The DEMO (Differential
Evolution for Multiobjective Optimization) algorithm [12] was applied
to search for small and accurate trees by navigating through the space
of parameter values of the decision tree learning program. The study
found this setup to be beneficial, but urged to focus future research on
more sophisticated extraction of features from the images as this seemed
to hinder the search for more accurate classifiers.

The second study [5] presented a different setup for the automated
quality control procedure to address the issues from the first study. In-
stead of optimizing decision tree parameter values, differential evolution
(DE) [13] was used to search for the best settings of image processing
parameters such as filter thresholds. Tuning of these parameters can be
a tedious task prone to bias from the engineers that usually do it by
trial-and-error experimentation. Moreover, the choice of right features
is crucial for obtaining a good classifier.

The single classification problem with five classes was split into four bi-
nary classification subproblems, where each subproblem was dedicated to
detecting one of the four defects and used data only from the correspond-
ing ROI. In addition, instead of classification accuracy, the measure to be
optimized was set to a function penalizing the portion of false negatives
100 times harder than the portion of false positives. The study found
that the new combination of computer vision, machine learning and
evolutionary optimization techniques was powerful and achieved some
good results. While optimization with DE always found better parame-
ter settings for image processing methods than those defined by domain
experts, some subproblems proved to be harder than others. For exam-
ple, detection of commutator segments with excess of solder achieved
a satisfactory accuracy, while the detection of metalization defects did
not.

The Pitfalls of Overfitting in Optimization of a Manufacturing . . . 245

The third study [3] investigated the correctness of the implicit assump-
tion from [5] that only features of the subproblem-specific ROI would
influence the outcome of the classifier for that subproblem. The study
found that features from other ROIs can be important as well, suggest-
ing that it might be better not to split the classification problem into
subproblems at all.

While being otherwise rather different, all three mentioned studies
used 10-fold CV to estimate the performance of the employed classifiers.
In this paper we wish to test if such evaluation of classifiers is appropriate
when performing optimization based on this measure.

2.3 Design of the Automated Quality Control
Procedure

The automated quality control procedure considered in this paper is
very similar to the one presented in [5]. Again computer vision, machine
learning and evolutionary optimization methods are combined in the
search for the best settings for image processing parameters. In short,
the procedure design consists of the following steps:

1 Determine a set of image features.

2 Use an evolutionary algorithm to search for the values of image
processing parameters that result in the highest fitness. Evaluate
each solution using these steps:

(a) Based on the chosen parameter values, use the image process-
ing methods to convert each image of a commutator segment
into a vector of feature values.

(b) Construct a classifier (in our case a decision tree) where the
vectors of feature values serve as learning instances. Estimate
the classifier accuracy and use this value as solution fitness.

3 Choose the best found classifier and the corresponding image pro-
cessing parameter values to detect defects in images of new com-
mutator segments as they are being manufactured.

Let us now describe the steps of processing commutator segment im-
ages, building decision trees and optimizing classifier performance in
more detail.

2.3.1 Processing commutator segment images. Processing
of images is the most time-consuming task of our procedure and is done
in several steps. First, the image of a commutator segment needs to

246 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

be properly aligned. Next, the four ROIs shown in Fig. 1 need to be
detected. This is done by applying four predefined binary masks to
the image, one for each ROI. Each of the ROIs is further processed as
follows. Depending on the ROI, the image in RGB format is converted
into a gray-scale image by extracting a single color plane. Based on
expert knowledge, red is used for all ROIs except the ROI for excess of
solder, which uses the blue color plane.

The final three steps require certain parameters to be set. A 2D me-
dian filter of size 1× 1, 3× 3 or 5× 5 is applied to reduce noise. Next, a
binary threshold that can take values from {1, 2, . . . , 256} is used to elim-
inate irrelevant pixels. Finally, an additional particle filter is employed
to remove all particles (connected pixels with similar properties) with
a smaller number of pixels than a threshold value from {1, 2, . . . , 1000}.
Note that because of the diversity of the defects, it is reasonable to
assume that these three image processing parameters should be set in-
dependently for each ROI. This means that in total 12 image processing
parameters need to be set.

After these image processing steps, the chosen set of features are ex-
tracted from the image of each ROI. We use the same set of features as
in [5, 3]:

– number of particles,

– cumulative size of particles in pixels,

– maximal size of particles in pixels,

– minimal size of particles in pixels,

– gross/net ratio of the largest particle,

– gross/net ratio of the cumulative size of particles.

To summarize, computer vision methods are used to convert each
commutator segment image into a vector of 24 feature values.

2.3.2 Building decision trees. Commutator segment images
with known classes are used to construct a database of instances, upon
which a machine learning classifier can be built. We chose decision
trees since they are easy to understand and implement in the on-line
quality control procedure. In accordance with the guidelines from [3],
we do not split the machine learning problems into subproblems, but use
all instances and all ROIs to build a single classifier with five classes:
no defect, metalization defect, excess of solder, deficit of solder and
disorientation.

Note that the classifier predicts defects on commutator segments. For
the final application, predictions for all segments of a commutator need

The Pitfalls of Overfitting in Optimization of a Manufacturing . . . 247

to be aggregated in order to produce a prediction for the commutator as
a whole. While this might be straightforward to do, it is not the focus
of this paper. We first wish to find good classifiers on the segment level
before dealing with any meta-classifiers.

2.3.3 Optimizing classifier performance. Classifier perfor-
mance can be measured in several ways, ranging from classification ac-
curacy to the F-measure to other, even custom functions that depend
on the domain (as was done for the two-class case in [5]). While we
acknowledge that a similar custom function would be beneficial also for
our five-class problem, where false ‘no defect’ classifications bear more
serious consequences than other types of misclassifications, classification
accuracy is chosen for now, since it is easier to interpret. Classification
accuracy is estimated with 10-fold CV, which is a popular technique for
predicting classifier performance on unseen instances and has been used
also in the three previous studies [4, 5, 3].

In order to find the values of image processing parameters that will
result in a classifier with high accuracy, an evolutionary algorithm is
employed to search in the 12-dimensional space of image processing pa-
rameter values.

3. The Pitfalls of Overfitting

When building a classifier, some of the data is used for training the
classifier, while the rest is used for testing its performance. Ideally, we
would like both sets to be fairly large, since a lot of data is needed to
train a classifier well, and a lot of data is needed to truthfully predict
how it will perform on unseen instances. However, in reality, the data is
often scarce and certain compromises need to be made.

One of the most popular approaches to estimate classifier performance
is k-fold cross-validation, where the data is split into k sets of approx-
imately equal cardinality. Next, k − 1 of the sets are used for training
the classifier, while the remaining set is used for testing its performance.
This is repeated k times so that each set is utilized for testing exactly
once. The average of all performance results is then used to estimate
the accuracy of the classifier built on the entire data.

This and other cross-validation techniques (see [1] for a survey) were
envisioned in order to avoid overfitting, i.e., constructing classifiers that
describe noise in the data instead of the underlying relationships, since
a classifier that overfits the training data performs poorly on unseen
instances. This happens, for example, if the classifier is too complex.
However, it has been long known [6] that there exists another source
of overfitting that takes place despite cross-validation—if we compare a

248 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

high number of classifiers on a small set of instances, the best ones are
usually those that overfit these instances.

This means, for example, that if an optimization algorithm that can
produce thousands or even millions of solutions is used to find the best
classifier for a problem, this best found classifier almost surely overfits
the test data. Note however, that our study does not compare multiple
classifiers on the same data. Our optimization problem resembles more
that of feature selection where a subset of features needs to be found so
that classifiers using these features will achieve good performance. The
main difference to the standard feature selection is that we are perform-
ing feature selection in subgroups—for each of the 12 image processing
parameters (one subgroup) we need to select exactly one among all pos-
sible values. The danger of overfitting despite using cross-validation has
been noticed for feature selection problems as well [11].

In the following we present the results achieved with 10-fold CV for
estimating classifier performance on our optimization problem, which
show overfitting patterns, and analyze increased pruning and repeated
cross-validation as possible alternatives to amend this issue.

4. Experimental Study

4.1 Experimental Setup

The experiments were performed on the commutator soldering domain
from previous studies that contains 363 instances with uneven distribu-
tion of classes (see Table 1).

