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Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

mihai-suciu@cs.ubbcluj.ro

Abstract The network community structure detection problem has been recently
approached with several variants of an extremal optimization algorithm.
An extremal optimization algorithm is a stochastic local search method
that evolves pairs of individuals that can be represented as having sev-
eral components by randomly replacing components having worst fit-
nesses. The number of components to be replaced in one iteration influ-
ences both the exploitation and exploration capabilities of the method;
an efficient method of adjusting this number during the search may sig-
nificantly influence the quality of results. In this paper we explore the
use of several updating mechanisms for this number. Numerical experi-
ments are used evaluate them and also to compare results obtained with
those provided by other state-of-art methods.

Keywords: Community structure detection, Extremal optimization.

1. Introduction

The network community structure detection problem has recently at-
tracted a lot of attention from the heuristic community because both its
large applicability and challenging nature. A particular challenge associ-
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230 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ated with this problem arises from the lack of a formal definition for the
concept of community, and subsequently that of community structure
[6]. Apart from classical definitions that attempt to characterize com-
munities by using various network measures, a relatively recent class of
approaches define the community structure as the optimum value of a
certain fitness function that is supposed to illustrate the modularity of
the network. Alas, it is also accepted that such an ideal function has not
yet been proposed; existing attempts can only be validated by means of
numerical experiments and, while some functions prove suitable for syn-
thetic benchmarks, most of them fail when tested on real-world networks
for which the community structure is not so well-defined. Moreover, the
effectiveness of using a certain fitness function depends also on the un-
derlying method used to compute the optimum value.

In this paper we investigate the behavior of an extremal optimization
algorithm designed to optimize the modularity function [13], combined
with the community fitness [8], when using four different manners of
updating the number of nodes to be changed in one iteration: the classic
variant of changing only one node [3, 4], the improved τEO [2], and the
more recent variants in which this number decreases exponentially [18],
or linearly [11].

2. Network Community Structure

The fact that the community structure detection problem can be refor-
mulated as an optimization problem, makes it approachable by stochas-
tic search methods, benefiting from their scalability and adaptability.
Given an undirected, unweighted graph G = (N,E), where N is the
set of nodes, or vertices, and E is the set of edges/links, a community
structure is described intuitively as a partition over the set of nodes such
that nodes within each set are more connected to each other than to the
other sets in the partition.

While this intuitive definition appears to be easily formalized, by con-
sidering either that a community is a group of nodes such that for each
one the number of links within the community is greater than the num-
ber of links connecting it to the outside (the strong community concept
[15]) or even that the total number of links connecting nodes inside the
community is greater than the number of links to the outside (the weak
community concept [15]), there are many counterexamples of networks
with known community structure that do not satisfy either definition.
In fact, there does not exist a definition that formalizes the intuitive
description above and be accepted as valid for most situations.
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Figure 1: An example of a solution detected by an heuristic on a network with 124
nodes and 4 communities.

In spite of this, or maybe because of it, alternate methods to define
the community structure have been proposed. One of the most popu-
lar one, from a computational point of view, is to use a function that
has as an optimum value the real community structure of the network.
Again, while such a function that may be used for all possible networks
does not exist, there are some that are more effective and that became
popular in approaching this problem in the last years. Examples are
the modularity Q [13], the modularity density [10], the community score
[14], and the community fitness [8]. These functions, and most of all
the modularity and the modularity density, have been widely used and
studied in conjunction with various heuristics designed for their direct
or indirect optimization, i.e., directly finding their optimum and con-
sider it as the community structure, or only including them in one or
more search phases. An example of what is expected from a community
structure detection algorithm is depicted in Fig. 1.

The modularity Q of a community structure is defined as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj), (1)

where the sum runs over all pairs of vertices i and j, A is the adjacency
matrix, m the total number of links in the network, ki the degree of node
i, Ci the community of node i and δ(Ci, Cj) equals 1 if nodes i and j
belong to the same community and 0 otherwise. When two community
structures are compared, a higher modularity value presumably indicates
a better solution.

3. Extremal Optimization

Recently, a new heuristic approach that combines the modularity and
community fitness and uses extremal optimization algorithm (EO) [2]
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as an underlying method has been proposed. Validated by means of
numerical experiments, this approach has proven more efficient than
other state-of-art methods when tested on usual benchmarks. With the
purpose of improving the extremal optimization method, several other
EO variants have been proposed, each one of them apparently leading
to better results. This article compares these methods, in the context
of the community structure detection problem, in the attempt to assess
if there are significant differences among them and if so, if one of them
may prove more efficient than the others.

