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Abstract Differential evolution is popular and efficient algorithm for global opti-
mization. L-SHADE algorithm is one of the most successful adaptive
versions of the algorithm. It uses only binomial crossover. We study
employing the exponential crossover in the algorithm. Our tests are
carried out on CEC2015 benchmark set for learning-based optimization
competition. According to our results, the employing of the exponen-
tial crossover together with binomial one into L-SHADE algorithm is
beneficial.
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1. Introduction

Differential evolution (DE) is one of the most known and used stochas-
tic algorithms for solving of real-parameter optimization tasks. The
algorithm was proposed by Storn and Price in 1997 [10]. There are
many researchers who are interested in the algorithm, its behavior, and
improvement of its performance [3, 8]. Effectiveness of the algorithm
depends on values of its parameters and different values of control pa-
rameters are often more beneficial in different stage of search process.
These facts are the reasons why many adaptive versions of the algo-
rithm were proposed since differential evolution algorithm appeared,
e.g., [1, 2, 7, 14, 18, 21]. The algorithm presented by Tanabe and Fuku-
naga in 2013 called Success-history based adaptive differential evolution
with linear reduction of population size algorithm (L-SHADE) [13] is
one of the most effective versions of DE up to these days. L-SHADE
employs the most common used type of crossover, binomial one. There
are some studies in which types of crossover used in DE are studied
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146 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

and discussed, e.g., [15, 16, 17, 19]. Mentioned studies and the facts
claimed in the papers inspired us to study the impact of including the
exponential crossover into L-SHADE algorithm.

In the following two sections, the DE algorithm and L-SHADE al-
gorithm are described. In Section 4, two new versions of L-SHADE
algorithm are introduced. Carried out experiments are described and
results of them are specified and discussed in Section 5. Conclusions are
given in the last section.

2. Differential Evolution

Differential evolution algorithm [10] is one of the most known evolu-
tionary algorithms. DE solves global optimization tasks with continuous
search space. Let us have a real function f : S → R, S ⊂ RD, f is ob-
jective function and DE’s aim is to find global minimum point of f in
S, i.e. such point x∗ that f(x∗) ≤ f(x) holds for all x ∈ S, S is search
space, D is problem dimension. DE works with population P of NP-
points from search space S. The points are chosen randomly from S
with uniform distribution at the beginning of the search process. NP is
the size of population P . Population P then evolves generation by gen-
eration. A new generation is created in the following way. A new point
y ∈ S, so called trial point, is created for each member xi of population
P . If f(y) ≤ f(xi) holds, y replaces xi in population P . Otherwise
xi stays to be a member of population P for next generation. A trial
point y is built up by evolutionary operators mutation and crossover
from some points of current generation of population P . A combination
of a mutation and a crossover is called DE-strategy. An abbreviation
DE/a/b/c is commonly used for a DE-strategy, a is mutation, b is the
number of difference vectors used in the mutation, and c is employed
crossover. The search process is interrupted, when a stopping condition
holds, for example when maximal count of objective function evaluations
is reached.

A mutant u is created by operation mutation for a point xi. There
are many types of mutation used in DE. A mutation is abbreviated by
a/b, where a is type of mutation and b is a count of difference vectors
used in the mutation. The most common mutation is rand/1 (1). The
mutant u is developed from three random points xr1, xr2, xr3 of current
generation of P (r1 6= r2 6= r3 6= i). Scaling factor F ∈ (0, 2] is input
parameter usually set as F ∈ (0, 1]. Current-to-pbest/1 mutation (2) was
proposed by Zhang and Sanderson [21]. The point xpbest is randomly
chosen point from p × 100% best points of population P , p is input
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parameter, 0 < p < 1.

u = xr1 + F × (xr2 − xr3), (1)

u = xi + F × (xpbest − xi) + F × (xr1 − xr2). (2)

The trial point y is created from xi and mutant u by a crossover.
Binomial crossover combines coordinates of xi with coordinates of

mutant u into trial point y according to formula (3).

yj =

{
uj if Uj ≤ CR or j = l
xij if Uj > CR and j 6= l ,

(3)

where l is a number randomly chosen from set {1, 2, . . . , D}, U1, U2, . . . , UD
are independent random variables uniformly distributed in [0, 1). Input
parameter CR ∈ [0, 1] is crossover parameter.