Table 1: The commutator soldering domain.

Class Number of instances Frequency [%]

No defect 212 58.4
Metalization defect 35 9.6
Excess of solder 35 9.6
Deficit of solder 49 13.5
Disorientation 32 8.8

Total 363 100.0

All computer vision methods were implemented using the Open Com-
puting Language (OpenCL) [7], or more precisely, the OCL program-
ming package [8], an implementation of OpenCL functions in the Open
Computer Vision (OpenCV) library [9].

The Pitfalls of Overfitting in Optimization of a Manufacturing . . . 249

The decision trees were built using the J48 algorithm from the Weka
machine learning environment [16], which is a Java implementation of
Quinlan’s C4.5 decision tree building algorithm [10]. The trees were
constructed with default J48 parameter values except for the increased
pruning case (more details are given in Section 4.3).

For optimization we use a self-adaptive DE algorithm called jDE [2]
with a population of 80 solutions. The stopping criterion for the algo-
rithm was set to 1000 generations. For each set of experiments nine runs
have been performed and all presented results show the average values
over the nine runs.

4.2 Results of Single Cross-Validation

First, we look at what happens when single 10-fold CV is used to
estimate classifier accuracy (see top plot in Fig. 2). The black line shows
that jDE is able to find increasingly more accurate classifiers as the
evolution progresses. In order to check if these classifiers present signs of
overfitting, we perform the following additional assessment. For each run
and each best classifier from the population, we estimate the classifier
using 10-fold CV ten more times. The span of these accuracies averaged
over the nine runs is presented in red.

The increasing gap between the black line and the red area means
that classifiers that are good on the default split of instances into cross-
validation sets perform considerably worse when they are tested again on
ten different cross-validation splits, i.e., the classifiers overfit the default
cross-validation split. This happens because we are exploring a large
number of classifiers and incidentally optimize them also with regard to
the default cross-validation split.

Note that this kind of overfitting is different to the ‘usual’ one, where
the classifier overfits the given instances. While we are probably experi-
encing both, we cannot know about the second one without testing the
classifiers on a large number of unseen instances, which we unfortunately
do not posses. We have experimented with reserving a small part of data
for validation purposes as was done in [14], but found that this approach
is not suitable for our case because of the small number of instances at
our disposal. Since we have five classes with uneven distribution of
instances, it proved very difficult to find representative instances for val-
idation. Without a representative validation set the resulting estimation
of overfitting can be too biased to rely on.

250 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Generations

Results using single cross-validation

Span of repeated CV (10 times)
Single CV

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Generations

Results using increased prunning

Span of repeated CV (10 times)
Single CV

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 0 100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

Generations

Results using repeated cross-validation

Span of repeated CV (30 times)
Span of repeated CV (10 times)

Repeated CV (10 times)

Figure 2: Experimental results of single cross-validation (top plot), increased pruning
(middle plot) and repeated cross-validation (bottom plot). The black line shows
the best classification accuracy found by jDE, while the red and yellow ares denote
the span of accuracy values when the current-best classifier is re-estimated using
additional cross-validation. All plots show average values over nine runs.

The Pitfalls of Overfitting in Optimization of a Manufacturing . . . 251

4.3 Results of Increased Pruning

Next, we investigate whether increased pruning of decision trees can
help improve their generalization ability in our case. Note that the
original decision trees (the J48 trees with default parameter settings)
used in the previous experiments were also pruned. Here, we intensify
the pruning by increasing the m parameter of the J48 algorithm that
defines the minimal number of instances in any tree leaf from 2 to 5. The
results of these experiments are presented in the middle plot in Fig. 2.

While the gap between the single cross-validation and the re-estimation
using repeated cross-validation is smaller than in the previous experi-
ments, the overfitting is still obvious. We can conclude that increased
pruning does not alleviate much the overfitting brought by optimization.

4.4 Results of Repeated Cross-Validation

Finally, we explore the case when the fitness of the decision trees built
with default parameter values is determined as the average of 10 different
assessments by 10-fold CV. Again, we perform an additional assessment
of the classifiers. This time we add to the repeated cross-validation 20
new estimations (for a total of 30) to see how they compare. The bottom
plot in Fig. 2 shows there are no big differences when additional cross-
validation results are added, indicating that repeated cross-validation
is less prone to overfitting brought by optimization than single cross-
validation. The average accuracy of the current-best classifiers over 10
and 30 repetitions are very similar, which suggests 10 repetitions can be
chosen over 30 as they require less time.

These results seem to contradict the ones presented in [15], however
this is not the case. In a series of experiments, [15] compares the esti-
mates of classification accuracy from single 10-fold CV, 10-fold CV re-
peated 10 times and 10-fold CV repeated 30 times to a simulated ‘true’
performance of the classifier on unseen data. The results show that al-
though the confidence interval narrows when increasing the number of
cross-validation repetitions, this does not necessarily mean that the ac-
curacy estimate will converge to the ‘true’ accuracy. The authors argue
that the reason for this behavior is that the same data is continuously
being resampled in repeated cross-validations. The experiments in [15]
tackle the ‘usual’ overfitting problem, which is not the subject of this
paper. We are concerned with the overfitting brought by optimization
and find that repeated cross-validation can alleviate it.

252 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

5. Conclusion

We have presented a challenging real-world problem of estimating the
quality of the commutator soldering process. We wish to find a classifier
able to distinguish among joints soldered well and those that have one of
the four possible defects. The problem is tackled using a combination of
computer vision, machine learning and evolutionary optimization meth-
ods. In essence, we are searching for parameter settings of computer
vision methods that can yield a highly accurate classifier.

Since an optimization algorithm that explores a large number of so-
lutions to this problem is being used, we have been confronted with the
problem of overfitting. We performed some experiments that have shown
how overfitting can be detected and discussed on possible ways to amend
it. From the results we conclude that repeated cross-validation can be
used to diminish the overfitting bias brought by optimization. However,
this results cannot be generalized to other machine learning problems
without additional experiments that include a number of other datasets.
This is a task left for future work.

The presented real-world problem is not yet solved and we can see
many directions for future work. First, since the accuracies achieved
are still not good enough for automotive industry standards, our main
focus will be to try to improve on that (possibly by not producing even
more overfitting). This can be tried, for example, by choosing other
image features in addition to the six we have right now, or by trying
more sophisticated classifiers than decision trees. Also, we intend to
consider other measures of classifier performance beside accuracy. For
example, we could use a specialized aggregation function or try to use
a multiobjective approach. Finally, we will have to eventually combine
the classifications of individual commutator segments into a single clas-
sification of the commutator as a whole.

Acknowledgment: This work was partially funded by the ARTEMIS
Joint Undertaking and the Slovenian Ministry of Economic Development
and Technology as part of the COPCAMS project (http://copcams.
eu) under Grant Agreement no. 332913, and by the Slovenian Research
Agency under research program P2-0209.

The authors wish to thank Valentin Koblar for valuable support re-
garding the application domain and computer vision issues, and Bernard
Ženko for helpful discussions on machine learning algorithms.

The Pitfalls of Overfitting in Optimization of a Manufacturing . . . 253

References

[1] S. Arlot and A. Celisse. A survey of cross-validation procedures for model se-
lection. Statistics Surveys, 4:40–79, 2010.

[2] J. Brest, S. Greiner, B. Bosković, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: A comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[3] E. Dovgan, K. Gantar, V. Koblar, and B. Filipič. Detection of irregularities on
automotive semiproducts. Proceedings of the 17th International Multiconference
Information Society (IS), pages 22–25, 2014.

[4] V. Koblar and B. Filipič. Designing a quality-control procedure for commutator
manufacturing. Proceedings of the 16th International Multiconference Informa-
tion Society (IS), pages 55–58, 2013.

[5] V. Koblar, E. Dovgan, and B. Filipič. Tuning of a machine-vision-based quality
control procedure for product components in automotive industry. Submitted
for publication, 2014.

[6] A. Y. Ng. Preventing ”overfitting” of cross-validation data. Proceedings of the
Fourteenth International Conference on Machine Learning (ICML), pages 245–
253, 1997.

[7] OpenCL: The open standard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/. Retrieved January 25, 2016.

