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Abstract The application of methods from experimental algorithmics to on-line or
streaming data is referred to as experimental algorithmics for streaming
data (EADS). This paper proposes an experimental methodology for
on-line machine learning algorithms, i.e., for algorithms that work on
data that are available in a sequential order. It is demonstrated how
established tools from experimental algorithmics can be applied in the
on-line or streaming data setting. The massive on-line analysis frame-
work is used to perform the experiments. Benefits of a well-defined
report structure are discussed.
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1. Introduction: Experimental Algorithmics

This article is devoted to the question “Why is an experimental method-
ology necessary for the analysis of on-line algorithms?” We will mention
two reasons to motivate the approach presented in this paper. First,
without a sound methodology, there is the danger of generating arbi-
trary results, i.e., results that happened by chance; results that are not
reproducible; results that depend on the seed of a random number gen-
erator; results that are statistically questionable; results that are sta-
tistically significant, but scientifically meaningless; results that are not
generalizable; etc. Second, experiments are the cornerstone of the sci-
entific method. Even the discovery of scientific highly relevant results
is of no use, if they remain unpublished or if they are published in an
incomprehensible manner. Discussion is the key ingredient of modern
science.
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Experimental algorithmics (EA) uses empirical methods to analyze
and understand the behavior of algorithms. Experimental algorithmics
evolved over the last three decades and provides tools for sound experi-
mental analysis of algorithms. Main contributions, which influenced the
field of EA are McGeoch’s thesis “Experimental Analysis of Algorithms”
[19], the experimental evaluation of simulated annealing by Johnson et
al. [18], and the article about designing and reporting computational
experiments with heuristic methods from Barr et al. [1]. And, Hooker’s
papers with the striking titles “Needed: An empirical science of algo-
rithms” and “Testing Heuristics: We Have It All Wrong” [15, 16], which
really struck a nerve. Theoreticians recognized that their methods can
benefit from experimental analysis and the discipline of algorithm engi-
neering was established [8]. Parameter tuning methods gained more and
more attention in the machine learning (ML) and computational intelli-
gence (CI) communities. Eiben and Jelasity’s “Critical Note on Experi-
mental Research Methodology in EC” [11] enforced the discussion. This
increased awareness resulted in several tutorials, workshops, and special
sessions devoted to experimental research in evolutionary computation.
Results from these efforts are summarized in the collection “Experimen-
tal Methods for the Analysis of Optimization Algorithms” [2].

This overview is by far not complete, and several important publica-
tions are missing. However, it illustrates the development of an emerg-
ing field and its importance. The standard approach described so far
focuses on relatively small, static data sets that can be analyzed off-line.
We propose an extension of EA to the field of stream data, which will
be referred to as experimental algorithmics for streaming data (EASD).
This extension is motivated by the enormous growth of data in the last
decades. Machine learning, i.e., automatically extract information from
data, was considered the solution to the immense increase of data. The
field of data mining evolved to handle data that does not fit into working
memory: Data mining became popular, because it provides tools for very
large, but static data sets. Models cannot be updated when new data
arrives. Nowadays, data are collected in nearly every device—massive,
data streams are ubiquitous. Especially, industrial production processes
generate huge and dynamic data. This leads to the development of the
data stream paradigm. Bifet et al. [5] describe core assumptions of data
stream processing as follows:

(S-1) The training examples can be briefly inspected a single time only.

(S-2) The data arrive in a high speed stream.

(S-3) Because the memory is limited, data must be discarded to process
the next examples.
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(S-4) The order of data arrival is unknown.

(S-5) The model is updated incrementally, i.e., directly when a new
data arrives.

(S-6) Anytime property: The model can be applied at any point be-
tween training examples.

(S-7) Last but not least: theory is nice, but empirical evidence of algo-
rithm performance is necessary.

We will develop an experimental methodology for on-line machine
learning, i.e., for situations in which data becomes available in a sequen-
tial order. The data is used to update the predictor for future data at
each step. On-line learning differs from traditional batch learning tech-
niques, which generate the predictor by learning on the entire training
data set at once. The terms “on-line” and “data stream” will be used
synonymously in the following.