In exponential crossover, L (1 ≤ L ≤ D) consecutive coordinates are
moved from mutant u into trial point y. A m is randomly chosen with
uniform distribution from set {1, 2, . . . , D}. Probability of moving of k-
coordinate in sequence {um+k}, 0 ≤ k ≤ (L− 1) into trial point is CRk.
Coordinates, which are not copied into trial point y from u, are copied
from xi.

Binomial crossover is more often employed type of crossover than ex-
ponential one in adaptive versions of DE [1, 7, 9, 12]. The CR parameter
influences the number of elements to be put into y from xi and from u
for both mentioned types of crossover. Let pm is a mutation probability
for a coordinate of xi to be replaced by respective coordinate of mutant
u. Zaharie found [20] that the relation between probability pm and CR
is linear for binomial crossover and strongly non-linear (described by
equality (4)) for exponential crossover.

CRD − D pm CR + D pm − 1 = 0. (4)

Figure 1 illustrates the relations between CR and pm for binomial and
exponential crossover and differences amongst them for dimension D =
30. The DE algorithm is described by pseudo-code in Algorithm 1.

3. L-SHADE Algorithm

The success-history based adaptive differential evolution algorithm
with linear reduction of population size (L-SHADE) proposed by Tanabe
and Fukunaga in 2014 [13] is based on SHADE algorithm [11, 12].

SHADE algorithm [11, 12] uses DE/current-to-pbest/1/bin DE-strategy,
archive A, and an adaptation of control parameters F and CR. It is



148 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 1: The dependence of CR on probability of mutation pm for binomial and
exponential crossover, D = 30

Algorithm 1 Differential evolution algorithm

1: generate an initial population P = (x1,x2, . . . ,xNP ), distributed
uniformly in search space

2: evaluate f(xi), i = 1, 2, . . . , NP
3: while stopping condition not reached do
4: Q := ∅
5: for i = 1 to NP do
6: generate a mutant point u by mutation
7: create a trial point y from mutant u and xi by crossover
8: evaluate f(y)
9: if f(y) ≤ f(xi) then

10: insert y into new generation Q
11: else
12: insert xi into new generation Q
13: end if
14: end for
15: P := Q
16: end while

based on JADE [21] algorithm. Archive A is initialized as empty set and
each point xi, which is replaced by its better trial point y, is included
into archive A during the search process. The archive A is adjusted
after each generation to have maximal size of NP, where members for
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removing from archive are chosen randomly. xr1 is randomly selected
point from P and xr2 is randomly selected point from P ∪A for current-
to-pbest/1 mutation (2). The p for the mutation is chosen new for each
trial point randomly from interval p ∈ (1/NP, 0.2] in SHADE algorithm.
F and CR are generated before each new trial point is created from

Cauchy and normal distribution, respectively. So called historical circle
memories MF and MCR are implemented for storing several values of the
first parameters of F and CR distributions, respectively. Recommended
value of the memories’ size is H = NP for the SHADE algorithm. Each
member of these both memories is set to value 0.5 at the beginning of the
search process. The memories are updated in the way described below.

When F and CR are needed for a point xi for creation of y, an uniform
random number r is chosen from the set {1, 2, . . . ,H} and F is random
number with Cauchy distribution with parameters (MFr , 0.1) and CR is
random number from normal distribution N(MCRr , 0.1). If generated F
is higher than 1 then F is set to F = 1 and if F ≤ 0 then new value of
F is generated. Generated value of CR is trimmed into interval [0, 1],
i.e. if CR > 1 then CR = 1 and if CR < 0 then CR = 0. If f(y) < f(xi)
holds for trial point y made by the pair of parameters (y is successful),
the F and CR are stored into sets SF and SCR, respectively. The sets
SF and SCR are set as empty sets at the beginning of a generation.