[8] OpenCL module within the OpenCV library. http://docs.opencv.org/

modules/ocl/doc/introduction.html. Retrieved January 25, 2016.

[9] OpenCV: Open source computer vision. http://opencv.org/. Retrieved Jan-
uary 25, 2016.

[10] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[11] R. B. Rao, G. Fung, and R. Rosales. On the dangers of cross-validation. An
experimental evaluation. Proceedings of the SIAM Conference on Data Mining
(SDM), pages 588–596, 2008.

[12] T. Robič and B. Filipič. DEMO: Differential evolution for multiobjective opti-
mization. Lecture Notes in Computer Science, 3410:520–533, 2005.

[13] R. Storn and K. V. Price. Differential evolution – A simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[14] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Auto-
mated selection and hyper-parameter optimization of classification algorithms.
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 847–855, 2013.

[15] G. Vanwinckelen and H. Blockeel. On estimating model accuracy with repeated
cross-validation. Proceedings of the 21st Belgian-Dutch Conference on Machine
Learning (BeneLearn), pages 39–44, 2013.

[16] Weka Machine Learning Project. http://www.cs.waikato.ac.nz/ml/weka/

index.html. Retrieved January 25, 2016.

ROBUST MULTI-OBJECTIVE
OPTIMIZATION OF WATER
DISTRIBUTION NETWORKS

Taishi Ohno, Hernán Aguirre, Kiyoshi Tanaka
Faculty of Engineering, Shinshu University, Wakasato, Nagano-shi, Japan

15tm209f@shinshu-u.ac.jp, ahernan@shinshu-u.ac.jp, ktanaka@shinshu-u.ac.jp

Abstract This work studies the incorporation of robustness to changes in water
demand within the evolutionary search in order to enhance the design
optimization of water distribution networks. An unconstrained multi-
objective formulation of the problem is used together with the AεSεH
algorithm, a multi- and many-objective evolutionary algorithm known
to scale up well with larger population sizes and number of objectives.
An effective incorporation of robustness within the evolutionary process
will open the possibility to incorporate additional important objectives
of water distribution networks that can be optimized simultaneously.

Keywords: Evolutionary algorithms, Multi- and many-objective algorithm AεSεH,
Multi-objective design optimization, Water distribution networks.

1. Introduction

A water distribution network refers to the drinking water supply back-
bone of an urban area. Its main components are reservoirs, pipes, and
nodes. The diameters of the pipe are chosen from a set of commercially
available sizes and there is a certain demand of water associated to each
node that must be fulfilled. The design optimization of water distribu-
tion networks aims to obtain optimal combinations of pipe diameters
that minimize cost while keeping enough pressure at the nodes to satisfy
the water demand. In addition, an optimal design must be reliable to
pipe failures and robust to changes in water demand.

The design optimization of water distribution networks has been usu-
ally formulated as a single objective cost-minimization problem with a
constraint on the minimum pressure to be available at the consumer
nodes in order to satisfy the demand. In addition, reliability of the op-

255

256 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

timal solution to failures in pipes and robustness to changes in water
demand have been usually verified after optimization.

Recently, design optimization of water distribution networks using
multi-objective unconstrained formulations has been explored [5], where
objectives related to cost, nodal pressure, and reliability to pipe failures
are optimized simultaneously. The multi-objective formulation allows to
generate a number of non-dominated solutions to provide the decision
maker with insights on the trade-off between the objectives. Also, it in-
corporates the reliability to pipe failures within the optimization process
rather than as a posterior step.

A comparison between the popular NSGA-II and SMS-EMOA on
benchmark water distribution problems is presented in [7, 8] following
the same multi-objective formulation used in [5]. Better results are re-
ported for SMS-EMOA than for NSGA-II. This is attributed to the
better scalability of the SMS-EMOA approach for problems with three
or more objectives. In the same work, an attempt to consider within
the evolutionary optimization process the robustness of the network to
changes in water demand is pursued. However, for the budget of fitness
evaluations and population size used in [7, 8], the conclusion was that
solutions optimized for a single profile of water demand are more ro-
bust to changes in demand than solutions optimized simultaneously for
multiple profiles. This is rather counterintuitive and unexpected.

In this work, our aim is to clarify whether robustness to changes in
water demand can be effectively incorporated within the evolutionary
process in order to enhance the design optimization of water distribu-
tion networks. We follow the same multi-objective formulation used in
[5, 7, 8] incorporating the AεSεH algorithm, a multi- and many-objective
evolutionary algorithm known to scale up well with larger population
sizes and number of objectives. An effective incorporation of robustness
within the evolutionary process will also open the possibility to incorpo-
rate additional important objectives of water distribution networks that
can be optimized simultaneously.

2. Method

2.1 Optimization System

A water distribution network consists of pipes, nodes (pipe junctions),
pumps, valves and storage tanks or reservoirs. For each node there is
associated a water demand that must be satisfied. To simulate the water
distribution network we use EPANET [9]. EPANET performs extended
period simulation of hydraulic and water quality behavior within pres-
surized pipe networks. EPANET tracks the flow of water in each pipe,

Robust Multi-Objective Optimization of Water Distribution Networks 257

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

2021

Figure 1: New York Water Distribution
Network Model

Table 1: New York Water Supply
Pipe Types [8]

Code D (in) Price ($/ft) H-W

0 36 93.5 100
1 48 134 100
2 60 176 100
3 72 221 100
4 84 267 100
5 96 316 100
6 108 365 100
7 120 417 100
8 132 469 100
9 144 522 100
10 156 577 100
11 168 632 100
12 180 689 100
13 192 746 100
14 204 802 100

the pressure at each node, and the height of water in each tank. In can
also track the concentration of a chemical species throughout the net-
work. In addition, water age and source tracing can also be simulated.

In this work we assume a remediation problem, where there is a water
distribution network in operation and all its pipes could be replaced by
new ones. Thus, the coordinates where the pipes are laid down and the
lengths of the pipes are already determined. Also, the available commer-
cial diameters of the pipes and the baseline water demand for the nodes
are known. We are interested in finding the diameter of the pipes that
render robust configurations for the water distribution network when the
nodes of the network are subjected to various demands of water.

An evolutionary algorithm is used to search for optimal combinations
of pipes diameters. Thus, a solution encodes the diameters of all pipes
of the network. For each solution explored by the evolutionary algo-
rithm, we combine the information of the network with the diameters of
the pipes provided by the solution to create the required input file for
EPANET, run the simulator, and use its output to compute the fitness
of the solution. As benchmark problem, we use the New York Water Dis-
tribution Network model, widely used in the literature and illustrated
in Fig. 1.

In the following we explain the algorithm, genetic representation, fit-
ness function, and operators used in this work.

258 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.2 AεSεH

In this work we use the Adaptive ε-Sampling and ε-Hood (AεSεH)
[1, 2] algorithm to search optimal solutions. AεSεH is an elitist evolu-
tionary multi- and many-objective optimizer that applies ε-dominance
[6] principles both for survival selection and parent selection.

AεSεH follows the main steps of a population-based evolutionary al-
gorithm, i.e., parent selection, offspring creation and survival selection,
adjusting its operation depending on whether the population contains
dominated solutions or not.