This paper is structured as follows. Section 2 compares the traditional
batch setting with the stream data setting. How to assess model perfor-
mance is described in Section 3. A simple experiment, which exemplifies
the EASD approach, is presented in Sec. 4. This article concludes with
a summary in Section 5.

2. Batch Versus Stream Classification

By comparing the traditional batch and the stream classification, the
following observations can be made: Both classification procedures par-
tition the data into test and training set. In contrast to batch classi-
fication, stream classification is a cyclic process, which uses nonperma-
nent data. The elementary steps used in both settings are illustrated
in Fig. 1. The figure is based on the data stream classification cycle in
Bifet et al. [6].

The batch classification cycle processes data as follows:

(CB-1) Input, i.e., the algorithm receives the data.

(CB-2) Learn, i.e., the algorithm processes the data and generates its
own data structures (builds a model).

(CB-3) Predict, i.e., the algorithm predicts the class of unseen data
using the test set.

Data availability differs in the stream classification cycle. Additional
restrictions have to be considered [6]. Freely adapted from Bifet et al. [6],
the data stream processing can be described as follows:
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Figure 1: Left: The batch classification cycle. Right: The stream classification cycle.
Dotted lines represent nonpermanent data. Both classification cycles partition the
data into test and training set. To keep the illustration simple, this split is not
shown.

(CS-1) Input, i.e., the algorithm receives the next data from the stream.
At his stage of the process, the process only once (R-1) requirement
has to be considered: Data stream data is accepted as they arrive.
After inspection, the data is not available any more. However, the
algorithm itself is allowed to set up an archive (memory).

(CS-2) Learn, i.e., the algorithm processes the data and updates its
own data structures (updates the model). The limited memory and
limited time requirements (R-2) and (R-3), respectively, have to
be considered. Data stream algorithms allow processing data that
are several times bigger than the working memory and real-time
processing requires that the algorithm process the data quickly (or
even faster) than they arrive.

(CS-3) Predict, i.e., the algorithm is able to receive the next data. It
is also able to predict the class of unseen data. The predict at any
point requirement has to be considered. The best model should be
generated as efficiently as possible.

3. Assessing Model Performance

Elementary performance criteria for data stream algorithms are based
on
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(P-1) Time (speed): We consider the amount of time needed (i) to
learn and (ii) to predict. If the time limit is reached, continuing the
data processing will take longer or results will loose precision. This
consequence is not so hard as the space limit, because overriding
the space limit will force the algorithm to stop.

(P-2) Space (memory): A simple strategy for the handling space budget
is to stop once the limit is reached. To continue processing if the
the space limit is reached is to force the algorithm to discard parts
of its data.

(P-3) Error rates (statistical measures): The prediction error is consid-
ered. Several error measures are available [17, 26].

A contingency table or confusion matrix is a standard methods to
summarize results. Based on the values from the confusion matrix, the
accuracy can be determined as the percentage of correct classifications,
i.e., it is defined as the sum of the number of true positives and the
number of true negatives divided by the total number of examples (total
population). Since accuracy can be misleading (consider the so-called
accuracy paradox), further measures are commonly used [27]: For ex-
ample, the precision is defined as the number of true positives divided
by the number of true positives and false positives. Precision is also
referred to as the positive predictive value (PPV). Or, the negative pre-
dictive value (NPV) is defined as the number of true negatives divided by
the number of true negatives and false negatives. The specifity (or true
negative rate, TNR) is defined as the number of true negatives divided
by the number of true negatives and false positives. And, the sensitivity
(or true positive rate (TPR) or recall) is defined as the number of true
positives divided by the number of true positives and the number of false
negatives. Using training data to measure these statistical measures can
lead to overfitting and result in poorly generalizable models. Therefore,
testing data, i.e., using unseen data, should be used [13].