New values of MFk and MCRk (k is current position in MF and MCR)
are computed at the end of the generation from values stored in SF
and SCR, respectively. They are created as weighted means and they
are weighted by differences between values of objective function. The
MFk and MCRk are computed only if there is at least one successful
trial point y in the generation. Then SF = {F1, F2, . . . , F|SF |} and
SCR = {CR1, CR2, . . . , CR|SF |}, note that |SF | = |SCR| holds. The
computation of new values MFk and MCRk is done according to equalities
(5)-(7). meanWL is weighted Lehmer mean and meanWA is weighted
arithmetic mean (6). ym in (7) is successful trial point generated by Fm
and CRm and xm is point of population, which was replaced by trial
point ym.

MFk = meanWL(SF ), MCRk = meanWA(SCR),

when SF 6= ∅,
(5)

meanWL(SF ) =

∑|SF |
m=1wm F 2

m∑|SF |
n=1wn Fn

, meanWA(SCR) =

|SF |∑
m=1

wm CRm, (6)

wm =
∆fm∑|SF |
h=1 ∆fh

, ∆fm = |f(xm)− f(ym)|, (7)
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At the beginning of the search process, parameter k is set to k = 1.
k is increased by 1 after each computation of MFk and MCRk . If k > H
for such increased k, k is set to k = 1.

L-SHADE algorithm [13] is very similar to SHADE algorithm. The
only differences are the use of linear reduction of the population size NP
and the different setting of some input parameters. The parameter p for
current-to-pbest/1 mutation is set on a constant value, p = 0.11. The
population size is linearly decreasing generation by generation with the
increasing number of the objective function evaluations (FES ) during
the search process from NP init at the beginning to NPmin at the end
of the search process, i.e. if allowed number of the function evaluations
(MaxFES) is reached. Relatively big value of NP init is very useful, in
order to ensure the most possible exploration of search space. On the
other hand, small value of NPmin is recommended in order to increase
the length of computation (count of created generations) as possible
and to let the algorithm to specify the solution as possible. The size of
population for generation G+1 is computed according to the formula:

NPG+1 = round

[
NP init − FES

MaxFES
(NP init −NPmin)

]
, (8)

where FES is the current number of the objective function evaluations.
Whenever NPG+1 < NPG, the (NPG − NPG+1) worst individuals are
deleted from the population.

Values of the size of archive A, NP init, NPmin, and the size of histor-
ical circle memories H recommended by authors of [13] are 2.6 × NP ,
NP init = 18 × D, NPmin = 4, and H = 6, respectively. L-SHADE
with mentioned parameter setting was the best DE-version in optimiza-
tion competition on CEC2014 [4, 5]. The L-SHADE algorithm proposed
in [13] is described by pseudo-code in Algorithm 2.

4. Exponential Crossover in L-SHADE

In L-SHADE algorithm, each trial point is created from original point
xi and mutant u by binomial crossover, the more often used type of
crossover in DE. There are studies which focus on the comparison of
using of binomial and exponential crossovers in DE in the literature.
The influence of employing the exponential crossover in competitive dif-
ferential evolution adaptive version of DE was studied in [15, 16]. The
author found that applying both types of crossover brings improvement
for standard functions in comparison with applying only the binomial
crossover. For composition functions, the improvement appeared only
for part of problems in the study. Tvrd́ık [17] claimed that the use
of both types of crossover together makes DE algorithm more robust.
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Algorithm 2 L-SHADE algorithm