To perform survival selection, the current population and its offspring
are combined and divided into non-dominated fronts using the non-
dominated sorting procedure. If the number of non-dominated solutions
in the first front is smaller than the population size, the sorted fronts of
non-dominated solutions are copied one at a time to the next popula-
tion until it is filled; if the last copied front overfills the population, the
required number of solutions are chosen randomly from it to have the
exact number specified by the population size. On the other hand, if the
number of non-dominated solutions in the first front is larger than the
population size, the first front is truncated to the size of the population
using the ε-sampling procedure. ε-sampling randomly chooses solutions
from the first front to include them in the surviving population, elimi-
nating from the front those solutions that are ε-dominated by the chosen
samples. As a result, solutions in the next population are spaced accord-
ing to the f(x) 7→εs f

′
(x) mapping function and parameter εs used to

compute ε-dominance between solutions.
For parent selection, the algorithm first uses a procedure called ε-hood

creation to cluster solutions in objective space and then applies ε-hood
mating to select parents. When all solutions in the population are non-
dominated, ε-hood creation selects randomly an individual from the pop-
ulation and applies ε-dominance with mapping function f(x) 7→εh f

′
(x)

and parameter εh. A neighborhood is formed by the selected solution
and its εh-dominated solutions. Neighborhood creation is repeated until
all solutions in the population have been assigned to a neighborhood. ε-
hood mating sees the neighborhoods as elements of a list and visits them
one at the time in a round-robin schedule. The first two parents are
selected randomly from the first visited neighborhood in the list. The
next two parents are selected randomly from the second neighborhood in
the list, and so on. When the end of the list is reached, parent selection
continues with the first neighborhood in the list. On the other hand,
when dominated solutions are present in the population, ε-hood cre-
ation makes sure that the solution sampled to create the neighborhood

Robust Multi-Objective Optimization of Water Distribution Networks 259

C1 C2 C3 ... Ci ... CP

Figure 2: Genetic Representation

is a non-dominated solution and ε-hood mating uses binary tournaments
based on dominance rank to select parents within the neighborhoods.
Both epsilon parameters εs and εh used in survival selection and neigh-
borhood creation, respectively, are dynamically adapted during the run
of the algorithm.

This algorithm has been shown to work effectively on continuous and
discrete multi- and many-objective optimization problems [1, 2, 3, 4].
Further details about the algorithm can be found in [1] and [2].

2.3 Genetic Representation

This paper considers n types of pipes, identified by a unique integer
code C = {1, 2, ..., n}. Table 1 shows the codes of the type of pipes of
the New York Network used in this work, together with their character-
istics such as diameter, unit length price, and Hazen-Williams (H-W)
roughness coefficient that depends on the material of the pipe. Fig. 2 il-
lustrates the representation of the solutions used for optimization, where
P is the total number of pipes of the water distribution network, Ci is
the code of the i-th pipe in the network, i.e Ci ∈ C. Thus, in the New
York Problem, the size of the search space is 1521 = 4.99× 1026.

2.4 Fitness Function

There are several criteria for evaluating a water distribution network
in the literature. Here, we use the total cost of the pipes of the water
distribution network, demand supply ratio, and system entropy [7] .

Total cost of the pipes f1 is expressed as the sum needed for inserting
new pipes in the network, priced in segments of unit length with a certain
diameter.

f1 =
∑
i∈P

price (Ci) · Li, (1)

where price (Ci) is the unit length price of the new pipe i of code Ci (the
prices are determined by the diameter of the pipe and are included in
the table of available commercial diameters, which is supplied with the
test problem), and Li is the length of the pipe i.

The demand supply ratio is a measure of reliability of the distribution
network that computes to what extent the water demand at the various

260 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

internal nodes in the network is met. To compute the demand supply ra-
tio, first a functional relationship between pressure and water demand at
a node is established. This determines the portion of the water demand
at a node that could be satisfied and is expressed as follows

Qj
met =

0 pj ≤ pzero

Qj

√
pj−pzero
preq−pzero pzero ≤ pj ≤ preq

Qj pj > preq,

(2)

where j is the node index, N is the total number of nodes, Qmetj is
portion of the water demand met at node j, Qj is the nodal demand
(water demand drawn from internal node j), pj is the effective pressure
remaining at internal node j, pzero is the pressure corresponding to zero
nodal water demand satisfaction, and preq is the pressure required to
satisfy the nodal water demand completely.

The average demand supply ratio f2, normalized by the nodal de-
mands, is expressed by

f2 =

∑
j∈N Q

met
j∑

j∈N Qj
. (3)

The system entropy is also a function of reliability of the network.
The water demand at a given internal node is ideally met using multiple
different paths to that node. The required flow should be distributed
over these routes as evenly as possible. This way, should a segment of the
network fail, alternative routes exist that could still supply a reasonable
part of the demand. The system entropy f3 is expressed as follows:

sj =
∑

i:desti=j

− |qi|
inj

ln
|qi|
inj

, (4)

S =
∑
j∈N

inj
IN

sj +
∑
j∈N

−inj
IN

ln
inj
IN

, (5)

f3 = exp(S), (6)

where sj is the entropy at node j, S is the entropy of the entire network,
qi is the water flow in pipe i, desti is the destination of the water flow in
pipe i, inj is the water flow transported towards node j by the incoming
pipes i connected to it, and IN is the sum of all incoming flows in the
network. Note that system entropy f3 is expressed as the exponential of
S.

Robust Multi-Objective Optimization of Water Distribution Networks 261

These functions are optimized simultaneously. The investment cost of
installing water pipes f1 is to be minimized, whereas the demand supply
ratio f2 and the system entropy f3 are to be maximized.

2.5 Crossover and Mutation Operators

In this work, we use two point crossover with crossover rate Pc. Mu-
tation is applied to all variables with mutation rate Pm. If a variable is
chosen, mutation either increases or decreases with equal probability the
code of the pipe by one. That is, mutation changes the current diameter
of the pipe to the next higher/lower available diameter.

3. Methods of Evaluation for Evolution and
Robustness

In this work we search robust optimal configurations of water distribu-
tion networks using two different methods to evaluate solutions during
evolution. The first method (Method I) evolves solutions evaluating
them using the baseline profile for water demand in the nodes of the
network given by the benchmark problem. Thus, the fitness vector of a
solutions x is

f(x) = (f1(x), f2(x), f3(x)). (7)

The second method (Method II) establishes in advance a set E of NE

different profiles of water demand for the nodes of the network; during
evolution solutions are evaluated in all NE profiles of the set E and
fitness is computed as the average of these evaluations. Thus, the fitness
vector of a solutions x is

f(x) =
1

NE

NE∑
i=1

f (i)(x), (8)

where f (i)(x) = (f
(i)
1 (x), f

(i)
2 (x), f

(i)
3 (x)) is the fitness vector of the solu-

tion evaluated with the i-th profile of the set E.
The approximation of the Pareto optimal set (APOS) generated by

an algorithm consists of the non-dominated solutions computed from
all solutions explored during the search. We use another set R of NR

profiles of water demand for the nodes in order to assess the robustness
of the evolved solutions and compare the two methods fairly. Thus, the
approximations APOS found by the algorithms are evaluated again with
the profiles in R by

f(x) =
1

NR

NR∑
i=1

f (i)(x), (9)

262 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

1 3 5 7 9 11 14 17

0
5

0
1

5
0

node

d
e

m
a

n
d

Figure 3: Profiles of water demand to measure robustness of evolved solutions

where f (i)(x) = (f
(i)
1 (x), f

(i)
2 (x), f

(i)
3 (x)) is the fitness vector of the so-

lution evaluated with the i-th profile of the set R. The set of non-
dominated solutions is obtained for each method with this new fitness
value and call the new approximation set as ARPOS . Both methods of
evolutions are compared computing the hypervolume of their approxi-
mations ARPOS .

The profiles of water demand for sets E andR are created by randomly
changing the baseline demand of the nodes by

d̂j = dj(1 + 0.25× U(0, 1)), (10)

where, dj is the baseline demand of node j, and U(0, 1) is random number
sampled from normal distribution with expectation 0 and variance 1.
Fig. 3 shows boxplots of the demand profiles used for the nodes of the
network to evaluate robustness of the evolved solutions. The dot inside
each boxplot shows the baseline demand.

4. Simulation Results

4.1 Experimental Setup

As mentioned above, in this work we use as benchmark problem the
New York Model of Water Distribution that consists of a reservoir, 19
nodes, and 21 pipes. For the evolutionary algorithm we use the following
parameters. Crossover rate was set to 1.0, mutation rate to 1/|P |, pop-
ulation size to 300, and number of function evaluations is se to 300,000.
The number of water demand profiles to evaluate solutions in Method
I is 1 (the baseline profile) and the number of water demand profiles
in Method II is NE = 10. Thus, to keep the same number of fitness

Robust Multi-Objective Optimization of Water Distribution Networks 263

evaluations in both methods, in Method I the number of generations is
set to 1,000 whereas in Method II the number of generations is 100. The
number of profiles to evaluate robustness of the approximation sets is
NR = 200. Unless stated otherwise, we report results of ten independent
runs of the algorithms.