The baseline method used here is the NoisyEO algorithm [11] which is
described in Algorithms 1 and 2. A typical EO algorithm evolves a pair
of individuals (s, sbest): s explores the search space and sbest preserves
the best solution found by s. NoisyEO evolves a population of such
pairs of individuals representing possible structures and evaluated with
the modularity function. Also typical to EO is the fact that one individ-
ual is represented as a set of components with different fitnesses; during
one iteration the component having the worst fitness value is randomly
replaced. A more efficient variant, called τ−EO, uses a probability dis-
tribution to decide which nodes are changed [2].

NoisyEO considers nodes as the components, and computes for each
node a fitness function as the node’s contribution to its community, i.e.:

f
(node)
i (C1, . . . , Cn) = f(Ci)− f(Ci\{i}), (2)

where Ci represents the community of player i, s ∈ S, and Ci\{i} is the
same community without node i; f is the community score:

f(C) =
kin(C)

(kin(C) + kout(C))α
, (3)

kin(C) is the double of the number of internal links in community C;
kout(C) the number of external links of C; and α - a parameter that
controls the community size (in experiments presented in this paper
α = 1). Thus, a NoisyEO individual is a vector of length equal to the
number of nodes, of the form s = (C1, . . . Cn), where Ci is the community
of node i.

Within NoisyEO several components are replaced simultaneously: their
number starts from approximatively 10% of the number of nodes, lin-
early decreases until the middle of the search and after that it remains
constant, equal to 1. But there are also other several ways this number
can be changed, based on the intuition that larger values induce diver-
sity and intensifies exploration of the space, while smaller values permit
better exploitation. In this paper we explore the possibility of using
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Figure 2: Different variants of updating the number of nodes κ that are changed each
iteration during the search in order to maintain the equilibrium between exploration
- at the beginning of the search - and exploitation - towards the end of the search.

other methods of adapting this number in an attempt to find the best
version of EO suitable for the community structure detection problem.
The following variants, all based on NoisyEO, are proposed:

NoisyEO(L2) - κ decreases linearly to 1 until the middle of the
search and remains 1 to the end [11];

NoisyEO(L) - κ decreases linearly to 1;

NoisyEO(E) - κ decreases exponentially from approx 10% of the
number of nodes, to 1 at the end of the search:

κNrGgen = max

{
1,

[
1

10
·N · (N − 2)−

NrGen
MaxGen

]}
, (4)

where [·] represents the integer part, N the number of network
nodes, andMaxGen the maximum number of generations/iterations
allowed.

NoisyEO(1) κ = 1, constant;

τ−EO, that uses the framework of NoisyEO with a τ−EO itera-
tion, in which nodes are ranked by fitness and the probability of
choosing node r is P (r) ∝ r−τ [5].

A graphical representation of the four different variants of setting κ
is illustrated in Fig. 2.
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Algorithm 1 NoisyEO algorithm

Parameters:
Population size - popsize;
Probability of shift - pshift;
Number of generations between switching networks - G;
Total number of shifts - NrShifts;
Expected minimum and maximum number of communities.

1: Randomly initialize popsize pairs of configurations (s, sbest).
2: noise=false;
3: repeat
4: if noise then
5: Induce noise with probability p

(∗)
shift;

6: Randomly reinitialize each sbest in population;
7: else
8: perform search on the original network;
9: end if

10: noise=not noise;
11: Update k depending on the tested EO variant(∗∗);
12: for G generations do
13: Apply κEO (s, sbest) for all pairs (s, sbest) - Alg. 2;
14: end for
15: until G ∗NrShifts > Maximum number of generations;
16: Return sbest with highest fitness.
(∗) Modify network by randomly deleting/adding nodes with probability pshift which
decreases linearly from an initial value to 0 during the search.
(∗∗) One of the following variants are considered:

NoisyEO(E) - κ decreases exponentially, eq. (4);
NoisyEO(L) - κ decreases linearly to 1;
NoisyEO(L2) - κ decreases linearly to 1 until the middle of the search and
remains 1 to the end;
NoisyEO(1) κ = 1, constant;

Algorithm 2 κEO(s, sbest) iteration

1: For current configuration s evaluate ui(s), the fitness function cor-
responding of node i ∈ {1, . . . , n}.

2: find the κ worst components and replace them with a random value;
3: if (s is better (∗∗∗) than sbest) then
4: set sbest := s.
5: end if

(∗∗∗) better modularity value (1)
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4. Numerical Experiments

Numerical experiments, performed on several benchmarks, are used
to compare the results offered by the five NoisyEO variants with those
offered by other state-of-art algorithms.