1: initialization: NP init, NPmin, circle memories MF and MCR, archive
A = ∅

2: NP := NP init

3: generate an initial population P = (x1,x2, . . . ,xNP )
4: evaluate f(xi), i = 1, 2, . . . , NP
5: while stopping condition not reached do
6: set SF and SCR empty; Q = ∅
7: for i = 1 to NP do
8: generate F and CR, use circle memories MF and MCR

9: generate a trial vector y
10: evaluate f(y)
11: if f(y) < f(xi) then
12: save F and CR into SF and SCR
13: insert xi into archive A
14: end if
15: if f(y) ≤ f(xi) then
16: insert y into new generation Q
17: else
18: insert xi into new generation Q
19: end if
20: end for
21: P := Q
22: modify circle memories if needed, use SF and SCR
23: NPold := NP , recompute size of population NP , eq. (8)
24: if NP < NPold then
25: remove superfluous points from population
26: end if
27: end while

Weber and Neri [19] designed a new type of crossover called contigu-
ous crossover. The crossover is similar to exponential crossover and it
was shown on a benchmark set that the DE algorithm with the con-
tiguous crossover is either of the same performance or of slightly better
performance than DE with binomial crossover in the paper. Based on
these works we decided to study a possibility to improve the efficiency
of L-SHADE algorithm by employing the other type of crossover, the
exponential one, in this paper.

The binomial crossover in L-SHADE can be replaced by exponential
crossover or both crossovers could be used together in the algorithm.
Proposed versions of L-SHADE algorithm follow:
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L-SHADEexp – the exponential crossover is employed instead of
the binomial one,

L-SHADEcom – both types of crossover compete.

L-SHADEexp version of L-SHADE algorithm employs the exponential
crossover instead of the binomial one. In historical circle memories,
it stores first parameter of distribution of F and not CR but pm, the
probability which was discussed in Section 2. The memories are labeled
MF and Mpm here. So, when a CR is needed in L-SHADEexp algorithm,
it generates pm from normal distribution N(Mk

pm , 0.1) and then CR is
computed from polynomial (4). Each value included in memory Mpm is
computed similarly as a value included into memory MCR in L-SHADE,
based on successful values of pm. The other features are the same as for
the original L-SHADE algorithm.

Binomial and exponential crossovers compete in L-SHADEcom algo-
rithm. Four historical circle memories, MFb , MCR, MFe , and Mpm , and
four sets are used for storing the first parameters of distributions and for
storing successful values of F and CR of binomial crossover and of F and
pm of exponential crossover, respectively. The crossovers are employed
in dependence on probabilities pb and pe during the search process.

A crossover is chosen according to current values of probabilities pb
and pe independently for each point xi before its trial point y is cre-
ated. Both crossovers have the same probability, pb = pe = 0.5, at the
beginning of the search process. Let sbG and seG are counts of successful
trial points generated by DE/current-to-pbest/1/bin and DE/current-
to-pbest/1/exp DE-strategy during the generation G, respectively. They
are set to sbG = seG = 0 at the beginning of each generation. The first
change of the probabilities pb and pe in the search process and after
each resetting of probabilities occurs when a generation, in which the
first successful trial point was generated, ends. In such case, at least
one of sbG , seG are not equal to zero and probabilities pb and pe can
be adopted according to (9), (10). The sb and se in (9) and (10) are
cumulative counts of successful trial points since the beginning of the
search process or since the last reset of probabilities pb and pe gen-
erated by DE/current-to-pbest/1/exp and DE/current-to-pbest/1/bin
DE-strategy, respectively.

sb = sb + sbG , se = se + seG , (9)

pb =
sb

sb + se
, pe = 1− pb. (10)

If pb or pe is less then δ after such re-computation, probabilities pb and
pe are reset to pb = pe = 0.5 (δ is input parameter) and also cumulative
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Table 1: Improvement and deterioration of L-SHADE algorithm by including expo-
nential crossover

dimension D=10 D=30 D=50 D=100 all

algorithm exp com exp com exp com exp com exp com

improvement 9 7 5 5 3 4 1 2 18 18
deterioration 2 1 4 1 5 2 11 4

counts are reset to sb = se = 0. We use value of δ = 0.1 in our experi-
ments. The approach of crossovers’ competition used in L-SHADEcom
is undertaken from competition of DE-strategies which was proposed for
competitive-adaptive version of DE [14].