4.2 Method I: Evolution with Single Profile for
Water Demand

The three-objectives fitness vector of the approximation of the Pareto
optimal set APOS obtained by Method I for one of the runs of the al-
gorithm is projected to two-objectives planes as shown in Fig. 4. Here,
solutions are colored by the value of the third not displayed objective.
The colors codes are yellow, light blue, dark blue, green, and red in order
of objective value from low to high. The range between the maximum
and minimum objective values is divided evenly into five subranges and
assigned to the colors code.

By displaying the fitness of solutions evenly divided by color we can
verify the trade-offs in objective space between solutions in the Pareto
optimal set. As an example, we focus on Fig. 4 (b). Recall that the
demand supply ratio DSR f2 and entropy f3 are maximized, whereas
cost f1 is minimized. Fig. 4 (b) plots f2 and f3, coloring by f1. Note
that as DSR f2 increases (DSR gets better) cost f1 changes from yellow
to light blue, · · · , to red (cost gets higher). Hence, there is a clear trade-
off between DSR and cost; improving DSR makes the network more
expensive and vice versa. It is also interesting to note that high values
of entropy can be achieved for both low and high cost networks.

4.3 Method II: Evolution with Multiple Profiles for
Water Demand

Similar to Method I, Fig. 5 shows the three-objectives fitness vector
of the approximation APOS by Method II projected to two-objectives
planes. Fig. 5 looks similar to Fig. 4 and the trade-off between objective
functions can be verified, particularly between cost and DSR. However,
note that in Fig. 5 only networks with high entropy remain. That is,
solutions with low entropy have been eliminated from the Pareto optimal
set by the method that evaluates solutions with multiple profiles of water
demand during the evolutionary process.

264 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(a) Cost - DSR, colored by Entropy

(b) DSR - Entropy, colored by Cost

Figure 4: Method I

(a) Cost - DSR, colored by Entropy

(b) DSR - Entropy, colored by Cost

Figure 5: Method II

4.4 Analysis Based on Hypervolume

In this section we compare the hypervolume HV of the approxima-
tions ARPOS obtained by both methods. The fitness values given by
Eq.(9) are used to compute the HV . Table 2 reports the average HV in
ten independent runs of the algorithms. The standard deviation of HV
is presented in parenthesis. The table also shows the average standard
deviation of the objective values for each fitness function and the average
cardinality of the approximations for both methods. Note that the HV
value by Method II is higher than by Method I. This shows that overall
solutions with better convergence and diversity in objective space are
found by Method II, suggesting that by using Method II is posible to
find designs of the water distribution network that can cope better with
changes in the demand of water.

Robust Multi-Objective Optimization of Water Distribution Networks 265

Table 2: Hypervolume and standard deviation of the approximations ARPOS

Method I Method II

HV 0.59022 (0.026) 0.62216 (0.028)
stdev f1 0.21 0.21
stdev f2 0.29 0.28
stdev f3 0.21 0.19
Number of POS 6289.9 (336.99) 1407.1 (96.68)

Remember that the number of fitness evaluations is the same in both
methods, however the number o generations is different. This indicates
that robust evolution can be performed in this problem using a reduced
number of generations evaluating simultaneously a number of water de-
mand profiles rather than evolving solutions for a larger number of gen-
erations evaluating just one profile. The oposite conclusion was reached
in [7, 8], where solutions by the method that evolves solutions evaluat-
ing just one demand profile showed higher robustness to changes in the
demand of water. This is because [7, 8] used fewer fitness evaluations,
Method II evolved for too few generations and could not converge.

Method II achieves solutions with f3 higher than Method I, as can be
seen in Fig. 5 compared to Fig. 4. Also, the standard deviation of f3 by
Method II is smaller than Method I as shown in Table 2. As mentioned
above, solutions with low f3 are eliminated by Method II. This suggests
that changes in demand affect system entropy.

It is also worth noting from Table 2 that Method II finds fewer so-
lutions than Method I. One reason for this is that Method I runs for
a larger number of generations and explores many more solutions than
Method II.

5. Conclusion

This work has shown that robustness to changes in water demand
can be effectively incorporated within the evolutionary process in order
to enhance the multi-objective design optimization of water distribution
networks. We followed an unconstrained multi-objective problem formu-
lation where three objectives were optimized simultaneously: cost of the
network, nodal pressure based on demand supply ratio, and reliability
to pipe failures based on a measure of entropy. Robustness to changes in
the demand of water was pursued and two approaches were compared.
One approach to robustness was to guide evolution based on a single

266 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

profile of water demand, whereas the other approach used multiple pro-
files. We showed that using the multi- and many-objective evolutionary
AεSεH algorithm the approach that evolves solutions based on multi-
ple profiles attained significantly more robust networks. This clarifies
previous counterintuitive and misleading findings regarding robustness
incorporated within NSGA-II and SMS-EMOA reported elsewhere and
opens the possibility to incorporate additional important objectives of
water distribution networks to be optimized simultaneously. In this work
we used the hypervolume to compare the robustness of the optimal so-
lutions. In the future we would like to explore other indicators to study
robustness and pursue many-objective formulations for design optimiza-
tion of water distribution networks with and without constraints.

References

[1] H. Aguirre, A. Oyama, and K. Tanaka. Adaptive ε-sampling and ε-hood for
evolutionary many-objective optimization. Lecture Notes in Computer Science,
7811:322–336, 2013.

[2] H. Aguirre, Y. Yazawa, A. Oyama, and K. Tanaka. Extending AεEεH from
many-objective to multi-objective optimization. Lecture Notes in Computer Sci-
ence, 8886:239–250, 2014.

[3] H. Aguirre, S. Zapotecas, A. Liefooghe, S. Verel, and K. Tanaka. Approaches for
Many-objective Optimization: Analysis and Comparison on MNK-landscapes.
Lecture Notes in Computer Science, 9554, 2015.

[4] R. Armas, H. Aguirre, S. Zapotecas-Mart́ınez, and K. Tanaka, Traffic Signal
Optimization: Minimizing Travel Time and Fuel Consumption. Lecture Notes
in Computer Science, 9554, 2015.

[5] K. Formiga, F. Chaudhry, P. Cheung, and L. Reis. Optimal Design of Water
Distribution System by Multiobjective Evolutionary Methods. Lecture Notes
Computer Science, 2632:677-691, 2003.

[6] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and di-
versity in evolutionary multiobjective optimization. Evolutionary Computation,
10(3):263–282, 2002.

[7] E. Reehuis. Multiobjective Robust Optimization of Water Distribution Net-
works. Master’s Thesis Leiden University, Netherlands, 2010.

[8] E. Reehuis, J. Kruisselbrink, A. Deutz, T. Back, and M. Emmerich. Multiobjec-
tive Optimization of Water Distribution Networks Using SMS-EMOA. Proceed-
ings of the International Conference on Evolutionary and Deterministic Methods
for Design, Optimization and Control with Applications to Industrial and Soci-
etal Problems, pages 269–279, 2011.

[9] L. Rossman. EPANET 2 Users Manual. Technical Report EPA/600/R-00/057,
Water Supply and Water Resources Division, National Risk Management Re-
search Laboratory, U.S. EPA, Cincinnati, OH, USA, 2000.

MODELING AND OPTIMIZATION OF A
ROBUST GAS SENSOR

Margarita A. Rebolledo C., Sebastian Krey, Thomas Bartz-Beielstein,
Oliver Flasch, Andreas Fischbach, Jörg Stork
SPOTSeven Lab, TH Köln, Gummersbach, Germany

margarita.rebolledo@th-koeln.de, sebastian.krey@th-koeln.de, thomas.bartz-beielstein@th-koeln.de,

oliver.flasch@th-koeln.de, Andreas.fischbach@th-koeln.de, joerg.stork@th-koeln.de

Abstract In this paper we present a comparison of different data driven modeling
methods. The first instance of a data driven linear Bayesian model is
compared with several linear regression models, a Kriging model and a
genetic programming (GP) model. The models are build on industrial
data for the development of a robust gas sensor. The data contain
limited amount of samples and a high variance. The mean square error
of the models implemented in a test dataset is used as the comparison
strategy. The results indicate that standard linear regression approaches
as well as Kriging and GP show good results, whereas the Bayesian
approach, despite the fact that it requires additional resources, does
not lead to improved results.