Generating test data appears to be trivial at the first sight. However,
simply splitting the data into two sets might cause unwanted effects, e.g.,
introduce bias, or result in an inefficient usage of the available informa-
tion. The test data generation process needs careful considerations in
order to avoid these fallacies. In the dynamic data stream setting, plenty
of data is available. The simple holdout strategy can be used without
causing the problems mentioned in the batch setting. In contrast to the
batch settings, large data sets for exact accuracy estimations can be used
for testing without problems. The simplest approach is just holding out
one (large) single reference data set during the whole learning (training)
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phase. Using this holdout data set, the model can be evaluated period-
ically. A graphical plot (accuracy versus number of training samples)
is the most common way presenting results. Very often, the compari-
son of two algorithms is based on graphical comparisons by visualizing
trends (e.g., accuracy) over time [6]. To obtain reliable results, statistical
measures such as the standard error of results, are recommended. The
statistical analysis should be accompanied by a comprehensive reporting
scheme, which includes the relevant details for understanding and possi-
ble replication of the findings [23]. Only a few publications that perform
an extensive statistical analysis are available [10]. Fortunately, the open
source framework for data stream mining MOA is available and provides
tools for an extensive experimental analysis [14].

Simulators for Data Stream Analysis. Random data stream sim-
ulators are a valuable tool for the experimental analysis of data stream
algorithms. For our experiments in Section 4 a static data set, which
contained pre-assigned class labels, was used to simulate a real-world
data stream environment. The open source framework for data stream
mining MOA [14] is able to generate a few thousand examples up to sev-
eral hundred thousand examples per second. Additional noise can slow
down the speed, because it requires the generation of random numbers.

4. A Simple Experiment in the EASD
Framework

The Scientific Question. Before experimental runs are performed,
the scientific question, which motivates the experiments, should be clearly
stated. To exemplify the EASD approach, the following task is consid-
ered: Machine learning methods, which combine multiple models to im-
prove prediction accuracy, are called ensemble data mining algorithms.
Diversity of the different models is necessary to reach this performance
gain compared to individual models. Each individual ML algorithm re-
quires the specification of some parameters. Building ensembles requires
the specification of additional algorithm parameters, e.g., the number of
ensemble members. The scientific question can be formulated as follows:
“How does the number of models to boost affect the performance of on-
line learning algorithms?” To set up experiments, a specific algorithm
(or a set of algorithms) has to be selected. Oza et al. presented a simple
on-line bagging and boosting algorithm, OzaBoost [20]. The effect of the
number of models to boost on the algorithm performance is an important
research question, which will be analyzed in the following experiments.
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Therefore, the experimental setup as well as the implementation details
have to be specified further.

Implementation Details. Our observations are based on the Mas-
sive On-line Analysis (MOA) framework for data stream mining. The
MOA framework provides programs for evaluation of ML algorithms
[14, 6]. We will consider a typical classification setting, which can trans-
ferred into a regression setting without any fundamental changes. The
model is trained on data with known classes. In the MOA classification
setting, the following assumptions are made by Bifet et al. [6]:

(i) Small and fixed number of variables,

(ii) large number of examples,

(iii) limited number of possible class labels, typically less than ten,

(iv) the size of the training data will not fit into working memory,

(v) the available time for training is restricted,

(vi) the available time for classification is restricted, and

(vii) drift can occur.

We used OzaBoost , the incremental on-line boosting of Oza and Rus-
sel [21], which was implemented in Version 12.03 of the MOA software
environment [14]. OzaBoost uses the following parameters: The clas-
sifier to train, l, the number of models to boost. s, and the option to
boost with weights only, p. Experiments were performed in the sta-
tistical programming environment R [24]. The sequential parameter
optimization toolbox (SPOT) was used for the experimental setup [3].
SPOT is implemented as an R package [4]. An additional R package,
RMOA, was written to make the classification algorithms of MOA eas-
ily available to R users. The RMOA package is available on github
(https://github.com/jwijffels/RMOA).

Empirical Analysis. The number of models to boost will be referred
to as s in the following. In addition to s, the classifier to train will be
modified as well. It will be referred to as l. Therefore, two algorithm
parameters will be analyzed. The accuracy was used as a performance
indicator. Using this setting, the scientific question can be concretized
as the following research question: “How does the number of models to
boost, s, affect the performance of the OzaBoost algorithm?”
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Optimization Problem. After the algorithm was specified, a test
function, e.g., an optimization problem, or a classification task, has to
be defined. MOA provides tools to generate data streams. To keep the
setup simple, we used the iris data set [12], which is a available as an R
dataset [24].