5. Experiments and Results

Two proposed modifications L-SHADEexp and L-SHADEcom were
compared experimentally with L-SHADE algorithm on benchmark set
developed for learning-based real-parameter optimization competition
on CEC2015 according to conditions defined in [6]. This benchmark set
includes 15 different problems of different complexity. Tests were done
in dimensions D = 10, 30, 50, 100. 51 independent runs were curried out
for each function, each dimension, and for each of studied algorithms.
The algorithms were stopped according to conditions defined in [6] when
MaxFES was reached, MaxFES = D × 104. Tested algorithms were
implemented in Matlab 2010a and this environment was used for ex-
periments. All computations were carried out on a standard PC with
Windows 7, Intel(R) Core(TM)i7-4600U CPU, 2.10GHz, 2.70GHz, 8 GB
RAM.

The results of our experiments are summarized in Table 2 for D = 10
and D = 30 and Table 3 for D = 50 and D = 100. In these tables,
best and worst error value, median, mean, and standard deviation of
error value of 51 solutions are shown for each benchmark function. The
L-SHADE algorithm is referred as orig, L-SHADEexp as exp, and L-
SHADEcom as com in the tables. Some results are released from tables.
In each released case, the algorithm found the optimum in all runs.

After experiments, we compared statistically results of each of pro-
posed algorithms, L-SHADEexp and L-SHADEcom, with results of orig-
inal L-SHADE algorithm. Results were compared by Wilcoxon two-
sample test. We did the experiments in that way, because we want to
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Table 2: Results of L-SHADE versions, D=10 and D=30

D=10 D=30
f/Alg. Best Worst Median Mean Std W Best Worst Median Mean Std W

3/orig 1.2410 20.017 20.007 17.599 6.092 20.061 20.147 20.105 20.108 0.0207
exp 0 20.034 20.001 17.330 6.778 + 20 20.233 20.144 20.123 0.0682 −
com 0 20.020 20.003 16.901 7.275 = 20.002 20.209 20.102 20.107 0.0400 =

4/orig 1.9903 5.9714 3.9800 3.4941 1.002 17.050 31.191 25.097 24.945 3.203
exp 0.9950 4.9748 2.9849 3.1409 0.8982 + 18.930 33.997 25.880 25.840 3.216 =
com 0 4.9748 2.9849 2.8873 1.076 + 15.931 31.841 24.878 24.461 3.458 =

5/orig 3.7571 141.20 15.539 29.952 38.81 741.77 1720.1 1242.3 1291.4 224.0
exp 0.24982 229.91 21.825 44.752 54.35 = 1037.8 1899.8 1436.2 1437.0 224.4 −
com 0.18736 137.10 18.597 40.783 45.16 = 911.91 1764.5 1332.7 1345.9 195.6 =

6/orig 0.58746 9.2417 3.2384 3.5703 1.853 36.118 376.13 197.06 205.30 81.01
exp 0 3.1930 0.4163 0.7743 0.7122 + 32.137 504.58 181.66 194.85 94.57 =
com 0 11.381 1.2031 1.2895 1.680 + 40.539 522.78 188.30 195.37 109.3 =

7/orig 0.06386 0.48082 0.23807 0.24376 0.09122 5.7896 7.4667 6.8496 6.8049 0.3729
exp 0.02683 0.35244 0.09512 0.12774 0.08196 + 3.9795 7.0493 5.8237 5.7711 0.8452 +
com 0.03655 0.34547 0.12036 0.14226 0.07815 + 4.1992 7.5321 6.5885 6.4734 0.6624 +