Keywords: Bayesian modeling, BMA, Design of experiments, Genetic program-
ming, Kriging, Lasso, Linear regression.

1. Introduction

Theoretically, there are many advantages for the implementation of
Bayesian analysis [9]. The use of Bayesian models might represent a
good alternative for industrial applications as they produce more infor-
mative results. The generation of a data-driven model to optimize the
development of a carbon-monoxide sensor provides an opportunity to
test these assertions on limited and sparse data. As a first approach,
Bayesian robust linear regression is implemented and compared to stan-
dard regression methods and a genetic programming approach. Our goal
is to learn the difference in performance from the tested methods when
applied to this kind of data and to set future considerations for working
with Bayesian models in a more demanding fashion.

267

268 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

In recent years the need to reduce air pollution levels has gained more
importance in the automotive industry. The efficiency increase of the
motor combustion process plays an important role for the reduction of
pollution levels. This efficiency can be indirectly measured by moni-
toring the concentrations of carbon monoxide and other harmful gases
released into the atmosphere. This paper focuses on the modeling and
optimization of a carbon monoxide in-situ sensor. The sensor should be
able to discern the carbon-monoxide concentration apart from the other
exhaust gases. This is a difficult goal, because the sensor is exposed
to and influenced by the other gases. Thus, the sensor output is not
expected to be a direct result of the concentration of the gas of interest.
Instead it will be the result of an underneath process influenced by all
the other gases. Similar or relatable problems have been addressed in
the literature. In these instances the sensor had different manufacture
methods, submitted to different gas mixtures or operative conditions.
The modelling was addressed using either numerical methods based on
the sensor composition [1] or data driven methods like neuronal networks
and partial least squares [2, 6].

At the end of our analysis we hope to obtain models from different
methods with an improved sensitivity to carbon-monoxide concentra-
tions. The models will be compared in order to check the performances
differences and possible improvement opportunities.

This paper is structured as follows: Section 2 describes the research
configuration, i.e., data and experimental designs. Key features of the
algorithms are introduced in Section 3. Section 4 presents results from
the experiments. Finally, a discussion of the results in given in Section 5.

2. Problem

2.1 Data Description

The data was collected following a response surface design of exper-
iments (RS-DoE). This design constraints itself to the maximum and
minimum expected concentration values of each gas under normal work-
ing conditions. Given the cost and time consumption required for the
experiments, only a limited amount of samples could be measured. The
minimum number of samples required to have a good system descrip-
tion and the real limit of possible realizable samples in the industrial
testing station was balanced. Finally, a sample size of 80 was chosen.
A summary of the data is shown in Table 1. This application example
is anonymized due to confidentiality reasons. The data were standard-
ized, meaning that every sample had its mean subtracted and was then
divided by the standard deviation. The different gases are denominated

Modeling and Optimization of a Robust Gas Sensor 269

as the variables X1 to X7. The values of interest correspond to the
columns denominated Y 1 and Y 2, which are the sensor measurements.
All the models will use this dataset as the training set.

Table 1: Overview of the standardized dataset used to generate the models of the
sensors. Here every input of the model is denoted by an X and every sensor output
is denoted by an Y .

X1 X2 X3 X4 X5 X6 X7 Y1 Y2

Minimum -1.13 -1.21 -1.16 -1.13 -1.15 -1.17 -1.00 -1.94 -2.06
1st Quartal -1.13 -1.21 -1.16 -1.13 -1.15 -1.17 -0.82 -0.63 -0.58
Median 0.09 0.03 0.12 0.08 0.08 0.05 -0.39 0.06 0.09
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3rd Quartal 1.30 1.26 1.40 1.29 1.28 1.28 0.59 0.66 0.67
Maximum 1.30 1.26 1.40 1.29 1.31 1.28 3.79 2.32 2.28

A general idea of the system behavior can be obtained by examining
the correlation between the system output and inputs as shown in Ta-
ble 2. Some assumptions can be made about the influence each variable
has on the sensor output: not all parameters seem to have the same in-
fluence on the sensor output. Also, the sensors do not behave identically.
Figure 1 shows the effect the two most strongly correlated parameters,
X1 and X4, respectively, have on the sensors signal.

A second dataset, denominated test set, which follow the characteristic
of the previously described training set was made available to validate
the results of the obtained models.

2.2 Experimental Design Considerations

The data described in Section 2.1 was retrieved during tests based
on an experimental design suitable for fitting models using the response
surface methodology (RSM) [10]. First experimental results taken from
screening design experiments indicated that a first order polynomial
model is not sufficient, due to cross-sensitivity of the sensors. There-
fore it was decided to use a RSM with two-factor interactions quadratic
effects. In this case central composite designs would have been a logical

Table 2: Correlation between the system output and inputs for the training dataset

X1 X2 X3 X4 X5 X6 X7

Y1 0.34 -0.19 -0.27 0.73 0.01 -0.00 -0.21
Y2 0.31 -0.16 -0.18 0.78 0.00 -0.03 -0.22

270 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

−1.0 −0.5 0.0 0.5 1.0

−
2

−
1

0
1

2

Concentration X1

M
ea

su
re

d
re

sp
on

se
 Y

1

a)

−1.0 −0.5 0.0 0.5 1.0
−

2
−

1
0

1
2

Concentration X4

M
ea

su
re

d
re

sp
on

se
 Y

1

b)

Figure 1: Scatter plots showing the general behavior of Y1 with respect to: a) the
influence of X1 and b) the influence of X4.

choice. They are a combination of a box design, typically a full factorial
or fractional factorial design and additional star or center points.

A full factorial design (FFD) with three levels for each of the six
factors to estimate main effects and all quadratic terms would lead to
37 = 2187 experiment runs at minimum. Choosing to divide factors
in two levels, a two level FFD would still need at least 27 = 128 runs,
without any repetitions or center points. A valid system description
would need even more runs.

To reduce the number of runs and be capable of fitting second order
polynomial models a Box-Behnken design comes into consideration. But
as a linear constraint on the input variables is limiting the sum of their
values, almost all standard designs methods does not meet the require-
ments. Therefore, a more flexible design is needed. Using the statistical
software JMP the RS-DoE was generated following the given constraints
and applying the I-optimality criterion [7, 13]. The design was run and
optimized a total of 80 times with 80 data points in order to obtain the
best possible inference accuracy.

Modeling and Optimization of a Robust Gas Sensor 271

3. Algorithms

3.1 OLS

A linear model estimated by ordinary least squares is the natural first
modeling attempt for data generated by an experimental design. Our
baseline model for the comparison of the different modeling methods is
the linear main effects model

f1 : ŷ = β0 +

7∑
i=1

βixi.

In this work we used a RSM design, so beside the main effects the
parameters of all two-way interactions and quadratic terms of the input
variables can be estimated. This results in the full linear model

f7 : ŷ = β0 +

7∑
i=1

βixi

7∑
i=1

7∑
j=i

βijxixj .

Based on the full linear model f7 we applied variable selection based on
an analysis of variance to get a more sparse model, which can be better
interpreted. With a F-Test p-value of α = 0.01 as the decision boundary
for the inclusion into the final model, we obtained the model

f2 : ŷ = β0 +
4∑
i=1

βixi + β14x1x4 + β34x3x4.

The mean squared error (MSE) as defined in Eq. 4 on page 276, was
used for our comparisons. While the full linear model f7 has a lower
training error, i.e., MSE of 0.11 for sensor Y 1 and 0.10 for sensor Y 2,
compared to the baseline model (MSE of 0.24 for sensor Y 1 and 0.23 for
sensor Y 2), the prediction performance on the test dataset is very weak
(MSE of 7.76 and 9.08). This is a strong indicator of overfitting.

The model f2 has a MSE of 0.79 for sensor Y 1 and 0.80 for sensor
Y 2, which is comparable (for sensor Y 1) and little higher (for sensor Y 2)
than the baseline model. The residual standard error for the training
set is lower (0.43 compared to 0.52 for sensor Y 1 and 0.41 compared
to 0.51 for sensor Y 2) resulting in narrower confidence intervals for the
parameters. The adjusted coefficient of determination (adjusted R2) is
0.81 compared to 0.73 for sensor Y 1 and 0.83 compared to 0.74 for sensor
Y 2. This means the inclusion of the two two-way interactions X1:X4 and
X3:X4 has a large contribution for the explanation of the variance in the
dataset, while the input variables X5, X6 and X7 have very little or no
contribution and can be left out of the model.