Pre-experimental Planning. Before experimental runs are started,
it is important to calibrate the problem difficulty to avoid floor- and
ceiling effects. We will perform a comparison with a simple algorithm.
If the simple algorithm is able to find the optimal solution with a limited
computational budget, then the experimental setup is not adequate (too
easy). If the simple algorithm is not able to find any solution, this
may indicate that the problem is too hard. The naive Bayes classifier,
which was used as the simple algorithm, obtained an accuracy of 91
percent. Because no floor- or ceiling effects were observed, we continue
our experimentation with the OzaBoost algorithm.

Task and Experimental Setup. Two parameters of the OzaBoost
algorithm were analyzed:

(i) the base learner, l, and

(ii) the ensemble size, s.

Hoeffding trees were used as base learners in our experiments [22]. In
addition to the standard Hoeffding tree [10], a random Hoeffding tree
was used in out experiments as a base learner. To be more specific,
the categorical variable l was selected from the set {HoeffdingTree,
RandomHoeffdingTree}, see Bifet et al. [7] for details. Values between
one and one hundred were used for the ensemble size s.

Results and Visualizations. A comparison of the mean values
from the two learners shows a significant difference: the first learner, i.e.,
RandomHoeffdingTree, obtained a mean accuracy of 0.66 (standard de-
viation (s.d.) = 0.06), whereas the mean accuracy of the second learner,
i.e., HoeffdingTree, is 0.81 (s.d. = 0.18). The distributions of the ac-
curacies are plotted in Fig. 2 and provide a detailed presentation of the
results. Although the mean values of the two learners are different, the
standard deviation of the HoeffdingTree learner approximately three
times higher than the standard deviation of the RandomHoeffdingTree.
This is reflected in the plots: the HoeffdingTree algorithm is not able
to find an acceptable classification in some experimental runs.

Therefore, an additional analysis of the relationship between ensemble
size and accuracy for the HoeffdingTree learner is of interest. We plot
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Figure 2: Comparison of the two learners. 0 = RandomHoeffdingTree, 1 =
HoeffdingTree. Left: Density plots (accuracy, y ). The dotted lines represent the
mean values of the corresponding learners. Right: Boxplots (accuracy). Same data
as in the panel on the left were used in the boxplots. The comparison of these two
plots nicely illustrates strength and weakness of the plotting methods.

the results from the HoeffdingTree learner and add a smooth curve
computed by loess (LOcal regrESSion) to a scatter plot [9]. loess

fitting is done locally, i.e., the fit at a point x is based on points from
a neighborhood of x, weighted by their distance from x. The result is
shown in Fig. 3. This plot indicates that outliers occur if the sample
size is small, i.e., s < 60.

Observations. The results reveal that the HoeffdingTree learner
performs better (on average) than the RandomHoeffdingTree learner,
but appears to be more sensitive to the settings of the ensemble size.

Discussion. The selection of a suitable base learner is important.
Results indicate that too small ensemble sizes worsen the algorithm’s
performance. This statement has to be investigated further, e.g., by
finding improved parameter settings for the OzaBoost learner. The se-
quential parameter optimization framework can be used for tuning the
learner. A typical result from this tuning procedure is shown in the
right panel of Fig. 3. In this plot, the accuracy, which was obtained by
OzaBoost, is plotted against the number of iterations of the SPO tuner.
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Figure 3: Left: Results, i.e., accuracy (y), obtained with the HoeffdingTree learner
(l = 1) plotted against ensemble size (s). Right: A typical result from the parameter
tuning procedure. Accuracy (y) is plotted against the number of algorithm runs
(Index). The negative accuracy is shown, because the tuner requires minimization
problems.

5. Summary and Outlook

An experimental methodology for the analysis of on-line data was pre-
sented. Differences between the traditional batch setting and the on-line
setting were emphasized. Although useful, the actual practice of com-
paring run-time plots of on-line algorithms, e.g., accuracy versus time,
should be complemented by more advanced tools from exploratory data
analysis [25] and statistical tools, which were developed for the analysis
of traditional algorithms. It was demonstrated, that statistical methods
from experimental algorithmics can be successfully applied in the on-
line setting. A combination of MOA, RMOA and the SPO toolbox was
used to demonstrate the applicability and usefulness of standard tools
from experimental algorithmics. The design and analysis of the algo-
rithm were performed in the EASD framework. This report methodol-
ogy, which is also described and exemplified by Preuss [23], is an integral
part of the EASD framework.
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