8/orig 0.19264 2.9792 0.7688 0.9609 0.6209 15.473 270.83 52.018 55.845 38.11
exp 5.84E-04 0.8094 0.1052 0.2100 0.2217 + 8.9945 262.85 31.222 42.878 42.21 +
com 4.47E-05 0.6461 0.0348 0.1126 0.1586 + 7.7778 100.43 33.710 38.370 18.72 +

9/orig 100 101.052 100 100.073 0.2523 105.911 108.333 107.076 107.100 0.5177
exp 100 100 100 100 1.05E-06 + 101.552 106.51 105.908 105.722 0.8040 +
com 100 100 100 100 5.27E-06 + 104.969 106.833 106.175 106.162 0.3326 +

10/orig 140.701 179.010 143.109 148.704 10.88 516.284 741.962 616.434 623.758 56.01
exp 140.701 152.292 140.708 141.895 2.364 + 533.549 681.669 612.689 604.962 42.55 =
com 140.701 152.292 140.708 142.302 3.429 + 516.315 761.666 614.993 619.535 53.46 =

11/orig 2.1630 4.2013 3.0709 3.0603 0.4503 316.02 623.18 556.30 527.88 82.78
exp 1.8998 300 2.7454 8.5156 41.63 + 300.39 586.63 418.90 415.99 70.62 +
com 1.5598 301.22 2.8664 8.7553 41.78 = 300.35 613.67 492.17 471.17 93.43 +

12/orig 110.918 112.724 112.166 112.106 0.3543 108.57 110.17 109.36 109.39 0.3637
exp 109.863 112.135 111.766 111.665 0.3870 + 107.55 109.95 108.95 108.94 0.4547 +
com 111.284 112.445 111.890 111.870 0.2944 + 108.40 110.02 109.17 109.21 0.3842 +

13/orig 0.0925 0.1072 0.0927 0.0940 0.0034 0.0104 0.0109 0.0107 0.0107 1.08E-04
exp 0.0927 0.1072 0.0927 0.0938 0.0032 = 0.0104 0.0115 0.0107 0.0107 1.99E-04 =
com 0.0925 0.1028 0.0927 0.0942 0.0033 = 0.0104 0.0115 0.0107 0.0107 1.59E-04 =

14/orig 6662.87 6677.01 6670.66 6667.95 4.606 33760 42628 42559 41524 2863
exp 6662.87 8706.43 6670.66 6707.38 285.6 = 33760 43477 42572 40052 4107 =
com 6662.87 6677.01 6670.66 6668.97 4.616 = 33760 43507 42564 41124 3453 −

15/orig 100 100 100 100 1.04E-13 100 100 100 100 1.54E-13
exp 100 100 100 100 1.11E-13 = 100 100 100 100 1.15E-13 =
com 100 100 100 100 1.16E-13 = 100 100 100 100 1.28E-13 =

match the comparisons and to know which algorithm (L-SHADEexp or
L-SHADEcom) is better compared to original L-SHADE algorithm. The
results of curried out statistical tests are depicted in the last column W
of Tables 2 and 3. The symbol + means the proposed algorithm reached
statistically better results than L-SHADE algorithm. The symbol −
means proposed algorithm reached statistically worse results than orig-
inal algorithm and the symbol = means the null hypothesis of equality
of compared results was not reject, which means the compared results
are statistically the same. The significance level for all these statistical
tests was set to 0.05.
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Table 3: Results of L-SHADE versions, D=50 and D=100

D=50 D=100
f/Alg. Best Worst Median Mean Std W Best Worst Median Mean Std W

1/orig 78.652 14738 1219.4 2179.8 2739 71420.7 458246 190437 209140 78742
exp 2.6667 13937 308.18 683.52 1971 + 78354.4 425687 179440 191968 73104 =
com 48.845 6529.6 628.30 1146.0 1371 + 76537.9 446651 180135 196822 73819 =