272 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3.2 Lasso

The Least Absolute Shrinkage and Selection Operator (Lasso) imple-
ments a selection method for linear models [15]. It selects solutions
with fewer parameter values, effectively reducing the number of vari-
ables upon which the given solution is dependent. The Lasso trains a
linear model with a L1 prior as regularizer.

Give a set of input measurements X = {xi}ni=1 and an outcome mea-
surement y, the lasso fits a linear model

ŷ = β0 +

p∑
i=1

βixi.

Let α ≥ 0 be a constant. The Lasso uses the following optimization
criterion:

min
β

1

2n
||Xβ − y||22 under the constraint ||β||1 ≤ α, (1)

where ||·||1 and ||·||2 denote the L1- and L2-norm, respectively. The pos-
itive constant α is a tuning parameter. For large α values, the constraint
||β||1 ≤ α in Eq. 1 has no effect and the usual linear least squares regres-
sion is performed. For smaller values of α, the solutions are shrunken
versions of the least squares estimates. Decreasing the values of α forces
the coefficients βi’s to become zero, i.e., choosing α results in select-
ing the number of predictors to use in a regression model. The Lasso
can recover the exact set of non-zero weights (under certain conditions).
Coordinate descent is used to fit the coefficients.

3.3 Kriging

Kriging or Gaussian process regression is a method of interpolation [14].
The n observations in an arbitrary data set, Y = {yi}ni=1 can be associ-
ated as a single point sampled from some multivariate (n-variate) Gaus-
sian distribution. The observations and the Gaussian process are related
to each other by the covariance or kernel function k(xi, xj). Kernel func-
tions compute the distance between two samples in an arbitrary metric
and apply a radial function to this distance. The squared exponential
kernel, also known as the Gaussian radial basis function (RBF) kernel,
is used in our study. This kernel is given by

k1(xi, xj) = σ2 exp(−θ‖xi − xj‖22) with θ =
1

2l2
. (2)

The RBF kernel can be interpreted as a similarity measure, because
values of this kernel decrease with distance. They range between zero

Modeling and Optimization of a Robust Gas Sensor 273

(in the limit) and one. The length parameter l in Eq. 2 determines the
effect of other observations during interpolation at new x values. The
RBF kernel was selected in our study, because Gaussian processes with
this kernel generate smooth functions. Since noisy data were analyzed in
our study, the white noise kernel k2(xi, xj) = σ2δ(xi, xj), where δ(xi, xj)
denotes the Kronecker delta function, was added to the RBF kernel.
Hence, we used the kernel function k = k1 + k2.

3.4 Robust Bayesian Modeling

Bayesian modeling is the mathematical relocation of credibility of pa-
rameters values for a model according to what can be inferred from the
data. From previous knowledge of the combustion process it is expected
that not only the main predictors but also the interactions between pre-
dictors have an effect on the sensor reading. As a general rule, if the
data contains K variables then the expected number of possible models
will be 2K . The total number of variables in the dataset with all the
interactions included accounted to 22, that is 4.19× 103 possible model
combinations to describe the sensor reading. To reduce the dimension-
ality of the problem Bayesian model averaging (BMA) is implemented.
This provides a way to account for the uncertainty in model selection and
provide in average a better predictive ability [5]. BMA is implemented
in the statistical programing language R using the Bayesian Model Sam-
pling (BMS) package [16]. The results show that the predictors X1, X3,
X4, X1:X4, X3:X4 and X2 seem to be the most important for a good
model.

As the first taken approach the reduced model containing only 6 out
of the 22 variables is defined using a linear relationship. The model was
implemented using Just Another Gibbs Sampler (JAGS), which is a pro-
gram for Bayesian modeling using Markov Chain Monte Carlo (MCMC)
[11] and rjags [12] as a link between R and JAGS.

The sensor responses Y 1 and Y 2 are modeled following a non standardi-
zed Student’s t-distribution. This distribution was selected assuming
that the variance present in the sensor output, illustrated in Fig. 1,
served as an indicator of variance in the model response. The mean
of the distribution is defined by the canonical linear formula of the lin-
ear regression. The spread of the data was set to have a wide range
of probable values defined by an uniform distribution. The normality
factor, expressed as an exponential distribution, have preference for val-
ues close to one. Given the limited prior information available for the
experiment, weakly informative priors are assigned to the parameters.
The coefficients priors, βi, are defined to have a normal distribution cen-

274 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

tered around zero and a large variance. The t-distribution normality
factor υ favors values smaller than 30 and σ allows for a wide enough
distribution. The prior distributions were chosen as follows (Eq. 3):

α ∼ N(0, 4), βi ∼ N(0, 4), υ ∼ Exp(30), σ ∼ U(−1−4, 10) (3)

The MCMC simulation are executed on the defined model to sample
the posterior distribution of the parameters of interest, α, βi, σ, and υ.
The chains were specified to run 500 adaptive iterations, followed by
1,500 burn-in iterations. Afterwards, 15,000 samples were taken from
the posterior distribution with a thinning factor of 20 steps. Investi-
gating their trace plots and diagnostic statistics of the resulting MCMC
object reveals that the chains have converged. A value for the Gelman-
Rubin diagnostic statistic [4] of under 1.1 suggest a good convergence.
The effective sampling size (ESS) backups this assumption. The visual
and numeric diagnostics allows us to think that the resulting MCMC
sampling is representative and accurate of the posterior distribution of
the different parameters. The posterior distributions obtained from the
MCMC sampling for each parameter coefficient can be seen in Table 3
together with the high density intervals (HDI) of 95%. The MSE for the
fitted models is 0.16 and 0.15 for the sensor Y 1 and Y 2, respectively.

Table 3: Posterior mean for the coefficients βi for i = 1, ..7 and the parameters σ and
υ for the models of Y1 and Y2. The lower HDI (L-HDI) and upper HDI (U-HDI)
limits are indicated for each entry.

Y1

B0 B1 B2 B3 B4 B5 B6 σ υ

Mean -0.01 0.32 -0.14 -0.28 0.72 -0.23 -0.14 0.41 37.67
L-HDI -0.09 0.23 -0.24 -0.38 0.63 -0.33 -0.42 0.34 5.13
U-HDI 0.09 0.42 -0.04 -0.18 0.82 -0.14 -0.05 0.49 117 .66

Y2

B0 B1 B2 B3 B4 B5 B6 σ υ

Mean -0.00 0.29 -0.10 -0.20 0.78 -0.26 -0.13 0.39 34.2
L-HDI -0.09 0.20 -0.19 -0.29 0.69 -0.35 -0.22 0.31 4.44
U-HDI 0.09 0.39 -0.10 -0.11 0.88 -0.17 -0.04 0.47 113.50

3.5 Genetic Programming

Genetic programming is an evolutionary algorithm that searches the
set of symbolic expressions defined by a set of basis expressions (building

Modeling and Optimization of a Robust Gas Sensor 275

blocks) for expressions that minimize one or multiple loss (fitness) func-
tions. Symbolic regression is the application of genetic programming to
regression. In this work, the Generational Multi-Objective Genetic Pro-
gramming (GMOGP) symbolic regression algorithm is used. See [3] for
a detailed description of this algorithm.

In this specific case, the set of building blocks B := R ∪ V ∪ F con-
sists of the set of real-valued constants R, the set of independent vari-
ables V := {x1, x2, . . . , x7} and the set of real-valued functions F :=
{+,−,×,÷,√, log, exp, sin, cos}.

The GMOGP algorithm performs the following four steps:

1) The algorithm proceeds by initializing a population of µ := 100 ran-
dom symbolic expressions with maximum node count of 128 based
on the building blocks in B.

2) Next, λ := 50 expressions are created by random recombination and
mutation of randomly selected population expressions, together
with ν := 2 randomly initialized expressions.