Experimental set-up. Numerical experiments were performed on
synthetic benchmarks and real-world networks with the five variants of
NoisyEO : NoisyEO(L2), NoisyEO(L),NoisyEO(E), NoisyEO(1), τ−EO.
Results were compared with four state-of-art methods: Louvain [1],
OSLOM [9], Infomap [16], and ModOpt [17] - run by using the source
code from sites.google.com/site/andrealancichinetti/software,
last accessed May, 2015. Louvain and ModOpt optimize the modularity,
OSLOM uses a probability of a node to belong to a community and
Infomap is based on a random walk.

Parameter settings. The algorithm parameters are the same for
all variants of NoisyEO : population size 50, initial value of pshift = 1,
G = 45, NrShifts = 150; the interval for the number of communities
for each network is estimated such that the correct number is included
and assigned to approx. 25% of the population.

Benchmarks. Four sets of synthetic networks were generated:

GN: 128 nodes, 4 equal sized communities, node degree 16, zout
indicates the number of links a node has outside its community;
30 networks for each zout ∈ {1, . . . 8};

LFR 128 nodes: average vertex degree 20, maximum vertex degree
50, community size [10, 50];

LFR 1000 nodes, S - small: average vertex degree 20, maximum
vertex degree 50, community size [10, 50];

LFR 1000 nodes, B - big: average vertex degree 20, maximum
vertex degree 50, community size [20, 100]

The LFR sets are characterized by the mixing parameter µ value - com-
puted as the ratio between the number of links a node has outside its
community and its degree. For each set and each µ value, we generated
30 networks. The most challenging sets are those where µ ∈ {0.5, 0.6}
and zout = 8, because they have a less well-defined community structure.
Even among these networks (128 nodes, 1000 nodes small and big), the
most difficult ones are the small ones (128 nodes), because if we increase
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the network size and the number of communities, a better-defined struc-
ture is created.

The real-world networks used for experiments are: the bottle-nose
dolphin network [12], the football network [7], the Zachary karate club
network [19], and the books about US politics network – www.org\net.

com, last accessed 9/3/2015.

Performance evaluation. We use the normalized mutual informa-
tion (NMI) proposed in [8] to evaluate and to compare results. A NMI
value of 1 indicates, that two communities are identical. We compared
obtained results for each method to the real community structure of the
network.

For each benchmark set, results are further compared by using the
Wilcoxon sign-rank nonparametric test (for 30 independent runs for each
real network and on the 30 networks for each GN and LFR sets). The
Wilcoxon sign rank specifies if the difference between two sample medi-
ans may be considered significant: the null hypothesis that two samples
come from the same population can be rejected with a level of signifi-
cance α = 0.05 if the computed p-value is smaller than 0.05.

Results and discussion. Results are presented in the form of box-
plots of NMI values obtained for the 30 runs by each method, in Fig-
ures 3–5. Next to each box-plot, a black-white matrix corresponding to
Wilcoxon h values indicates the results of the pairwise comparisons of
the tested methods: a black square shows a statistical difference between
the two methods.

Regarding the difference between NoisyEO variants, the Wilcoxon h
matrices show very few differences between the three adaptive variants:
E, L, and L2. The exponential variant, E, shows worst results for the GN
zout = 8 set, but this result is still better than all the results obtained by
the other methods. Setting k = 1 and τ−EO do not yield good results
compared to the other EO variants for the synthetic benchmarks. For the
real-world networks, results are much closer, but still the three variants
outperform the others.

5. Conclusion

A comparative analysis of four variants of extremal optimization up-
dating procedures for the community structure detection problem is pre-
sented. The results show that the use of an adaptive method of setting
the number of nodes to be randomly reassigned each iteration is ben-
eficial; however, differences between tested variants are not significant
enough to enable us to draw a conclusion regarding the best variant for
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Figure 3: GN and LFR benchmarks, 128 nodes. Comparisons with other methods.
Boxplots of NMI values obtained for the 30 networks in each set by each considered
method. Wilcoxon h values matrices illustrate the statistical significance of the dif-
ferences in results for the nine methods: a black box corresponds to p < 0.05 and
rejection of the null hypothesis that the two samples have the same median.
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Figure 4: LFR benchmark, 1000 nodes, Small and Big. Results are represented in
the same manner as in Fig. 3
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Figure 5: Real-world networks. Results are represented in the same manner as in
Fig. 3.
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k leads to better results. The differences in means represented here have no statistical
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the tested problems. Only when using an exponential rule, results are
worse than the other EO variants, but even in those situations, they are
very good.

Numerical results also show that extremal optimization may be very
powerful in addressing the problem of community structure detection.
Its main drawback, however, arises from the fact that random the com-
putational time required by the iterative random changes makes this
approach less efficient for large networks. On the other hand, this
method proved very efficient for small networks with less visible commu-
nity structures. Further work consists in finding the means to improve
its scalability while maintaining its efficiency in dealing with ambiguous
community structures.
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