2/exp 0 0 0 0 0 = 2.07E-08 0.0003 1.75E-06 1.15E-05 3.95E-05 −

3/orig 20.170 20.272 20.228 20.227 0.0253 20.455 20.566 20.507 20.507 0.0248
exp 20.014 20.363 20.291 20.273 0.0855 − 20.33 20.684 20.607 20.594 0.0682 −
com 20.070 20.309 20.235 20.235 0.0473 − 20.44 20.602 20.531 20.527 0.0343 −

4/orig 38.346 59.506 48.637 49.333 4.645 88.206 127.595 108.236 109.062 8.663
exp 37.377 70.059 56.652 55.402 6.650 − 104.374 171.201 143.391 145.008 15.07 −
com 32.170 60.880 50.514 50.250 5.762 = 94.656 551.98 120.002 159.407 124.1 −

5/orig 2224.5 3567.9 3052.0 3003.6 284.0 9186.21 11384.5 10640.7 10620.2 495.6
exp 2579.1 4052.2 3278.0 3296.8 345.3 − 9834.50 13177.3 11706.4 11787.3 794.5 −
com 2212.3 3687.3 2935.1 2995.7 319.1 = 9618.73 11910.4 10728.7 10716.0 496.3 =

6/orig 1108.7 2836.1 1900.9 1936.9 405.9 3421.72 6566.71 5256.00 5153.89 679.0
exp 783.01 2987.6 1896.5 1926.0 420.2 = 3112.02 6514.91 5084.10 5003.51 722.4 =
com 941.08 2808.0 1762.7 1816.9 397.4 = 3538.54 6507.46 4878.57 4937.39 646.9 +

7/orig 39.677 41.762 40.773 40.725 0.4668 94.895 145.193 138.019 129.696 17.73
exp 39.620 43.621 40.532 40.591 0.6663 = 96.743 145.853 136.749 124.063 19.89 =
com 38.893 42.902 40.514 40.542 0.7200 = 96.502 147.274 138.728 128.748 18.64 =

8/orig 15.663 758.21 401.87 398.05 178.4 1197.98 3897.73 2567.07 2515.14 631.2
exp 19.681 916.09 409.65 420.22 210.6 = 1326.36 4183.82 2441.61 2526.49 573.9 =
com 129.57 976.46 395.16 424.10 222.1 = 1215.19 3818.94 2469.14 2427.91 599.0 =

9/orig 102.50 103.09 102.789 102.80 0.1308 110.513 111.694 111.143 111.102 0.3254
exp 102.15 102.85 102.55 102.52 0.1767 + 107.8 110.451 109.122 109.130 0.5063 +
com 102.43 103.02 102.71 102.71 0.1511 + 109.009 110.974 109.808 109.883 0.4875 +

10/orig 642.96 1689.8 1212.0 1185.9 241.0 3376.98 5300.79 3972.90 3987.88 456.5
exp 783.37 1765.7 1209.4 1240.7 254.9 = 2888.30 4936.66 3919.99 3874.98 471.00 =
com 791.32 1916.9 1221.5 1233.8 238.0 = 2704.49 4759.48 4001.3 3948.59 451.8 =

11/orig 400 453.65 421.21 416.31 15.78 433.244 655.634 514.352 514.825 41.00
exp 400 457.41 433.12 424.47 18.62 − 412.963 693.160 560.684 559.924 59.53 −
com 400 473.15 421.21 418.78 19.97 = 447.131 666.403 510.977 526.472 52.46 =

12/orig 115.20 201.54 115.83 127.53 29.81 112.507 200.406 113.395 116.759 17.07
exp 114.97 201.55 115.68 129.15 31.54 = 112.561 200.409 113.373 118.504 20.68 =
com 115.19 201.54 115.59 122.45 23.32 + 112.476 200.406 113.363 116.721 17.08 =