3) The complexity (expression visitation length) and goodness-of-fit
(scaled-mean-squared error on training data) for each expression is
calculated. The expressions are then sorted into successive Pareto
fronts according to both criteria. Solutions on the same front are
sorted by crowding distance.

4) If a predefined termination criterion is met (in this case an iteration
limit of 300, 000) the algorithm terminates and returns the first
Pareto front. Otherwise, the the best µ := 100 expressions are
kept and the algorithms enters the next iteration (generation) at
step 2).

As symbolic regression is a randomized algorithm, the implementation
uses multiple parallel runs to reduce result variance. The first Pareto
front based on all parallel runs is returned as the final result. In this
case, five parallel runs of 300, 000 generations each were used, each re-
quiring two minutes of single-core compute time on a 1.8 GHz Intel Core
i7 processor, or ten minutes compute time in total. The used GP imple-
mentation selects model constants by sampling from a uniform random
distribution and optimizes existing constants via mutation by adding
samples from a normal random distribution. Crossover operations may
lead to the duplication of constants, as seen in GP model 2 in Table 4. To
facilitate model comparisons, only the model with best goodness-of-fit
on training data is selected from the result Pareto front and reported as
the final result. Note, these results numbers are based on the commercial
parallel GMOGP-FCA implementation sourcewerk RSR.

276 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 4: Models used in this study. Model formulas and the corresponding MSE
values are shown. The first model, f1, is included as a baseline. It implements a first
order linear model with all effects, but no interactions or higher order terms. Best
values are shown in boldface.

j Name Model sensor Y1 MSE1

1 LM (base) f1
1 = 0 + 0.35x1 − 0.17x2 − 0.26x3 + 0.74x4

+0.01x5 − 0.03x6 + 0.03x7 0.76
2 OLS f2

1 = −0.01 + 0.33x1 − 0.14x2 − 0.29x3
+0.73x4 − 0.23x1x4 − 0.15x3x4 0.79

3 Lasso f3
1 = 0.25x1 − 0.05x2 − 0.17x3 + 0.63x4 0.56

4 Kriging f4
1 : θ =

(0.57, 2.59, 6.08, 3.45, 1.53, 18.53, 18.46) 0.57
5 Bayes f5

1 = dt(0.32x1 − 0.14x2 − 0.28x3 + 0.72x4
−0.23x1x4 − 0.14x3x4, 0.41, 37) 0.79

6 GP f6
1 = −0.02 + 0.31x1 + (0.64− 0.12x1)x4 0.58

j Name Model sensor Y2 MSE2

1 LM (base) f1
2 = 0 + 0.31x1 − 0.07x2 − 0.19x3 + 0.78x4

+0.01x5 − 0.04x6 + 0.04x7 0.67
2 OLS f2

2 = −0.01 + 0.30x1 − 0.10x2 − 0.20x3
+0.78x4 − 0.26x1x4 − 0.14x3x4 0.80

3 Lasso f3
2 = 0.22x1 − 0.08x3 + 0.68x4 − 0.02x7 0.49

4 Kriging f4
2 : θ=

(0.43, 2.41, 17.53, 4.21, 1.30, 19.96, 19.15) 0.49
5 Bayes f5

2 = dt(0.29x1 − 0.1x2 − 0.2x3 + 0.78x4
−0, 26x1x4 − 0.13x3x4, 0.39, 34.2) 0.79

6 GP f6
2 = 0.52− 0.21x3 + 0.21(−1.43+x4)

1.43+x1
+ 0.42x4

−0.21 cos(x3 − x4) + 0.21 cos(x7) 0.27

4. Results

The comparison is based on the MSE. We consider six different models
(j = 1, . . . , 6) and two different data sets (k = 1, 2) from Table 4.

Let f jk denote the function, which models the relationship between

ytrain and xtrain (j = 1, . . . , 4, k = 1, 2). Let ŷ = f jk(xtest) denote a
vector of n predictions on the test data xtest, and ytest denote the vector
of observed (true) values, then the MSE can be estimated by

MSE =
1

n

n∑
i=1

(ŷ(i) − y(i)
test)

2 with i = 1, . . . , n. (4)

Modeling and Optimization of a Robust Gas Sensor 277

5. Conclusion

Interestingly, the lightweight and simplistic Lasso approach and the
heavy weighted, sophisticated genetic programming approach obtained
the best results. Lasso performed best on Y 1, whereas genetic pro-
gramming was able to find the best MSE on Y 2. However, given the
complexity of the genetic programming model, it is hard to see the real
effect each variable has on the sensor output. Lasso on the other side,
gives a clear and simple overview of the variables effects while keeping
the prediction error low. The Kriging model demonstrated a relatively
good performance but, the interpretation of the results is less intuitive
compared to the Lasso results.

In this particular application the models need to be adaptable to allow
its use on other similar sensors. A model of high complexity together
with a difficult interpretability constitutes an extra effort. Bayesian and
linear regression approaches generated similar formulas. This was ex-
pected as the definition of the Bayesian model was done following the
canonical linear formula. Both basic linear models (LM and OLS) and
Bayesian model present easily interpretable results but with poor MSE
values. This implies that, although new information is available when
implemented the Bayesian modeling method, there is no significant dif-
ference when compared to the standard linear regression. We expect
however to obtain further improvements of the model prediction accu-
racy by means of more complex and specific model definition for the
Bayesian case.

In addition to the six algorithms discussed in this study, further al-
gorithms were tested. For example, a standard random forest algorithm
was able to obtain results that are comparable to the Kriging results
(MSE’s: 0.63 and 0.41 on Y 1 and Y 2, respectively). However, due to
space limitations, these extended results will be analyzed in a forthcom-
ing publication. Results, presented in this study, are limited to models
that are of great practical relevance, i.e., can be immediately interpreted
by and discussed with technicians and engineers.

At the end and for this specific application, the Lasso model was our
preferred method. A simple and clear formula provides valuable starting
points for the discussion with the engineers in charge of the project and
makes for a straightforward implementation.

Acknowledgement: This report project was promoted by the Federal
Ministry of Economy and Energy under the project funding reference
number KF3145101WM3 and KF3145103WM4 . Responsibility for the
content of this publication lies with the author.

278 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

References

[1] A. Bejaoui, J. Guerin, and K. Aguir. Modeling of a p-type resistive gas sensor in
the presence of a reducing gas. Sensors and Actuators B: Chemical, 181:340–347,
2013.

[2] T. Eklöv, P. Martensson, and I. Lundström. Selection of variables for interpret-
ing multivariate gas sensor data. Analitycal Chimica Acta, 381(2-3):221–232,
1999.

[3] O. Flasch. A Modular Genetic Programming System. Dissertation, TU Dort-
mund, 2015.

[4] A. Gelman and D. B. Rubin. Inference fron iterative simulation using multiple
sequences. Statistical Science, 7(4):457–511, 1992.

[5] J. A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volisnky. Bayesian model
averaging: A tutorial. Statistical Science, 14(4):382–417, 1999.

[6] A. Jafarian, D. Baleanu, H. Darwish, M. Senel, and S. Okur. Applications of
Artificial Neural Network Technique to Polypyrrole Gas Sensor Data for Envi-
ronmental Analysis. Computational and Theoretical Nanoscience, 12:1–7, 2015.

[7] JMP. Design of Experiments Guide. 2009.

[8] J. K. Kruschke. Doing Bayesian Data Analysis: a tutorial with R, JAGS and
Stan. Academic Press, 2nd edition, 2014.

[9] J. K. Kruschke, H. Aguinis, and H. Joo. The time has come: Bayesian meth-
ods for data analysis in the organizational sciences. Organizational Research
Methods, 15(4):722–752, 2012.

[10] D. C. Montgomery. Design and Analysis of Experiments. Wiley, 5th ed., 2001.

[11] M. Plummer. Jags: A program for analysis of Bayesian graphical models using
gibbs sampling, 2003.

[12] M. Plummer. rjags: Bayesian Graphical Models using MCMC, 2015. R package
version 4-4.

[13] F. Pukelsheim. Optimal Design of Experiments. Wiley, 1993.

[14] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–435, 1989.

[15] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society Series B (Methodolgical, 58(1):267–288, 1996.

[16] S. Zeugner. Bayesian Model Averaging with BMS, 2011. R package version 0.3.4.