13/orig 0.0248 0.0256 0.0250 0.0251 1.60E-04 0.0613 0.0658 0.0633 0.0632 9.82E-04
exp 0.0245 0.0257 0.0250 0.0250 2.62E-04 = 0.0603 0.0661 0.0635 0.0633 0.0014 =
com 0.0246 0.0255 0.0250 0.0250 1.70E-04 + 0.0610 0.0652 0.0633 0.0633 0.001 =

14/orig 52657 52714 52682 52682 15.55 108833 108955 108875 108874 20.46
exp 52657 52716 52678 52673 15.87 + 108833 108955 108874 108875 19.52 =
com 52657 52727 52681 52680 16.58 = 108855 108910 108871 108873 13.44 =

15/orig 100 100 100 100 1.35E-13 100 100 100 100 1.23E-13
exp 100 100 100 100 1.24E-13 = 100 100.388 100 100.014 0.0721 =
com 100 100 100 100 1.19E-13 = 100 100.388 100 100.008 0.0547 =

Summarization of statistically significant improvement and deterio-
ration of L-SHADE algorithm by including exponential crossover is de-
picted in Table 1. The replacement of binomial crossover in L-SHADE
algorithm by exponential crossover caused significant improvement for
almost two thirds of benchmark functions in dimension D = 10, but the
count is less for higher dimensions. Additionally, the count of bench-
mark functions, for which deterioration of results appeared, increases
with increasing dimension for the L-SHADEexp algorithm. In case of
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including of the crossover competition, L-SHADEcom algorithm, the
count of problems, where solution is significantly better than solution of
original algorithm, is less than in case of mere replacement of binomial
crossover by exponential one in D = 10 and for higher dimensions, the
count is again less than the count for dimension D = 10. However, there
is less count of problems, which results are statistically worse than results
of L-SHADE algorithm for L-SHADEcom algorithm than for algorithm
L-SHADEexp. Thus, we can conclude that including of the exponential
crossover into algorithm L-SHADE in the way of competition with bi-
nomial one brings better results than only the replacement of binomial
crossover by exponential one, which was expected. The algorithm, in
which the competition of strategy is employed, can choose appropriate
crossover type to solved optimization problem or current stage of pro-
cess. L-SHADEcom significantly improved the results of L-SHADE in
18 of 60 problems, significant deterioration of results appeared in 4 of
60 tested problems.

Nevertheless, the employing both type of crossover does not increase
the performance of L-SHADE algorithm too substantially and does not
solve the issue of algorithm’s stagnation. The issue of stagnation relates
not only to L-SHADE algorithm and our version L-SHADEcom of the
algorithm but also to the other adaptive versions of DE. To solve the
phenomenon of optimization algorithms’ stagnation is not easy task.
Discussing adaptive DE-versions, maintenance of population diversity
which would be useful for searching different solutions in the search
space stands against the convergency of algorithm.

6. Conclusion

The L-SHADE algorithm is successful version of differential evolution
algorithm, only the binomial crossover is employed in the algorithm. In
this paper, we studied the including of other type of crossover introduced
by authors of DE algorithm, the exponential one. We proposed two
versions of L-SHADE algorithm in which we used either only exponen-
tial crossover or both crossovers together and tested them on CEC2015
benchmark set. According to our results, the employing of the two types
of crossover into L-SHADE algorithm is beneficial but it does not solve
the issue of DE’s stagnation, which remains for further work.
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(Eds.), Proceedings of the International Conference on Soft Computing
MENDEL, pages 7–12, 2006.

[15] J. Tvrd́ık. Adaptive differential evolution and exponential crossover. Proceed-
ings of the International Multiconference on Computer Science and Information
Technology (IMCSIT), pages 927–931, 2008.



158 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[16] J. Tvrd́ık. Adaptation in differential evolution: A numerical comparison. Applied
Soft Computing, 9(3):1149–1155, 2009.

[17] J. Tvrd́ık. Self-adaptive variants of differential evolution with exponen-
tial crossover. Analele of West University Timisoara, Series Mathematics-
Informatics, 47:151–168, 2009.
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